Role of Nutrients in Pediatric Non-Dialysis Chronic Kidney Disease: From Pathogenesis to Correct Supplementation
Abstract
:1. Introduction
1.1. Sodium (Na)
1.2. Potassium (K)
1.3. Magnesium (Mg)
1.4. Calcium (Ca), Phosphate (P) and Vitamin D
1.5. Iron (Fe)
1.6. Selenium (Se)
1.7. Zinc (Zn)
1.8. Copper (Cu)
1.9. Manganese (Mn)
1.10. Iodine (I)
Micronutrients | Alteration | Signs and Symptoms | Management |
---|---|---|---|
Sodium (Na) | Hypernatremia | High blood pressure. | Dietary restriction in case of hypertension or prehypertension. 2–3 years: 1500 mg/day; 4–8 years: 1900 mg/day; 9–13 years: 2200 mg/day; >14 years: 2300 mg/day. |
Potassium (K) | Hyperkalemia | Usually asymptomatic. Muscle weakness, nausea, vomiting. Lethal cardiac arrhythmias if rapid onset. | Dietary potassium intake must be less than 2–3 g/day if persistent hyperkalemia uses potassium-binding agents. Adjusting dietary potassium intake until normal serum potassium values are reached. |
Magnesium (Mg) | Hypomagnesemia | Loss of appetite, nausea, vomiting, fatigue, weakness. In case of severe magnesium deficiency, numbness, tingling, muscle twitching, cramps, seizures, personality changes, abnormal heart rhythms, hypocalcemia or hypokalemia. | Dietary supplementation with magnesium-enriched products and oral supplements. Further studies are needed to define the correct serum magnesium target and which compounds are most appropriate for achieving this target. |
Calcium (Ca) | Hypocalcemia | Muscle cramps and spasm, bone pain, fractures, altered mental state, heart arrhythmia, skin alterations. | Dietary intake is 800 to 1000 mg/day (max 2500 mg/day), including calcium-containing foods, medications such as phosphate binders and calcium supplements to maintain a neutral calcium balance. |
Phosphate (P) | Hyperphosphatemia | Secondary to hypocalcemia | Dietary restriction to 80% of daily intake. If hyperphosphatemia persists, use phosphate-binding agents. |
Vitamin D | Hypovitaminosis D | Rickets, secondary hyperparathyroidism | If deficiency 2000 UI/day for 6 weeks, then maintenance with 400–800 UI/day. |
Iron (Fe) | Iron deficiency | Anemia, fatigue and weakness, headache, brittle nails or hair loss. |
In case of anemia, 2–6 mg/kg (max 200 mg) daily of elemental iron in 2–3 divided doses. According to WHO guidelines, 30–60 mg/day in adolescent girls. |
Selenium (Se) | Selenium deficiency | Immunodeficiency, fatigue and weakness, infertility, atherosclerosis and atopic disease. | No guidelines currently recommend daily supplementation in deficiency cases, particularly in children managed conservatively. The goal is to optimize nutritional intake. |
Zinc (Zn) | Zinc deficiency | Slowed growth, decreased muscle mass, delayed cognitive development, weakened immune function, primary hypogonadism, diminished taste and smell perception. | No guidelines currently recommend daily supplementation in deficiency cases, particularly in children managed conservatively. The goal is to optimize nutritional intake. |
Copper (Cu) | Copper deficiency Copper excess in higher stages | Anemia. Neurological symptoms. Degeneration of renal tubular epithelial cells, renal fibrosis and renal failure. | No guidelines currently recommend daily supplementation in cases of deficiency, particularly in children managed conservatively. The goal is optimizing nutritional intake. |
Manganese (Mn) | Rare, possible deficiency in dialysis-dependent patients | - | No guidelines currently recommend daily supplementation in cases of deficiency, particularly in children managed conservatively. |
Iodine (I) | Iodine excess | Impaired thyroid function, goiter | Dietary restriction. Excessive dietary restriction can cause iodine deficiency. |
2. Discussion
3. Future Directions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Amanullah, F.; Malik, A.A.; Zaidi, Z. Chronic kidney disease causes and outcomes in children: Perspective from a LMIC setting. PLoS ONE 2022, 17, e0269632. [Google Scholar] [CrossRef]
- KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 Update. Am. J. Kidney Dis. 2012, 60, 850–886. [CrossRef]
- Levey, A.S.; Eckardt, K.-U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; Zeeuw, D.D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef]
- Sgambat, K.; Amatya, K.; Moudgil, A. Nutritional challenges across the spectrum of chronic kidney disease. Asian J. Pediatr. Nephrol. 2019, 2, 2–15. [Google Scholar]
- Nyaradi, A.; Li, J.; Hickling, S.; Foster, J.; Oddy, W.H. The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front. Hum. Neurosci. 2013, 7, 97. [Google Scholar] [CrossRef] [PubMed]
- Hui, W.F.; Betoko, A.; Savant, J.D.; Abraham, A.G.; Greenbaum, L.A.; Warady, B.; Moxey-Mims, M.M.; Furth, S.L. Assessment of dietary intake of children with chronic kidney disease. Pediatr. Nephrol. 2016, 32, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ducharme-Smith, K.; Davis, L.; Hui, W.F.; Warady, B.A.; Furth, S.L.; Abraham, A.G.; Betoko, A. Dietary sources of energy and nutrient intake among children and adolescents with chronic kidney disease. Pediatr. Nephrol. 2017, 32, 1233–1241. [Google Scholar] [CrossRef]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein–energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, A.; Paglialonga, F.; Edefonti, A. Assessment of nutritional status in children with chronic kidney disease and on dialysis. Pediatr. Nephrol. 2013, 29, 1349–1358. [Google Scholar] [CrossRef]
- Zha, Y.; Qian, Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients 2017, 9, 208. [Google Scholar] [CrossRef]
- Kohaut, E.C. Chronic renal disease and growth in childhood. Curr. Opin. Pediatr. 1995, 7, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Mak, R.H. Cachexia in children with chronic kidney disease: Challenges in diagnosis and treatment. Curr. Opin. Support. Palliat. Care 2016, 10, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Ku, E.; Kopple, J.D.; McCulloch, C.E.; Warady, B.A.; Furth, S.L.; Mak, R.H.; Grimes, B.A.; Mitsnefes, M. Associations Between Weight Loss, Kidney Function Decline, and Risk of ESRD in the Chronic Kidney Disease in Children (CKiD) Cohort Study. Am. J. Kidney Dis. 2018, 71, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Rodig, N.M.; Roem, J.; Schneider, M.F.; Seo-Mayer, P.W.; Reidy, K.J.; Kaskel, F.J.; Kogon, A.J.; Furth, S.L.; Warady, B.A. Longitudinal outcomes of body mass index in overweight and obese children with chronic kidney disease. Pediatr. Nephrol. 2021, 36, 1–10. [Google Scholar] [CrossRef]
- Kogon, A.J.; Roem, J.; Schneider, M.F.; Mitsnefes, M.M.; Zemel, B.S.; Warady, B.A.; Furth, S.L.; Rodig, N.M. Associations of body mass index (BMI) and BMI change with progression of chronic kidney disease in children. Pediatr. Nephrol. 2023, 38, 1257–1266. [Google Scholar] [CrossRef]
- Wong, C.S.; Gipson, D.S.; Gillen, D.L.; Emerson, S.; Koepsell, T.; Sherrard, D.J.; Watkins, S.L.; Stehman-Breen, C. Anthropometric measures and risk of death in children with end-stage renal disease. Am. J. Kidney Dis. 2000, 36, 811–819. [Google Scholar] [CrossRef]
- Furth, S.L.; Stablein, D.; Fine, R.N.; Powe, N.R.; Fivush, B.A. Adverse Clinical Outcomes Associated With Short Stature at Dialysis Initiation: A Report of the North American Pediatric Renal Transplant Cooperative Study. Pediatrics 2002, 109, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Furth, S.L.; Hwang, W.; Yang, C.; Neu, A.M.; Fivush, B.A.; Powe, N.R. Growth failure, risk of hospitalization and death for children with end-stage renal disease. Pediatr. Nephrol. 2002, 17, 450–455. [Google Scholar] [CrossRef]
- Schaefer, F.; Benner, L.; Borzych-Dużałka, D.; Zaritsky, J.; Xu, H.; Rees, L.; Antonio, Z.L.; Serdaroglu, E.; Hooman, N.; Patel, H.; et al. Global Variation of Nutritional Status in Children Undergoing Chronic Peritoneal Dialysis: A Longitudinal Study of the International Pediatric Peritoneal Dialysis Network. Sci. Rep. 2019, 9, 4886. [Google Scholar] [CrossRef]
- Ku, E.; Fine, R.N.; Hsu, C.-Y.; McCulloch, C.; Glidden, D.V.; Grimes, B.; Johansen, K.L. Height at First RRT and Mortality in Children. Clin. J. Am. Soc. Nephrol. 2016, 11, 832–839. [Google Scholar] [CrossRef]
- Kaur, K.; Jun, D.; Grodstein, E.; Singer, P.; Castellanos, L.; Teperman, L.; Molmenti, E.; Fahmy, A.; Frank, R.; Infante, L.; et al. Outcomes of underweight, overweight, and obese pediatric kidney transplant recipients. Pediatr. Nephrol. 2018, 33, 2353–2362. [Google Scholar] [CrossRef] [PubMed]
- Hanevold, C.D.; Ho, P.-L.; Talley, L.; Mitsnefes, M.M. Obesity and Renal Transplant Outcome: A Report of the North American Pediatric Renal Transplant Cooperative Study. Pediatrics 2005, 115, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Brady, T.M.; Roem, J.; Cox, C.; Schneider, M.F.; Wilson, A.C.; Furth, S.L.; Warady, B.A.; Mitsnefes, M. Adiposity, Sex, and Cardiovascular Disease Risk in Children With CKD: A Longitudinal Study of Youth Enrolled in the Chronic Kidney Disease in Children (CKiD) Study. Am. J. Kidney Dis. 2020, 76, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Karava, V.; Printza, N.; Dotis, J.; Demertzi, D.; Antza, C.; Kotsis, V.; Papachristou, F.; Stabouli, S. Body composition and arterial stiffness in pediatric patients with chronic kidney disease. Pediatr. Nephrol. 2019, 34, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.P.; Saland, J.M.; Ng, D.K.; Jiang, S.; Warady, B.A.; Furth, S.L.; Flynn, J.T. Waist Circumference and Body Mass Index in Children with Chronic Kidney Disease and Metabolic, Cardiovascular, and Renal Outcomes. J. Pediatr. 2017, 191, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Karava, V.; Dotis, J.; Kondou, A.; Christoforidis, A.; Liakopoulos, V.; Tsioni, K.; Kollios, K.; Papachristou, F.; Printza, N. Association between relative fat mass, uric acid, and insulin resistance in children with chronic kidney disease. Pediatr. Nephrol. 2021, 36, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, J.Z.; Safdar, O.Y.; Awaleh, F.I.; Khoja, A.A.; Alattas, A.A.; Jawhari, A.A. Nutritional Assessment and Management in Paediatric Chronic Kidney Disease. J. Nutr. Metab. 2021, 2021, 8283471. [Google Scholar] [CrossRef] [PubMed]
- Mitsnefes, M.M. Cardiovascular Disease in Children with Chronic Kidney Disease. J. Am. Soc. Nephrol. 2012, 23, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Shroff, R.; Weaver, D.J.; Mitsnefes, M.M. Cardiovascular complications in children with chronic kidney disease. Nat. Rev. Nephrol. 2011, 7, 642–649. [Google Scholar] [CrossRef]
- Rakhra, G. Zinc finger proteins: Insights into the transcriptional and post transcriptional regulation of immune response. Mol. Biol. Rep. 2021, 48, 5735–5743. [Google Scholar] [CrossRef]
- Jefferies, H.J.; Virk, B.; Schiller, B.; Moran, J.; McIntyre, C.W. Frequent Hemodialysis Schedules Are Associated with Reduced Levels of Dialysis-induced Cardiac Injury (Myocardial Stunning). Clin. J. Am. Soc. Nephrol. 2011, 6, 1326–1332. [Google Scholar] [CrossRef] [PubMed]
- Feld, L.G.; Neuspiel, D.R.; Foster, B.A.; Leu, M.G.; Garber, M.D.; Austin, K.; Basu, R.K.; Conway, E.E.; Fehr, J.J.; Hawkins, C.; et al. Clinical Practice Guideline: Maintenance Intravenous Fluids in Children. Pediatrics 2018, 142, e20183083. [Google Scholar] [CrossRef] [PubMed]
- Choong, K.; Arora, S.; Cheng, J.; Farrokhyar, F.; Reddy, D.; Thabane, L.; Walton, J.M. Hypotonic versus isotonic maintenance fluids after surgery for children: A randomized controlled trial. Pediatrics 2011, 128, 857–866. [Google Scholar] [CrossRef] [PubMed]
- McNab, S. Isotonic vs Hypotonic Intravenous Fluids for Hospitalized Children. JAMA 2015, 314, 720–721. [Google Scholar] [CrossRef] [PubMed]
- Ko, G.J.; Obi, Y.; Tortorici, A.R.; Kalantar-Zadeh, K. Dietary protein intake and chronic kidney disease. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76 (Suppl. S1), S1–S107. [Google Scholar] [CrossRef]
- Foundation, N.K. KDOQI Clinical Practice Guideline for Nutrition in Children with CKD: 2008 Update. Am. J. Kidney Dis. 2021, 53, S11–S104. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, D.M. Growth and Nutrition in Pediatric Chronic Kidney Disease. Front. Pediatr. 2018, 6, 205. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, M.; Rutkowski, B.; Dębska-Ślizień, A. Vitamins and Microelement Bioavailability in Different Stages of Chronic Kidney Disease. Nutrients 2017, 9, 282. [Google Scholar] [CrossRef]
- Borrelli, S.; Provenzano, M.; Gagliardi, I.; Michael, A.; Liberti, M.E.; De Nicola, L.; Conte, G.; Garofalo, C.; Andreucci, M. Sodium Intake and Chronic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 4744. [Google Scholar] [CrossRef]
- Salt and Sodium. The Nutrition Source. Available online: https://www.hsph.harvard.edu/nutritionsource/salt-and-sodium/ (accessed on 15 January 2024).
- Committee, G.R. Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- He, F.J.; A MacGregor, G. Salt reduction lowers cardiovascular risk: Meta-analysis of outcome trials. Lancet 2011, 378, 380–382. [Google Scholar] [CrossRef]
- Strazzullo, P.; D’Elia, L.; Kandala, N.-B.; Cappuccio, F.P. Salt intake, stroke, and cardiovascular disease: Meta-analysis of prospective studies. BMJ 2009, 339, b4567. [Google Scholar] [CrossRef] [PubMed]
- Dougher, C.E.; Rifkin, D.E.; Anderson, C.A.; Smits, G.; Persky, M.S.; Block, G.A.; Ix, J.H. Spot urine sodium measurements do not accurately estimate dietary sodium intake in chronic kidney disease 1,2. Am. J. Clin. Nutr. 2016, 104, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Klag, M.J.; Whelton, P.K.; Randall, B.L.; Neaton, J.D.; Brancati, F.L.; Ford, C.E.; Shulman, N.B.; Stamler, J. Blood Pressure and End-Stage Renal Disease in Men. N. Engl. J. Med. 1996, 334, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Borrelli, S.; Pacilio, M.; Minutolo, R.; Chiodini, P.; De Nicola, L.; Conte, G. Hypertension and Prehypertension and Prediction of Development of Decreased Estimated GFR in the General Population: A Meta-analysis of Cohort Studies. Am. J. Kidney Dis. 2016, 67, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.R.; Lóser, M.; Malhotra, R.; Appel, L.J. Blood Pressure Goals in Patients with CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, S.; De Nicola, L.; Stanzione, G.; Conte, G.; Minutolo, R. Resistant Hypertension in Nondialysis Chronic Kidney Disease. Int. J. Hypertens. 2013, 2013, 929183. [Google Scholar] [CrossRef]
- De Nicola, L.; Gabbai, F.B.; Agarwal, R.; Chiodini, P.; Borrelli, S.; Bellizzi, V.; Nappi, F.; Conte, G.; Minutolo, R. Prevalence and Prognostic Role of Resistant Hypertension in Chronic Kidney Disease Patients. J. Am. Coll. Cardiol. 2013, 61, 2461–2467. [Google Scholar] [CrossRef] [PubMed]
- Guyton, A.C. Kidneys and fluids in pressure regulation. Small volume but large pressure changes. Hypertension 1992, 19, I2–I8. [Google Scholar] [CrossRef]
- Laurent, S.; Boutouyrie, P. The Structural Factor of Hypertension. Circ. Res. 2015, 116, 1007–1021. [Google Scholar] [CrossRef]
- Machnik, A.; Neuhofer, W.; Jantsch, J.; Dahlmann, A.; Tammela, T.; Machura, K.; Park, J.-K.; Beck, F.-X.; Müller, D.N.; Derer, W.; et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism. Nat. Med. 2009, 15, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Machnik, A.; Dahlmann, A.; Kopp, C.; Goss, J.; Wagner, H.; van Rooijen, N.; Eckardt, K.-U.; Müller, D.N.; Park, J.-K.; Luft, F.C.; et al. Mononuclear Phagocyte System Depletion Blocks Interstitial Tonicity-Responsive Enhancer Binding Protein/Vascular Endothelial Growth Factor C Expression and Induces Salt-Sensitive Hypertension in Rats. Hypertension 2010, 55, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Wiig, H.; Schröder, A.; Neuhofer, W.; Jantsch, J.; Kopp, C.; Karlsen, T.V.; Boschmann, M.; Goss, J.; Bry, M.; Rakova, N.; et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Investig. 2013, 123, 2803–2815. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Appel, L.J.; Grams, M.E.; Gutekunst, L.; McCullough, P.A.; Palmer, B.F.; Pitt, B.; Sica, D.A.; Townsend, R.R. Potassium Homeostasis in Health and Disease: A Scientific Workshop Cosponsored by the National Kidney Foundation and the American Society of Hypertension. Am. J. Kidney Dis. 2017, 70, 844–858. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P.; Matsushita, K.; Sang, Y.; Brunskill, N.J.; Carrero, J.J.; Chodick, G.; Hasegawa, T.; Heerspink, H.L.; Hirayama, A.; Landman, G.W.D.; et al. Serum potassium and adverse outcomes across the range of kidney function: A CKD Prognosis Consortium meta-analysis. Eur. Heart J. 2018, 39, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Sumida, K.; Biruete, A.; Kistler, B.M.; Khor, B.-H.; Ebrahim, Z.; Giannini, R.; Sussman-Dabach, E.J.; Avesani, C.M.; Chan, M.; Lambert, K.; et al. New Insights Into Dietary Approaches to Potassium Management in Chronic Kidney Disease. J. Ren. Nutr. 2023, 33, S6–S12. [Google Scholar] [CrossRef] [PubMed]
- Giebisch, G.; Wang, W. Potassium transport: From clearance to channels and pumps. Kidney Int. 1996, 49, 1624–1631. [Google Scholar] [CrossRef] [PubMed]
- Gilligan, S.; Raphael, K.L. Hyperkalemia and Hypokalemia in CKD: Prevalence, Risk Factors, and Clinical Outcomes. Adv. Chronic Kidney Dis. 2017, 24, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F. Regulation of Potassium Homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 1050–1060. [Google Scholar] [CrossRef]
- Clase, C.M.; Carrero, J.-J.; Ellison, D.H.; Grams, M.E.; Hemmelgarn, B.R.; Jardine, M.J.; Kovesdy, C.P.; Kline, G.A.; Lindner, G.; Obrador, G.T.; et al. Potassium homeostasis and management of dyskalemia in kidney diseases: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020, 97, 42–61. [Google Scholar] [CrossRef]
- Kovesdy, C.P. Should We Let Dialysis Patients Eat Their Fruits and Veggies? Clin. J. Am. Soc. Nephrol. 2021, 16, 1781–1783. [Google Scholar] [CrossRef]
- Morris, A.; Krishnan, N.; Kimani, P.K.; Lycett, D. CORRECTED ARTICLE: Effect of Dietary Potassium Restriction on Serum Potassium, Disease Progression, and Mortality in Chronic Kidney Disease: A Systematic Review and Meta-Analysis. J. Ren. Nutr. 2022, 32, e1–e10. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Fouque, D. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Sumida, K.; Lau, W.L.; Kovesdy, C.P.; Kalantar-Zadeh, K.; Kalantar-Zadeh, K. Microbiome modulation as a novel therapeutic approach in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2021, 30, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Carrero, J.J.; González-Ortiz, A.; Avesani, C.M.; Bakker, S.J.L.; Bellizzi, V.; Chauveau, P.; Clase, C.M.; Cupisti, A.; Espinosa-Cuevas, A.; Molina, P.; et al. Plant-based diets to manage the risks and complications of chronic kidney disease. Nat. Rev. Nephrol. 2020, 16, 525–542. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; McMacken, M.; Kalantar-Zadeh, K. Plant-Based Diets for Kidney Disease: A Guide for Clinicians. Am. J. Kidney Dis. 2021, 77, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Beccari, M.V.; Meaney, C.J. Clinical utility of patiromer, sodium zirconium cyclosilicate, and sodium polystyrene sulfonate for the treatment of hyperkalemia: An evidence-based review. Core Évid. 2017, 12, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Natale, P.; Palmer, S.C.; Ruospo, M.; Saglimbene, V.M.; Strippoli, G.F. Potassium binders for chronic hyperkalaemia in people with chronic kidney disease. Emergencias 2020, 2020, CD013165. [Google Scholar] [CrossRef]
- Costa, D.; Patella, G.; Provenzano, M.; Ielapi, N.; Faga, T.; Zicarelli, M.; Arturi, F.; Coppolino, G.; Bolignano, D.; De Sarro, G.; et al. Hyperkalemia in CKD: An overview of available therapeutic strategies. Front. Med. 2023, 10, 1178140. [Google Scholar] [CrossRef]
- Coates, P.M.; Betz, J.M.; Blackman, M.R.; Cragg, G.M.; Levine, M.; Moss, J.; White, J.D. (Eds.) Encyclopedia of Dietary Supplements, 2nd ed.; CRC Press: New York, NY, USA, 2010; pp. 527–537. [Google Scholar]
- Ross, A.C.; Caballero, B.; Cousins, R.J.; Tucker, K.L. (Eds.) Modern Nutrition in Health and Disease, 11th ed.; Jones & Bartlett Learning: Burlington, MA, USA, 2012; pp. 159–175. [Google Scholar]
- Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. The National Academies Collection: Reports funded by National Institutes of Health. In Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academies Press (US) National Academy of Sciences: Washington, DC, USA, 1997. [Google Scholar] [CrossRef]
- Guerrera, M.P.; Volpe, S.L.; Mao, J.J. Therapeutic uses of magnesium. Am. Fam. Physician 2009, 80, 157–162. [Google Scholar]
- Magnesium. Available online: https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/ (accessed on 15 January 2024).
- Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J. 2012, 5, i3–i14. [Google Scholar] [CrossRef]
- De Baaij, J.H.F.; Hoenderop, J.G.J.; Bindels, R.J. Magnesium in Man: Implications for Health and Disease. Physiol. Rev. 2015, 95, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Quamme, G.A. Recent developments in intestinal magnesium absorption. Curr. Opin. Gastroenterol. 2008, 24, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Schmulen, A.C.; Lerman, M.; Pak, C.Y.; Zerwekh, J.; Morawski, S.; Fordtran, J.S.; Vergne-Marini, P. Effect of 1,25-(OH)2D3 on jejunal absorption of magnesium in patients with chronic renal disease. Am. J. Physiol. Liver Physiol. 1980, 238, G349–G352. [Google Scholar] [CrossRef] [PubMed]
- Elin, R.J. Magnesium metabolism in health and disease. Disease-a-Month 1988, 34, 166–218. [Google Scholar] [CrossRef]
- Quamme, G.A.; Dirks, J.H. The Physiology of Renal Magnesium Handling. Kidney Blood Press. Res. 1986, 9, 257–269. [Google Scholar] [CrossRef]
- Navarro-González, J.F.; Mora-Fernández, C.; García-Pérez, J. Clinical Implications of Disordered Magnesium Homeostasis in Chronic Renal Failure and Dialysis. Semin. Dial. 2009, 22, 37–44. [Google Scholar] [CrossRef]
- Sakaguchi, Y. The emerging role of magnesium in CKD. Clin. Exp. Nephrol. 2022, 26, 379–384. [Google Scholar] [CrossRef]
- Rodelo-Haad, C.; de Mier, M.V.P.-R.; Díaz-Tocados, J.M.; Martin-Malo, A.; Santamaria, R.; Muñoz-Castañeda, J.R.; Rodríguez, M. The Role of Disturbed Mg Homeostasis in Chronic Kidney Disease Comorbidities. Front. Cell Dev. Biol. 2020, 8, 543099. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Iwatani, H.; Hamano, T.; Tomida, K.; Kawabata, H.; Kusunoki, Y.; Shimomura, A.; Matsui, I.; Hayashi, T.; Tsubakihara, Y.; et al. Magnesium modifies the association between serum phosphate and the risk of progression to end-stage kidney disease in patients with non-diabetic chronic kidney disease. Kidney Int. 2015, 88, 833–842. [Google Scholar] [CrossRef]
- Shiizaki, K.; Tsubouchi, A.; Miura, Y.; Seo, K.; Kuchimaru, T.; Hayashi, H.; Iwazu, Y.; Miura, M.; Battulga, B.; Ohno, N.; et al. Calcium phosphate microcrystals in the renal tubular fluid accelerate chronic kidney disease progression. J. Clin. Investig. 2021, 131, e14569. [Google Scholar] [CrossRef] [PubMed]
- Ter Braake, A.D.; Eelderink, C.; Zeper, L.W.; Pasch, A.; Bakker, S.J.L.; de Borst, M.H.; Hoenderop, J.G.J.; de Baaij, J.H.F. Calciprotein particle inhibition explains magnesium-mediated protection against vascular calcification. Nephrol. Dial. Transplant. 2020, 35, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Ter Braake, A.D.; Shanahan, C.M.; de Baaij, J.H.F. Fetuin-A-Containing Calciprotein Particles Reduce Mineral Stress in the Macrophage. Arter. Thromb. Vasc. Biol. 2017, 37, 1431–1445. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.R.; Hanssen, E.; McMahon, L.P.; Holt, S.G. Fetuin-A-Containing Calciprotein Particles Reduce Mineral Stress in the Macrophage. PLoS ONE 2013, 8, e60904. [Google Scholar] [CrossRef]
- Pasch, A.; Farese, S.; Gräber, S.; Wald, J.; Richtering, W.; Floege, J.; Jahnen-Dechent, W. Nanoparticle-Based Test Measures Overall Propensity for Calcification in Serum. J. Am. Soc. Nephrol. 2012, 23, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Aghagolzadeh, P.; Bachtler, M.; Bijarnia, R.; Jackson, C.; Smith, E.R.; Odermatt, A.; Radpour, R.; Pasch, A. Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-α. Atherosclerosis 2016, 251, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Laurencin, D.; Almora-Barrios, N.; de Leeuw, N.H.; Gervais, C.; Bonhomme, C.; Mauri, F.; Chrzanowski, W.; Knowles, J.C.; Newport, R.J.; Wong, A.; et al. Magnesium incorporation into hydroxyapatite. Biomaterials 2011, 32, 1826–1837. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Tocados, J.M.; Peralta-Ramirez, A.; Rodríguez-Ortiz, M.E.; Raya, A.I.; Lopez, I.; Pineda, C.; Herencia, C.; de Oca, A.M.; Vergara, N.; Steppan, S.; et al. Dietary magnesium supplementation prevents and reverses vascular and soft tissue calcifications in uremic rats. Kidney Int. 2017, 92, 1084–1099. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Hamano, T.; Obi, Y.; Monden, C.; Oka, T.; Yamaguchi, S.; Matsui, I.; Hashimoto, N.; Matsumoto, A.; Shimada, K.; et al. A Randomized Trial of Magnesium Oxide and Oral Carbon Adsorbent for Coronary Artery Calcification in Predialysis CKD. J. Am. Soc. Nephrol. 2019, 30, 1073–1085. [Google Scholar] [CrossRef]
- Chen, J.; Budoff, M.J.; Reilly, M.P.; Yang, W.; Rosas, S.E.; Rahman, M.; Zhang, X.; Roy, J.A.; Lustigova, E.; Nessel, L.; et al. Coronary Artery Calcification and Risk of Cardiovascular Disease and Death Among Patients With Chronic Kidney Disease. JAMA Cardiol. 2017, 2, 635. [Google Scholar] [CrossRef]
- Touyz, R.M.; Pu, Q.; He, G.; Chen, X.; Yao, G.; Neves, M.F.; Viel, E. Effects of low dietary magnesium intake on development of hypertension in stroke-prone spontaneously hypertensive rats. J. Hypertens. 2002, 20, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Touyz, R.M.; Marshal, P.R.; Milne, F.J. Altered cations and muscle membrane ATPase activity in deoxycorticosterone acetate-salt spontaneously hypertensive rats. J. Hypertens. 1991, 9, 737–750. [Google Scholar] [CrossRef]
- Sontia, B.; Montezano, A.C.; Paravicini, T.; Tabet, F.; Touyz, R.M. Downregulation of Renal TRPM7 and Increased Inflammation and Fibrosis in Aldosterone-Infused Mice. Hypertension 2008, 51, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, E.A.; Vervloet, M.G. Magnesium Administration in Chronic Kidney Disease. Nutrients 2023, 15, 547. [Google Scholar] [CrossRef] [PubMed]
- Evenepoel, P.; Jørgensen, H.S.; Bover, J.; Davenport, A.; Bacchetta, J.; Haarhaus, M.; Hansen, D.; Gracia-Iguacel, C.; Ketteler, M.; McAlister, L.; et al. Recommended calcium intake in adults and children with chronic kidney disease—A European consensus statement. Nephrol. Dial. Transplant. 2024, 39, 341–366. [Google Scholar] [CrossRef] [PubMed]
- McAlister, L.; Pugh, P.; Greenbaum, L.; Haffner, D.; Rees, L.; Anderson, C.; Desloovere, A.; Nelms, C.; Oosterveld, M.; Paglialonga, F.; et al. The dietary management of calcium and phosphate in children with CKD stages 2-5 and on dialysis—Clinical practice recommendation from the Pediatric Renal Nutrition Taskforce. Pediatr. Nephrol. 2020, 35, 501–518. [Google Scholar] [CrossRef] [PubMed]
- Waziri, B.; Duarte, R.; Naicker, S. Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD): Current Perspectives. Int. J. Nephrol. Renov. Dis. 2019, 12, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Walker, H.K.; Hall, W.D.; Hurst, J.W. (Eds.) Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Butterworths: Totnes, UK, 1990. [Google Scholar]
- Laroche, M.; Nigon, D.; Gennero, I.; Lassoued, S.; Pouilles, J.M.; Trémolières, F.; Vallet, M.; Tack, I. 24 hours calciuria: Normal values, regulations: About a cohort of 317 control subjects. Ann. Biol. Clin. 2016, 74, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Coburn, J.W.; Hartenbower, D.L.; Massry, S.G. Intestinal absorption of calcium and the effect of renal insufficiency. Kidney Int. 1973, 4, 96–104. [Google Scholar] [CrossRef]
- Recker, R.R.; Saville, P.D. Calcium absorption in renal failure: Its relationship to blood urea nitrogen, dietary calcium intake, time on dialysis, and other variables. J. Lab. Clin. Med. 1971, 78, 380–388. [Google Scholar]
- Mountokalakis, T.; Singhellakis, P.; Alevizaki, C.; Virvidakis, K.; Ikkos, D. Relationship between Degree of Renal Failure and Impairment of Intestinal Calcium Absorption. Nephron 1976, 16, 20–30. [Google Scholar] [CrossRef]
- McAlister, L.; Silva, S.; Shaw, V.; Shroff, R. Dietary calcium intake does not meet the nutritional requirements of children with chronic kidney disease and on dialysis. Pediatr. Nephrol. 2020, 35, 1915–1923. [Google Scholar] [CrossRef] [PubMed]
- Muto, S.; Murayama, N.; Asano, Y.; Hosoda, S.; Miyata, M. Hypergastrinemia and Achlorhydria in Chronic Renal Failure. Nephron 1985, 40, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Shroff, R.; Wan, M.; Nagler, E.V.; Bakkaloğlu, S.; Fischer, D.-C.; Bishop, N.; Cozzolino, M.; Bacchetta, J.; Edefonti, A.; Stefanidis, C.J.; et al. Clinical practice recommendations for native vitamin D therapy in children with chronic kidney disease Stages 2–5 and on dialysis. Nephrol. Dial. Transplant. 2017, 32, 1098–1113. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, H.S.; David, K.; Salam, S.; Evenepoel, P. Traditional and Non-traditional Risk Factors for Osteoporosis in CKD. Calcif. Tissue Int. 2021, 108, 496–511. [Google Scholar] [CrossRef] [PubMed]
- Bonjour, J.P.; Carrie, A.L.; Ferrari, S.; Clavien, H.; Slosman, D.; Theintz, G.; Rizzoli, R. Calcium-enriched foods and bone mass growth in prepubertal girls: A randomized, double-blind, placebo-controlled trial. J. Clin. Investig. 1997, 99, 1287–1294. [Google Scholar] [CrossRef]
- Cadogan, J.; Eastell, R.; Jones, N.; Barker, M.E. Milk intake and bone mineral acquisition in adolescent girls: Randomised, controlled intervention trial. BMJ 1997, 315, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Matkovic, V.; Goel, P.K.; E Badenhop-Stevens, N.; Landoll, J.D.; Li, B.; Ilich, J.Z.; Skugor, M.; A Nagode, L.; Mobley, S.L.; Ha, E.-J.; et al. Calcium supplementation and bone mineral density in females from childhood to young adulthood: A randomized controlled trial1–3. Am. J. Clin. Nutr. 2005, 81, 175–188. [Google Scholar] [CrossRef]
- Guidelines. Am. J. Kidney Dis. 2005, 46, 12–100. [CrossRef]
- Rosen, C.J.; Adams, J.S.; Bikle, D.D.; Black, D.M.; Demay, M.B.; Manson, J.E.; Murad, M.H.; Kovacs, C.S. The Nonskeletal Effects of Vitamin D: An Endocrine Society Scientific Statement. Endocr. Rev. 2012, 33, 456–492. [Google Scholar] [CrossRef]
- Roseland, J.M.; Phillips, K.M.; Patterson, K.Y.; Pehrsson, P.R.; Taylor, C.L. Vitamin D in Foods. In Vitamin D; Elsevier: Amsterdam, The Netherlands, 2018; pp. 41–77. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. Med. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Rosen, C.J.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; Kovacs, C.S.; et al. IOM Committee Members Respond to Endocrine Society Vitamin D Guideline. J. Clin. Endocrinol. Metab. 2012, 97, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
- Jones, G. Pharmacokinetics of vitamin D toxicity. Am. J. Clin. Nutr. 2008, 88, 582S–586S. [Google Scholar] [CrossRef] [PubMed]
- Andress, D.L. Bone and Mineral Guidelines for Patients with Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Hollis, B.W.; Jacob, A.I.; Sallman, A.; Santiz, Z.; Lambert, P.W. Circulating vitamin D and its photoproduction in uremia. In Vitamin D, Chemical, Biochemical and Clinical Endocrinology of Calcium Metabolism; Norman, A.W., Schaefer, K., Herrath, D.V., Grigoleit, H., Eds.; De Gruyter: Berlin, Germany, 1982; pp. 1157–1161. [Google Scholar]
- A Sato, K.; Gray, R.W.; Lemann, J. Urinary excretion of 25-hydroxyvitamin D in health and the nephrotic syndrome. J. Lab. Clin. Med. 1982, 99, 325–330. [Google Scholar] [PubMed]
- Levin, A.; Bakris, G.L.; Molitch, M.; Smulders, M.; Tian, J.; Williams, L.A.; Andress, D.L. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: Results of the study to evaluate early kidney disease. Kidney Int. 2007, 71, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Clements, M.R.; Johnson, L.; Fraser, D.R. A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature 1987, 325, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Chesney, R.W.; Moorthy, A.V.; Eisman, J.A.; Jax, D.K.; Mazess, R.B.; DeLuca, H.F. Increased Growth after Long-Term Oral 1α,25-Vitamin D3 in Childhood Renal Osteodystrophy. N. Engl. J. Med. 1978, 298, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-C.; Zheng, C.-M.; Lu, C.-L.; Lin, Y.-F.; Shyu, J.-F.; Wu, C.-C.; Lu, K.-C. Vitamin D and immune function in chronic kidney disease. Clin. Chim. Acta 2015, 450, 135–144. [Google Scholar] [CrossRef]
- Mathew, S.; Lund, R.J.; Chaudhary, L.R.; Geurs, T.; Hruska, K.A. Vitamin D Receptor Activators Can Protect against Vascular Calcification. J. Am. Soc. Nephrol. 2008, 19, 1509–1519. [Google Scholar] [CrossRef]
- Bodyak, N.; Ayus, J.C.; Achinger, S.; Shivalingappa, V.; Ke, Q.; Chen, Y.-S.; Rigor, D.L.; Stillman, I.; Tamez, H.; Kroeger, P.E.; et al. Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals. Proc. Natl. Acad. Sci. USA 2007, 104, 16810–16815. [Google Scholar] [CrossRef] [PubMed]
- Foundation, N.K. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2003, 42, S1–S201. [Google Scholar]
- Moe, S.M. Calcium as a cardiovascular toxin in CKD-MBD. Bone 2017, 100, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Bleyer, A.J.; Burke, S.K.; Dillon, M.; Garrett, B.; Kant, K.; Lynch, D.; Rahman, S.; Schoenfeld, P.; Teitelbaum, I.; Zeig, S.; et al. A comparison of the calcium-free phosphate binder sevelamer hydrochloride with calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients. Am. J. Kidney Dis. 1999, 33, 694–701. [Google Scholar] [CrossRef]
- Drüeke, T.B. Lanthanum carbonate as a first-line phosphate binder: The ‘cons’. Semin. Dial. 2007, 20, 329–332. [Google Scholar] [CrossRef]
- Lewis, J.B.; Sika, M.; Koury, M.J.; Chuang, P.; Schulman, G.; Smith, M.T.; Whittier, F.C.; Linfert, D.R.; Galphin, C.M.; Athreya, B.P.; et al. Ferric Citrate Controls Phosphorus and Delivers Iron in Patients on Dialysis. J. Am. Soc. Nephrol. 2015, 26, 493–503. [Google Scholar] [CrossRef]
- Moe, S.M.; Chertow, G.M.; Parfrey, P.S.; Kubo, Y.; Block, G.A.; Correa-Rotter, R.; Drüeke, T.B.; Herzog, C.A.; London, G.M.; Mahaffey, K.W.; et al. Cinacalcet, Fibroblast Growth Factor-23, and Cardiovascular Disease in Hemodialysis. Circulation 2015, 132, 27–39. [Google Scholar] [CrossRef]
- Muscheites, J.; Wigger, M.; Drueckler, E.; Fischer, D.-C.; Kundt, G.; Haffner, D. Cinacalcet for secondary hyperparathyroidism in children with end-stage renal disease. Pediatr. Nephrol. 2008, 23, 1823–1829. [Google Scholar] [CrossRef]
- Padhi, D.; Langman, C.B.; Fathallah-Shaykh, S.; Warady, B.A.; Salusky, I.B.; Lee, E.; Wang, C.; Posvar, E. An open-label study to evaluate a single-dose of cinacalcet in pediatric dialysis subjects. Pediatr. Nephrol. 2012, 27, 1953–1959. [Google Scholar] [CrossRef]
- National Research Council. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2000; pp. 162–196. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Dietary Reference Values for nutrients Summary report. EFSA Support. Public 2017, 14, e15121. [Google Scholar] [CrossRef]
- SINU. LARN—Livelli di Assunzione di Riferimento di Nutrienti ed Energia per la Popolazione Italiana, IV Revisione; SICS Editore: Milan, Italy, 2014. [Google Scholar]
- Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS Omega 2022, 7, 20441–20456. [Google Scholar] [CrossRef]
- Beard, J.L. Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning. J. Nutr. 2001, 131, 568S–580S. [Google Scholar] [CrossRef] [PubMed]
- Hassan, T.H.; Badr, M.A.; Karam, N.A.; Zkaria, M.; El Saadany, H.F.; Rahman, D.M.A.; Shahbah, D.A.; Al Morshedy, S.M.; Fathy, M.; Esh, A.M.H.; et al. Impact of iron deficiency anemia on the function of the immune system in children. Medicine 2016, 95, e5395. [Google Scholar] [CrossRef]
- Collister, D.; Rigatto, C.; Tangri, N. Anemia management in chronic kidney disease and dialysis. Curr. Opin. Nephrol. Hypertens. 2017, 26, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, M.A.; Warady, B.A. Anemia in chronic kidney disease. Pediatr. Nephrol. 2018, 33, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Babitt, J.L.; Eisenga, M.F.; Haase, V.H.; Kshirsagar, A.V.; Levin, A.; Locatelli, F.; Małyszko, J.; Swinkels, D.W.; Tarng, D.-C.; Cheung, M.; et al. Controversies in optimal anemia management: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney Int. 2021, 99, 1280–1295. [Google Scholar] [CrossRef] [PubMed]
- Hayes, W. Measurement of iron status in chronic kidney disease. Pediatr. Nephrol. 2019, 34, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Tomasz, G.; Ewa, W.; Jolanta, M. Biomarkers of iron metabolism in chronic kidney disease. Int. Urol. Nephrol. 2021, 53, 935–944. [Google Scholar] [CrossRef]
- Wish, J.B. Assessing Iron Status. Clin. J. Am. Soc. Nephrol. 2006, 1, S4–S8. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, F.; Zhang, X.; Jin, Y.; Li, Q.; Shen, H.; Fu, H.; Mao, J. Benefits and risks of essential trace elements in chronic kidney disease: A narrative review. Ann. Transl. Med. 2022, 10, 1400. [Google Scholar] [CrossRef]
- Weckmann, G.; Chenot, J.-F.; Stracke, S. The Management of Non–Dialysis-Dependent Chronic Kidney Disease in Primary Care. Dtsch. Aerzteblatt Online 2020, 117, 745. [Google Scholar] [CrossRef]
- Pergola, P.E.; Fishbane, S.; Ganz, T. Novel Oral Iron Therapies for Iron Deficiency Anemia in Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2019, 26, 272–291. [Google Scholar] [CrossRef] [PubMed]
- Mercadel, L.; Metzger, M.; Haymann, J.P.; Thervet, E.; Boffa, J.-J.; Flamant, M.; Vrtovsnik, F.; Houillier, P.; Froissart, M.; Stengel, B.; et al. The Relation of Hepcidin to Iron Disorders, Inflammation and Hemoglobin in Chronic Kidney Disease. PLoS ONE 2014, 9, e99781. [Google Scholar] [CrossRef] [PubMed]
- Shepshelovich, D.; Rozen-Zvi, B.; Avni, T.; Gafter, U.; Gafter-Gvili, A. Intravenous Versus Oral Iron Supplementation for the Treatment of Anemia in CKD: An Updated Systematic Review and Meta-analysis. Am. J. Kidney Dis. 2016, 68, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Padhi, S.; Glen, J.; Pordes, B.A.J.; Thomas, M.E. Management of anaemia in chronic kidney disease: Summary of updated NICE guidance. BMJ 2015, 350, h2258. [Google Scholar] [CrossRef] [PubMed]
- Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of Mammalian Selenoproteomes. Science 2003, 300, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine; Food and Nutrition Board; Panel on Dietary Antioxidants and Related Compounds; Subcommittee on Upper Reference Levels of Nutrients; Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Mehdi, Y.; Hornick, J.-L.; Istasse, L.; Dufrasne, I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules 2013, 18, 3292–3311. [Google Scholar] [CrossRef] [PubMed]
- Oster, O.; Prellwitz, W. The renal excretion of selenium. Biol. Trace Element Res. 1990, 24, 119–146. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, P.; Selgas, R.; Romero, S.; Díez, J.J. Selenium and kidney disease. J. Nephrol. 2013, 26, 266–272. [Google Scholar] [CrossRef]
- Bogye, G.; Tompos, G.; Alfthan, G. Selenium Depletion in Hemodialysis Patients Treated with Polysulfone Membranes. Nephron 2000, 84, 119–123. [Google Scholar] [CrossRef]
- Thompson, S.; Tonelli, M. Selenium for malnutrition in hemodialysis patients: Have we considered all of the elements? Nephrol. Dial. Transplant. 2013, 28, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Ferenčík, M.; Ebringer, L. Modulatory effects of selenium and zinc on the immune system. Folia Microbiol. 2003, 48, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Girelli, D.; Olivieri, O.; Stanzial, A.M.; Azzini, M.; Lupo, A.; Bernich, P.; Menini, C.; Gammaro, L.; Corrocher, R. Low Platelet Glutathione Peroxidase Activity and Serum Selenium Concentration in Patients with Chronic Renal Failure: Relations to Dialysis Treatments, Diet and Cardiovascular Complications. Clin. Sci. 1993, 84, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Ortaç, E.; Ozkaya, O.; Saraymen, R.; Yıldız, N.; Bedir, A.; Buyan, N.; Bek, K.; Okuyucu, A.; Baysal, K. Low hair selenium and plasma glutathione peroxidase in children with chronic renal failure. Pediatr. Nephrol. 2006, 21, 1739–1745. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-Y.; Wong, C.-S.; Chung, C.-J.; Wu, M.-Y.; Huang, Y.-L.; Ao, P.-L.; Lin, Y.-F.; Lin, Y.-C.; Shiue, H.-S.; Su, C.-T.; et al. The association between plasma selenium and chronic kidney disease related to lead, cadmium and arsenic exposure in a Taiwanese population. J. Hazard. Mater. 2019, 375, 224–232. [Google Scholar] [CrossRef]
- Sabé, R.; Rubio, R.; García-Beltrán, L. Reference values of selenium in plasma in population from Barcelona. Comparison with several pathologies. J. Trace Elements Med. Biol. 2002, 16, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Zachara, B.A.; Trafikowska, U.; Adamowicz, A.; Nartowicz, E.; Manitius, J. Selenium, glutathione peroxidases, and some other antioxidant parameters in blood of patients with chronic renal failure. J. Trace Elements Med. Biol. 2001, 15, 161–166. [Google Scholar] [CrossRef]
- Alehagen, U.; Aaseth, J.; Alexander, J.; Brismar, K.; Larsson, A. Selenium and Coenzyme Q10 Supplementation Improves Renal Function in Elderly Deficient in Selenium: Observational Results and Results from a Subgroup Analysis of a Prospective Randomised Double-Blind Placebo-Controlled Trial. Nutrients 2020, 12, 3780. [Google Scholar] [CrossRef]
- Xie, C.; Zeng, M.; Shi, Z.; Li, S.; Jiang, K.; Zhao, Y. Association between Selenium Status and Chronic Kidney Disease in Middle-Aged and Older Chinese Based on CHNS Data. Nutrients 2022, 14, 2695. [Google Scholar] [CrossRef]
- Zachara, B.A.; Salak, A.; Koterska, D.; Manitius, J.; Wasowicz, W. Selenium and glutathione peroxidases in blood of patients with different stages of chronic renal failure. J. Trace Elements Med. Biol. 2004, 17, 291–299. [Google Scholar] [CrossRef]
- Shen, Y.; Yin, Z.; Lv, Y.; Luo, J.; Shi, W.; Fang, J.; Shi, X. Plasma element levels and risk of chronic kidney disease in elderly populations (≥90 Years old). Chemosphere 2020, 254, 126809. [Google Scholar] [CrossRef] [PubMed]
- Omrani, H.; Golmohamadi, S.; Pasdar, Y.; Jasemi, K.; Almasi, A. Effect of selenium supplementation on lipid profile in hemodialysis patients. J. Ren. Inj. Prev. 2016, 5, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Omrani, H.R.; Rahimi, M.; Nikseresht, K. The Effect of Selenium Supplementation on Acute Phase Reactants and Thyroid Function Tests in Hemodialysis Patients. Nephro-Urol. Mon. 2015, 7, e24781. [Google Scholar] [CrossRef] [PubMed]
- Zachara, B.A. Selenium and Selenium-Dependent Antioxidants in Chronic Kidney Disease. Adv. Clin. Chem. 2015, 68, 131–151. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, Q.; Zhang, K.; Sun, W.; Jia, X.; Yang, Y.; Yin, J.; Tang, C.; Zhang, J. Se deficiency induces renal pathological changes by regulating selenoprotein expression, disrupting redox balance, and activating inflammation. Metallomics 2020, 12, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Duntas, L.H. Selenium and Inflammation: Underlying Anti-inflammatory Mechanisms. Horm. Metab. Res. 2009, 41, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Joyce, T.; Rasmussen, P.; Melhem, N.; Clothier, J.; Booth, C.; Sinha, M.D. Vitamin and trace element concentrations in infants and children with chronic kidney disease. Pediatr. Nephrol. 2020, 35, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Gammoh, N.Z.; Rink, L. Zinc in Infection and Inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef]
- Maret, W. Zinc in Cellular Regulation: The Nature and Significance of “Zinc Signals”. Int. J. Mol. Sci. 2017, 18, 2285. [Google Scholar] [CrossRef]
- Maret, W.; Sandstead, H.H. Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elements Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef]
- Abbasi, A.A.; Prasad, A.S.; Rabbani, P.; DuMouchelle, E. Experimental zinc deficiency in man. Effect on testicular function. J. Lab. Clin. Med. 1980, 96, 544–550. [Google Scholar]
- Corbo, M.D.; Lam, J. Zinc deficiency and its management in the pediatric population: A literature review and proposed etiologic classification. J. Am. Acad. Dermatol. 2013, 69, 616–624.e1. [Google Scholar] [CrossRef]
- Shankar, A.H.; Prasad, A.S. Zinc and immune function: The biological basis of altered resistance to infection. Am. J. Clin. Nutr. 1998, 68, 447S–463S. [Google Scholar] [CrossRef]
- Pisano, M.; Hilas, O. Zinc and Taste Disturbances in Older Adults: A Review of the Literature. Consult. Pharm. 2016, 31, 267–270. [Google Scholar] [CrossRef]
- Damianaki, K.; Lourenco, J.M.; Braconnier, P.; Ghobril, J.-P.; Devuyst, O.; Burnier, M.; Lenglet, S.; Augsburger, M.; Thomas, A.; Pruijm, M. Renal handling of zinc in chronic kidney disease patients and the role of circulating zinc levels in renal function decline. Nephrol. Dial. Transplant. 2020, 35, 1163–1170. [Google Scholar] [CrossRef]
- Escobedo-Monge, M.F.; Ayala-Macedo, G.; Sakihara, G.; Peralta, S.; Almaraz-Gómez, A.; Barrado, E.; Marugán-Miguelsanz, J.M. Effects of Zinc Supplementation on Nutritional Status in Children with Chronic Kidney Disease: A Randomized Trial. Nutrients 2019, 11, 2671. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chiu, C.-H.; Wu, I.-W.; Hsu, H.-J.; Chen, Y.-T.; Hsu, C.-K.; Pan, H.-C.; Lee, C.-C.; Sun, C.-Y. Micronutrients and Renal Outcomes: A Prospective Cohort Study. Nutrients 2022, 14, 3063. [Google Scholar] [CrossRef]
- Tokuyama, A.; Kanda, E.; Itano, S.; Kondo, M.; Wada, Y.; Kadoya, H.; Kidokoro, K.; Nagasu, H.; Sasaki, T.; Kashihara, N. Effect of zinc deficiency on chronic kidney disease progression and effect modification by hypoalbuminemia. PLoS ONE 2021, 16, e0251554. [Google Scholar] [CrossRef] [PubMed]
- Voelkl, J.; Tuffaha, R.; Luong, T.T.; Zickler, D.; Masyout, J.; Feger, M.; Verheyen, N.; Blaschke, F.; Kuro-O, M.; Tomaschitz, A.; et al. Zinc Inhibits Phosphate-Induced Vascular Calcification through TNFAIP3-Mediated Suppression of NF-κB. J. Am. Soc. Nephrol. 2018, 29, 1636–1648. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Eisenberg, R.; Mowrey, W.B.; Wylie-Rosett, J.; Abramowitz, M.K.; A Bushinsky, D.; Melamed, M.L. Association between dietary zinc intake and abdominal aortic calcification in US adults. Nephrol. Dial. Transplant. 2020, 35, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Panizo, S.; Martínez-Arias, L.; Alonso-Montes, C.; Cannata, P.; Martín-Carro, B.; Fernández-Martín, J.L.; Naves-Díaz, M.; Carrillo-López, N.; Cannata-Andía, J.B. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. Int. J. Mol. Sci. 2021, 22, 408. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiologi-cal Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, M.K.; Zhou, Z.; Cave, M.; Barve, A.; McClain, C.J. Zinc and Liver Disease. Nutr. Clin. Pract. 2012, 27, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Wan, L.; Li, C.; Feng, Y.; Kang, Y.J. Selective suppression of M1 macrophages is involved in zinc inhibition of liver fibrosis in mice. J. Nutr. Biochem. 2021, 97, 108802. [Google Scholar] [CrossRef] [PubMed]
- Monge, M.F.E.; Barrado, E.; Vicente, C.A.; del Río, M.P.R.; de Miguelsanz, J.M.M. Zinc Nutritional Status in Patients with Cystic Fibrosis. Nutrients 2019, 11, 150. [Google Scholar] [CrossRef]
- Collins, J.F.; Prohaska, J.R.; Knutson, M.D. Metabolic crossroads of iron and copper. Nutr. Rev. 2010, 68, 133–147. [Google Scholar] [CrossRef]
- Młyniec, K.; Gaweł, M.; Doboszewska, U.; Starowicz, G.; Pytka, K.; Davies, C.L.; Budziszewska, B. Essential elements in depression and anxiety. Part II. Pharmacol. Rep. 2015, 67, 187–194. [Google Scholar] [CrossRef]
- Uauy, R.; Olivares, M.; Gonzalez, M. Essentiality of copper in humans. Am. J. Clin. Nutr. 1998, 67, 952S–959S. [Google Scholar] [CrossRef]
- US Department of Agriculture, Agricultural Research Service. Energy Intakes: Percentages of Energy from Protein, Carbohydrate, Fat, and Alcohol, by Gender and Age, What We Eat in America; US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2016. [Google Scholar]
- Moon, N.; Aryan, M.; Westerveld, D.; Nathoo, S.; Glover, S.; Kamel, A.Y. Clinical Manifestations of Copper Deficiency: A Case Report and Review of the Literature. Nutr. Clin. Pract. 2020, 36, 1080–1085. [Google Scholar] [CrossRef]
- De Romaña, D.L.; Olivares, M.; Uauy, R.; Araya, M. Risks and benefits of copper in light of new insights of copper homeostasis. J. Trace Elements Med. Biol. 2011, 25, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A. Role of Zinc and Copper in Erythropoiesis in Patients on Hemodialysis. J. Ren. Nutr. 2022, 32, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch. Eur. J. Physiol. 2020, 472, 1415–1429. [Google Scholar] [CrossRef] [PubMed]
- Myint, Z.W.; Oo, T.H.; Thein, K.Z.; Tun, A.M.; Saeed, H. Copper deficiency anemia: Review article. Ann. Hematol. 2018, 97, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Franchitto, N.; Gandia-Mailly, P.; Georges, B.; Galinier, A.; Telmon, N.; Ducassé, J.L.; Rougé, D. Acute copper sulphate poisoning: A case report and literature review. Resuscitation 2008, 78, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.; Bronstein, J.M. Wilson Disease. Neurol. Clin. 2020, 38, 417–432. [Google Scholar] [CrossRef]
- Kung, W.-J.; Shih, C.-T.; Lee, C.-H.; Lin, C.-C. The Divalent Elements Changes in Early Stages of Chronic Kidney Disease. Biol. Trace Element Res. 2018, 185, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow-Johnson, H.S.; Chow, C.K. Copper: Toxicological relevance and mechanisms. Arch. Toxicol. 2014, 88, 1929–1938. [Google Scholar] [CrossRef]
- Niu, Y.-Y.; Zhang, Y.-Y.; Zhu, Z.; Zhang, X.-Q.; Liu, X.; Zhu, S.-Y.; Song, Y.; Jin, X.; Lindholm, B.; Yu, C. Elevated intracellular copper contributes a unique role to kidney fibrosis by lysyl oxidase mediated matrix crosslinking. Cell Death Dis. 2020, 11, 211. [Google Scholar] [CrossRef]
- Aschner, M.; Erikson, K. Manganese. Adv. Nutr. Int. Rev. J. 2017, 8, 520–521. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Park, J.E.; Gugnani, K.; Betharia, S.; Pino-Figueroa, A.; Kim, J. Influence of iron metabolism on manganese transport and toxicity. Metallomics 2017, 9, 1028–1046. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.B.; Caton, J.S.; Finley, J.W. Manganese depresses rat heart muscle respiration. BioFactors 2006, 28, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.atsdr.cdc.gov/toxprofiles/tp151-c2.pdf (accessed on 16 January 2024).
- Danailova, Y.; Velikova, T.; Nikolaev, G.; Mitova, Z.; Shinkov, A.; Gagov, H.; Konakchieva, R. Nutritional Management of Thyroiditis of Hashimoto. Int. J. Mol. Sci. 2022, 23, 5144. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.-K.; Bae, Y.J. Dietary Intake and Urinary Excretion of Manganese in Korean Healthy Adults. Biol. Trace Element Res. 2020, 196, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Belostotsky, V.; Yang, L.; Filler, G. Plasma manganese and selenium levels in paediatric chronic kidney disease patients measured by high resolution sector field inductively coupled plasma mass spectrometry. Bull. Natl. Res. Cent. 2023, 47, 22. [Google Scholar] [CrossRef]
- Esmaeili, M.; Rakhshanizadeh, F. Serum Trace Elements in Children with End-Stage Renal Disease. J. Ren. Nutr. 2019, 29, 48–54. [Google Scholar] [CrossRef]
- Harshman, L.A.; Lee-Son, K.; Jetton, J.G. Vitamin and trace element deficiencies in the pediatric dialysis patient. Pediatr. Nephrol. 2018, 33, 1133–1143. [Google Scholar] [CrossRef]
- Kitada, M.; Xu, J.; Ogura, Y.; Monno, I.; Koya, D. Manganese Superoxide Dismutase Dysfunction and the Pathogenesis of Kidney Disease. Front. Physiol. 2020, 11, 755. [Google Scholar] [CrossRef]
- Narasaki, Y.; Sohn, P.; Rhee, C.M. The Interplay Between Thyroid Dysfunction and Kidney Disease. Semin. Nephrol. 2021, 41, 133–143. [Google Scholar] [CrossRef]
- Vargas, F.; Moreno, J.M.; Rodríguez-Gómez, I.; Wangensteen, R.; Osuna, A.; Álvarez-Guerra, M.; García-Estañ, J. Vascular and renal function in experimental thyroid disorders. Eur. J. Endocrinol. 2006, 154, 197–212. [Google Scholar] [CrossRef]
- Bouga, M.; Lean, M.E.J.; Combet, E. Contemporary challenges to iodine status and nutrition: The role of foods, dietary recommendations, fortification and supplementation. Proc. Nutr. Soc. 2018, 77, 302–313. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Essential Nutrition Actions: Mainstreaming Nutrition through the Life-Course; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Zimmer, J.P. Handbook of Milk Composition. J. Hum. Lact. 1996, 12, 328. [Google Scholar] [CrossRef]
- García-Casal, M.N.; Landaeta, M.; De Baptista, G.A.; Murillo, C.; Rincón, M.; Rached, L.B.; Bilbao, A.; Anderson, H.; García, D.; Franquiz, J.; et al. Reference values of iron, iodine, zinc, selenium, copper, molybdenum, vitamin C, vitamin E, vitamin K, carotenoids and polyphenols for the Venezuelan population. Arch. Latinoam. Nutr. 2013, 63, 338–361. [Google Scholar] [PubMed]
- Doggui, R.; El Atia, J. Iodine deficiency: Physiological, clinical and epidemiological features, and pre-analytical considerations. Ann. d’Endocrinol. 2015, 76, 59–66. [Google Scholar] [CrossRef]
- Savarino, G.; Corsello, A.; Corsello, G. Macronutrient balance and micronutrient amounts through growth and development. Ital. J. Pediatr. 2021, 47, 109. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, M.; Garofalo, C.; Gorriz, J.L.; Andreucci, M. Editorial: Management of Patients With Non-dialysis Dependent Chronic Kidney Disease (ND-CKD). Front. Med. 2022, 8, 827245. [Google Scholar] [CrossRef]
- Monsen, E.R. Dietary Reference Intakes for The Antioxidant Nutrients: Vitamin C, Vitamin E, Selenium, and Carotenoids. J. Am. Diet. Assoc. 2000, 100, 637–640. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padoan, F.; Guarnaroli, M.; Brugnara, M.; Piacentini, G.; Pietrobelli, A.; Pecoraro, L. Role of Nutrients in Pediatric Non-Dialysis Chronic Kidney Disease: From Pathogenesis to Correct Supplementation. Biomedicines 2024, 12, 911. https://doi.org/10.3390/biomedicines12040911
Padoan F, Guarnaroli M, Brugnara M, Piacentini G, Pietrobelli A, Pecoraro L. Role of Nutrients in Pediatric Non-Dialysis Chronic Kidney Disease: From Pathogenesis to Correct Supplementation. Biomedicines. 2024; 12(4):911. https://doi.org/10.3390/biomedicines12040911
Chicago/Turabian StylePadoan, Flavia, Matteo Guarnaroli, Milena Brugnara, Giorgio Piacentini, Angelo Pietrobelli, and Luca Pecoraro. 2024. "Role of Nutrients in Pediatric Non-Dialysis Chronic Kidney Disease: From Pathogenesis to Correct Supplementation" Biomedicines 12, no. 4: 911. https://doi.org/10.3390/biomedicines12040911
APA StylePadoan, F., Guarnaroli, M., Brugnara, M., Piacentini, G., Pietrobelli, A., & Pecoraro, L. (2024). Role of Nutrients in Pediatric Non-Dialysis Chronic Kidney Disease: From Pathogenesis to Correct Supplementation. Biomedicines, 12(4), 911. https://doi.org/10.3390/biomedicines12040911