Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Unraveling the Molecular Nexus
Abstract
:1. Introduction
2. Mitochondrial Dysfunction in COPD
2.1. Oxidative Stress
2.2. Bioenergetic Impairment
2.3. Integrative Approaches
3. Mitochondrial Genetics and Potential Mechanisms in COPD Development
3.1. MtDNA Mutations and Variations and Their Role in COPD
3.2. Implications for Precision Medicine
3.3. Challenges and Future Directions
4. Cellular Consequences of Mitochondrial Dysfunction in COPD
4.1. Apoptosis
4.2. Mitophagy
4.3. Cellular Senescence
4.4. Cross-Talk, Feedback Loops, and Translational Value
5. Therapeutic Implications
5.1. Therapeutic Implications of Mitochondrial Dysfunction in COPD
5.1.1. Antioxidant Therapies
5.1.2. Mitochondria-Targeted Compounds
5.1.3. Lifestyle Modifications
5.1.4. Integrated Approaches
5.2. Challenges and Future Directions
6. Future Directions in Understanding and Addressing Mitochondrial Dysfunction in COPD
6.1. Identification of Novel Mitochondrial Biomarkers
6.2. Advancements in Mitochondria-Targeted Therapies
6.3. Integration of Omics Technologies
6.4. Patient-Centric Approaches
6.5. Technological Innovations and Collaborative Efforts
7. Conclusions: Unraveling the Mitochondrial Tapestry in COPD
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; Montes de Oca, M. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Am. J. Respir. Crit. Care Med. 2023, 207, 819–837. [Google Scholar] [CrossRef] [PubMed]
- Agustí, A.; Melen, E.; DeMeo, D.L.; Breyer-Kohansal, R.; Faner, R. Pathogenesis of chronic obstructive pulmonary disease: Understanding the contributions of gene—Environment interactions across the lifespan. Lancet Respir. Med. 2022, 10, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Dailah, H.G. Therapeutic potential of small molecules targeting oxidative stress in the treatment of chronic obstructive pulmonary disease (COPD): A comprehensive review. Molecules 2022, 27, 5542. [Google Scholar] [CrossRef] [PubMed]
- Wiegman, C.H.; Michaeloudes, C.; Haji, G.; Narang, P.; Clarke, C.J.; Russell, K.E.; Bao, W.; Pavlidis, S.; Barnes, P.J.; Kanerva, J. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2015, 136, 769–780. [Google Scholar] [CrossRef]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Harmful and beneficial role of ROS. Oxid. Med. Cell. Longev. 2016, 2016, 7909186. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.A.; Lopes-Pacheco, M.; Rocco, P.R. Oxidative stress-derived mitochondrial dysfunction in chronic obstructive pulmonary disease: A concise review. Oxidative Med. Cell. Longev. 2021, 2021, 6644002. [Google Scholar] [CrossRef]
- Maremanda, K.P.; Sundar, I.K.; Rahman, I. Role of inner mitochondrial protein OPA1 in mitochondrial dysfunction by tobacco smoking and in the pathogenesis of COPD. Redox Biol. 2021, 45, 102055. [Google Scholar] [CrossRef]
- Boukhenouna, S.; Wilson, M.A.; Bahmed, K.; Kosmider, B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxidative Med. Cell. Longev. 2018, 2018, 5730395. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; Adcock, I. Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 2006, 28, 219–242. [Google Scholar] [CrossRef]
- Neofytou, E.; Tzortzaki, E.G.; Chatziantoniou, A.; Siafakas, N.M. DNA damage due to oxidative stress in chronic obstructive pulmonary disease (COPD). Int. J. Mol. Sci. 2012, 13, 16853–16864. [Google Scholar] [CrossRef]
- Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 2013, 8, 2003. [Google Scholar] [PubMed]
- Kosmider, B.; Lin, C.-R.; Karim, L.; Tomar, D.; Vlasenko, L.; Marchetti, N.; Bolla, S.; Madesh, M.; Criner, G.J.; Bahmed, K. Mitochondrial dysfunction in human primary alveolar type II cells in emphysema. eBioMedicine 2019, 46, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020, 33, 101544. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.M.; Sadiku, P.; Coelho, P.; Watts, E.R.; Zhang, A.; Howden, A.J.; Sanchez-Garcia, M.A.; Bewley, M.; Cole, J.; McHugh, B.J. NRF2 Activation Reprograms Defects in Oxidative Metabolism to Restore Macrophage Function in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2023, 207, 998–1011. [Google Scholar] [CrossRef] [PubMed]
- Cloonan, S.M.; Choi, A.M. Mitochondria in lung disease. J. Clin. Investig. 2016, 126, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, P.; Cao, Y.; Liu, C.; Wang, J.; Wu, W. Skeletal Muscle Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Underlying Mechanisms and Physical Therapy Perspectives. Aging Dis. 2023, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Haji, G.; Wiegman, C.H.; Michaeloudes, C.; Patel, M.S.; Curtis, K.; Bhavsar, P.; Polkey, M.I.; Adcock, I.M.; Chung, K.F.; COPDMAP consortium. Mitochondrial dysfunction in airways and quadriceps muscle of patients with chronic obstructive pulmonary disease. Respir. Res. 2020, 21, 262. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.; Spruit, M.; Hopkinson, N.; Natanek, S.; Man, W.-C.; Jackson, A.; Gosker, H.; Schols, A.; Moxham, J.; Polkey, M. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur. Respir. J. 2010, 36, 81–88. [Google Scholar] [CrossRef]
- Pokharel, M.D.; Garcia-Flores, A.; Marciano, D.; Franco, M.C.; Fineman, J.R.; Aggarwal, S.; Wang, T.; Black, S.M. Mitochondrial network dynamics in pulmonary disease: Bridging the gap between inflammation, oxidative stress, and bioenergetics. Redox Biol. 2024, 70, 103049. [Google Scholar] [CrossRef]
- Nam, H.-S.; Izumchenko, E.; Dasgupta, S.; Hoque, M.O. Mitochondria in chronic obstructive pulmonary disease and lung cancer: Where are we now? Biomark. Med. 2017, 11, 475–489. [Google Scholar] [CrossRef]
- MacNee, W. Is chronic obstructive pulmonary disease an accelerated aging disease? Ann. Am. Thorac. Soc. 2016, 13, S429–S437. [Google Scholar] [CrossRef]
- Liu, G.; Summer, R. Cellular metabolism in lung health and disease. Annu. Rev. Physiol. 2019, 81, 403–428. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, C.; Qian, G.; Wu, G.; Guo, R.; Li, Q.; Chen, Y.; Li, J.; Li, H.; He, B. Role of mtDNA haplogroups in COPD susceptibility in a southwestern Han Chinese population. Free Radic. Biol. Med. 2012, 53, 473–481. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Liu, Y.; Li, G.; He, X. Mitochondrial quality control in lung diseases: Current research and future directions. Front. Physiol. 2023, 14, 1236651. [Google Scholar] [CrossRef]
- Liu, S.-F.; Kuo, H.-C.; Tseng, C.-W.; Huang, H.-T.; Chen, Y.-C.; Tseng, C.-C.; Lin, M.-C. Leukocyte mitochondrial DNA copy number is associated with chronic obstructive pulmonary disease. PLoS ONE 2015, 10, e0138716. [Google Scholar] [CrossRef]
- Liu, S.-F.; Chang, H.-C.; Chang, Y.-P.; Kuo, H.-C.; Tsai, Y.-C. IL13 Promoter (−1055) Polymorphism Associated with Leukocyte Mitochondria DNA Copy Number in Chronic Obstructive Pulmonary Disease. Cells 2022, 11, 3787. [Google Scholar] [CrossRef]
- Jiang, Z.-M.; Zhao, Q.-S.; Xu, Y.-Q.; Li, T.; Jie, J.; Zhang, Z.-H. Whole mitochondrial genome sequencing and analysis for chronic obstructive pulmonary disease rat strain. Mitochondrial DNA Part A 2016, 27, 3917–3918. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, C.-F.; Chen, J.-Y.; Guo, Z.-K.; Wu, S.-Y.; Li, H.-Y. Targeting Mitochondrial Dysfunction With LncRNAs in a Wistar Rat Model of Chronic Obstructive Pulmonary Disease. Vivo 2023, 37, 2543–2554. [Google Scholar] [CrossRef]
- Plataki, M.; Tzortzaki, E.; Rytila, P.; Demosthenes, M.; Koutsopoulos, A.; Siafakas, N.M. Apoptotic mechanisms in the pathogenesis of COPD. Int. J. Chronic Obstr. Pulm. Dis. 2006, 1, 161–171. [Google Scholar] [CrossRef]
- Demedts, I.K.; Demoor, T.; Bracke, K.R.; Joos, G.F.; Brusselle, G.G. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir. Res. 2006, 7, 53. [Google Scholar] [CrossRef]
- Hikichi, M.; Mizumura, K.; Maruoka, S.; Gon, Y. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. J. Thorac. Dis. 2019, 11, S2129. [Google Scholar] [CrossRef]
- Tsubouchi, K.; Araya, J.; Kuwano, K. PINK1-PARK2-mediated mitophagy in COPD and IPF pathogeneses. Inflamm. Regen. 2018, 38, 18. [Google Scholar] [CrossRef]
- Manevski, M.; Muthumalage, T.; Devadoss, D.; Sundar, I.K.; Wang, Q.; Singh, K.P.; Unwalla, H.J.; Chand, H.S.; Rahman, I. Cellular stress responses and dysfunctional Mitochondrial–cellular senescence, and therapeutics in chronic respiratory diseases. Redox Biol. 2020, 33, 101443. [Google Scholar] [CrossRef]
- Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912. [Google Scholar] [CrossRef]
- Wang, Q.; Unwalla, H.; Rahman, I. Dysregulation of mitochondrial complexes and dynamics by chronic cigarette smoke exposure utilizing MitoQC reporter mice. Mitochondrion 2022, 63, 43–50. [Google Scholar] [CrossRef]
- Vasileiou, P.V.; Evangelou, K.; Vlasis, K.; Panayiotidis, M.I.; Chronopoulos, E.; Passias, P.-G.; Kouloukoussa, M.; Gorgoulis, V.G.; Havaki, S. Mitochondrial homeostasis and cellular senescence. Cells 2019, 8, 686. [Google Scholar] [CrossRef]
- Korolchuk, V.I.; Miwa, S.; Carroll, B.; Von Zglinicki, T. Mitochondria in cell senescence: Is mitophagy the weakest link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]
- Birch, J.; Barnes, P.J.; Passos, J.F. Mitochondria, telomeres and cell senescence: Implications for lung ageing and disease. Pharmacol. Ther. 2018, 183, 34–49. [Google Scholar] [CrossRef]
- Lerner, C.A.; Sundar, I.K.; Rahman, I. Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD. Int. J. Biochem. Cell Biol. 2016, 81, 294–306. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Yao, Y.; Zhao, T.; Chen, Y.-Y.; Shen, Y.-L.; Wang, L.-L.; Zhu, Y. Stem cell-derived mitochondria transplantation: A novel strategy and the challenges for the treatment of tissue injury. Stem Cell Res. Ther. 2018, 9, 106. [Google Scholar] [CrossRef]
- Mumby, S.; Adcock, I.M. Recent evidence from omic analysis for redox signalling and mitochondrial oxidative stress in COPD. J. Inflamm. 2022, 19, 10. [Google Scholar] [CrossRef]
- Fairley, L.H.; Das, S.; Dharwal, V.; Amorim, N.; Hegarty, K.J.; Wadhwa, R.; Mounika, G.; Hansbro, P.M. Mitochondria-Targeted Antioxidants as a Therapeutic Strategy for Chronic Obstructive Pulmonary Disease. Antioxidants 2023, 12, 973. [Google Scholar] [CrossRef]
- Chellappan, D.K.; Paudel, K.R.; Tan, N.W.; Cheong, K.S.; Khoo, S.S.Q.; Seow, S.M.; Chellian, J.; Candasamy, M.; Patel, V.K.; Arora, P. Targeting the mitochondria in chronic respiratory diseases. Mitochondrion 2022, 67, 15–37. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.-C.; Qu, J.; Xie, S.-Y.; Sun, Y.; Yao, H.-W. Mitochondrial dysfunction in chronic respiratory diseases: Implications for the pathogenesis and potential therapeutics. Oxidative Med. Cell. Longev. 2021, 2021, 5188306. [Google Scholar] [CrossRef] [PubMed]
- Dekhuijzen, P.; Van Beurden, W. The role for N-acetylcysteine in the management of COPD. Int. J. Chronic Obstr. Pulm. Dis. 2006, 1, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Sheu, S.-S.; Nauduri, D.; Anders, M. Targeting antioxidants to mitochondria: A new therapeutic direction. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2006, 1762, 256–265. [Google Scholar] [CrossRef]
- Chan, S.M.; Selemidis, S.; Bozinovski, S.; Vlahos, R. Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): Clinical significance and therapeutic strategies. Pharmacol. Ther. 2019, 198, 160–188. [Google Scholar] [CrossRef] [PubMed]
- Kokkinopoulou, I.; Moutsatsou, P. Mitochondrial glucocorticoid receptors and their actions. Int. J. Mol. Sci. 2021, 22, 6054. [Google Scholar] [CrossRef]
- De Sarno, P.; Shestopal, S.A.; King, T.D.; Zmijewska, A.; Song, L.; Jope, R.S. Muscarinic receptor activation protects cells from apoptotic effects of DNA damage, oxidative stress, and mitochondrial inhibition. J. Biol. Chem. 2003, 278, 11086–11093. [Google Scholar] [CrossRef]
- Li, L.; Qi, R.; Zhang, L.; Yu, Y.; Hou, J.; Gu, Y.; Song, D.; Wang, X. Potential biomarkers and targets of mitochondrial dynamics. Clin. Transl. Med. 2021, 11, e529. [Google Scholar] [CrossRef] [PubMed]
- Blutt, S.E.; Coarfa, C.; Neu, J.; Pammi, M. Multiomic Investigations into Lung Health and Disease. Microorganisms 2023, 11, 2116. [Google Scholar] [CrossRef] [PubMed]
- Gea, J.; Enríquez-Rodríguez, C.J.; Pascual-Guardia, S. Metabolomics in COPD. Arch. Bronconeumol. 2023, 59, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, Y.; Zeng, C.; Mao, H. Artificial intelligence and machine learning in chronic airway diseases: Focus on asthma and chronic obstructive pulmonary disease. Int. J. Med. Sci. 2021, 18, 2871. [Google Scholar] [CrossRef] [PubMed]
Mechanisms | Consequences | |
---|---|---|
Oxidative Stress | Mitochondrial dysfunction leads to increased production of reactive oxygen species (ROS), creating an imbalance in the cellular redox state. This imbalance perpetuates inflammation and oxidative damage, contributing to the pathophysiology of COPD. | The consequences of oxidative stress include damage to cellular components and structures, further exacerbating inflammation and initiating a cascade of events that contribute to COPD progression. |
Bioenergetic Impairment | Alterations in mitochondrial respiratory chain function, including decreased electron transport chain complex activity, lead to insufficient ATP production, impacting cellular processes critical for maintaining lung health and function. | Bioenergetic deficits affect mucociliary clearance, immune responses, and tissue repair, contributing to the systemic manifestations of COPD, such as skeletal muscle dysfunction and exercise intolerance. |
Mitochondrial Genetics | Specific mutations in mtDNA are associated with increased risk of COPD development. These mutations contribute to impaired mitochondrial function, leading to oxidative stress and energy imbalance, key features of COPD pathology. | Certain mitochondrial haplogroups are linked to COPD susceptibility and severity. Understanding these haplogroups provides insights into the genetic influences beyond individual mtDNA mutations. |
Cellular Consequences |
|
|
Therapeutic Implications | Future Directions | |
---|---|---|
Oxidative Stress | Recognizing the pivotal role of oxidative stress suggests potential therapeutic strategies targeting antioxidant pathways to mitigate the detrimental effects of oxidative damage in COPD. Physical activity, exercise training, and dietary interventions, such as adopting a diet rich in antioxidants, omega-3 fatty acids, and polyphenols, are explored for their potential to improve mitochondrial health and reduce oxidative stress. | Exploring innovative compounds specifically targeting mitochondria to address the root causes of oxidative stress. Mitoquinone, a mitochondria-targeted antioxidant, and Szeto–Schiller (SS) peptides are among the compounds showing promise in preclinical studies. |
Bioenergetic Impairment | Addressing bioenergetic impairment in COPD involves strategies to restore mitochondrial function and enhance cellular energy production. Potential interventions include promoting mitochondrial biogenesis, improving ATP synthesis pathways, and supporting overall mitochondrial health. Physical exercise, pharmacological agents, and nutritional interventions may play a role in stimulating mitochondrial biogenesis. | Elucidating the specific mechanisms underlying bioenergetic impairment in COPD, identifying novel targets for intervention, and conducting robust clinical trials to evaluate the safety and efficacy of emerging therapies targeting mitochondrial function. |
Mitochondrial Genetics | Navigating the genetic landscape, and elucidating the role of mitochondrial DNA mutations, variations, and haplogroups in COPD susceptibility and severity. Therapies specifically targeting mitochondrial DNA mutations or variations could emerge as disease-modifying agents in COPD. Gene-editing technologies, such as CRISPR-Cas9, may hold potential for correcting mitochondrial genetic defects. Emerging technologies like mitochondrial replacement therapies (MRT) involve replacing defective mitochondria with healthy ones. Advancements in gene and cell therapies may offer targeted interventions for mitochondrial genetic abnormalities. | Expanding our understanding of the functional consequences of mitochondrial genetic variations in COPD, exploring novel therapeutic targets, and advancing technologies for the precise manipulation of mitochondrial DNA. |
Cellular Consequences | Examining cellular consequences, including apoptosis, autophagy, and cellular senescence, providing insights into mechanisms linking mitochondrial dysfunction to COPD pathology. Addressing the cross-talk between apoptosis, autophagy, and senescence is crucial. Therapies that target multiple pathways simultaneously may disrupt the self-perpetuating cycle of cellular consequences observed in COPD. Integrated therapeutic approaches may involve a combination of anti-apoptotic, pro-autophagic, and senolytic agents, tailored to individual patient profiles. A multi-modal approach targeting different cellular consequences simultaneously may enhance therapeutic efficacy. | Future research should explore the intricate molecular mechanisms of cellular consequences in COPD in preclinical and clinical settings, identifying novel therapeutic targets and assessing the safety and efficacy of emerging interventions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-L.; Liu, J.-F.; Liu, S.-F. Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Unraveling the Molecular Nexus. Biomedicines 2024, 12, 814. https://doi.org/10.3390/biomedicines12040814
Li C-L, Liu J-F, Liu S-F. Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Unraveling the Molecular Nexus. Biomedicines. 2024; 12(4):814. https://doi.org/10.3390/biomedicines12040814
Chicago/Turabian StyleLi, Chin-Ling, Jui-Fang Liu, and Shih-Feng Liu. 2024. "Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Unraveling the Molecular Nexus" Biomedicines 12, no. 4: 814. https://doi.org/10.3390/biomedicines12040814
APA StyleLi, C. -L., Liu, J. -F., & Liu, S. -F. (2024). Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Unraveling the Molecular Nexus. Biomedicines, 12(4), 814. https://doi.org/10.3390/biomedicines12040814