A Primer for Utilizing Deep Learning and Abdominal MRI Imaging Features to Monitor Autosomal Dominant Polycystic Kidney Disease Progression
Abstract
:1. Introduction
2. Image Acquisition
2.1. MRI vs. Ultrasound and CT for Longitudinal ADPKD Assessment
2.2. MRI Protocol Optimization
2.2.1. Magnetic Field Strength, 3 T or 1.5 T
2.2.2. Extensive Image Coverage with Consistent Breath Holds
2.2.3. Scanning with Multiple Sequences and Planes
2.2.4. Quality Assurance for Volumetric Analysis
2.3. Post-Acquisition Image Handling
3. Segmentation
Segmentation Data Collection and Curation
- Organs: Native and transplanted kidneys, liver, spleen, pancreas, stomach, gallbladder, urinary bladder, and seminal megavesicles;
- Vascular structures: Aorta and inferior vena cava (IVC);
- Fluid accumulations: Pleural effusion, free pelvic fluid/ascites, and pericardial effusion;
- Cysts: Exophytic renal cysts, hemorrhagic renal cysts, simple renal cysts, hepatic cysts, pancreatic cysts, prostate cysts, and nerve root cysts;
- Body composition: Visceral fat, subcutaneous fat, paraspinal and abdominal wall muscle, and lumbar vertebrae (L1 to L5), each with a distinct label;
- Quality control: External 500 mL saline bag.
4. Image Biomarkers’ Calculation and Reporting
4.1. Volume, Dimension, and Presence or Absence
4.2. TKV and Its Annual Growth Rate
4.3. Liver Volume and Liver Cyst Fraction
4.4. Liver Fat Fraction
4.5. Body Composition Quantification
4.6. Urine Output and Ureteral Jet Effect
4.7. Gastric Confinement
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Apparent diffusion coefficient |
ADPKD | Autosomal dominant polycystic kidney disease |
AI | Artificial intelligence |
BMI | Body mass index |
CRISP | Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease |
CT | Computed tomography |
DWI | Diffusion-weighted imaging |
FDA | U.S. Food and Drug Administration |
htTKV | Height-adjusted total kidney volume |
IVC | Inferior vena cava |
MIC | Mayo Imaging Classification |
MRA | Magnetic resonance angiography |
MRI | Magnetic resonance imaging |
NIfTI | Neuroimaging Informatics Technology Initiative |
PLD | Polycystic liver disease |
ROI | Region of interest |
SNR | Signal-to-noise ratio |
SSFP | Steady-state free precession |
SSFSE | Single-shot fast spin echo |
TKV | Total kidney volume |
References
- Cornec-Le Gall, E.; Alam, A.; Perrone, R.D. Autosomal dominant polycystic kidney disease. Lancet 2019, 393, 919–935. [Google Scholar] [CrossRef] [PubMed]
- Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T.; Grantham, J.J.; Higashihara, E.; Perrone, R.D.; Krasa, H.B.; Ouyang, J.; Czerwiec, F.S. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 2012, 367, 2407–2418. [Google Scholar] [CrossRef] [PubMed]
- Schrier, R.W.; Brosnahan, G.; Cadnapaphornchai, M.A.; Chonchol, M.; Friend, K.; Gitomer, B.; Rossetti, S. Predictors of autosomal dominant polycystic kidney disease progression. J. Am. Soc. Nephrol. 2014, 25, 2399–2418. [Google Scholar] [CrossRef] [PubMed]
- Grantham, J.J.; Torres, V.E.; Chapman, A.B.; Guay-Woodford, L.M.; Bae, K.T.; King, B.F., Jr.; Wetzel, L.H.; Baumgarten, D.A.; Kenney, P.J.; Harris, P.C.; et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 2006, 354, 2122–2130. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Thomas, R.; Metherall, P.; van Gastel, M.; Cornec-Le Gall, E.; Caroli, A.; Furlano, M.; Demoulin, N.; Devuyst, O.; Winterbottom, J.; et al. An Artificial Intelligence Generated Automated Algorithm to Measure Total Kidney Volume in ADPKD. Kidney Int. Rep. 2024, 9, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Shih, G.; Riyahi, S.; Jeph, S.; Dev, H.; Hu, R.; Romano, D.; Teichman, K.; Blumenfeld, J.D.; Barash, I.; et al. Deployed Deep Learning Kidney Segmentation for Polycystic Kidney Disease MRI. Radiol. Artif. Intell. 2022, 4, e210205. [Google Scholar] [CrossRef]
- Shin, J.H.; Kim, Y.H.; Lee, M.K.; Min, H.S.; Cho, H.; Kim, H.; Kim, Y.C.; Lee, Y.S.; Shin, T.Y. Feasibility of artificial intelligence-based decision supporting system in tolvaptan prescription for autosomal dominant polycystic kidney disease. Investig. Clin. Urol. 2023, 64, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Potretzke, T.A.; Korfiatis, P.; Blezek, D.J.; Edwards, M.E.; Klug, J.R.; Cook, C.J.; Gregory, A.V.; Harris, P.C.; Chebib, F.T.; Hogan, M.C.; et al. Clinical Implementation of an Artificial Intelligence Algorithm for Magnetic Resonance-Derived Measurement of Total Kidney Volume. Mayo Clin. Proc. 2023, 98, 689–700. [Google Scholar] [CrossRef]
- van Gastel, M.D.; Edwards, M.E.; Torres, V.E.; Erickson, B.J.; Gansevoort, R.T.; Kline, T.L. Automatic measurement of kidney and liver volumes from MR images of patients affected by autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 2019, 30, 1514–1522. [Google Scholar] [CrossRef]
- PKD Foundation ADPKD Registry Annual Impact Report. PKD Foundation. 2022. Available online: https://resources.pkdcure.org/wp-content/uploads/2023/05/ADPKD-Registry-Annual-Impact-Report-2022-interactive-version-April19.pdf (accessed on 12 May 2024).
- Hogan, M.C.; Simmons, K.; Ullman, L., Jr.; Gondal, M.; Dahl, N.K. Beyond Loss of Kidney Function: Patient Care in Autosomal Dominant Polycystic Kidney Disease. Kidney360 2023, 4, 1806–1815. [Google Scholar] [CrossRef]
- Jdiaa, S.S.; Husainat, N.M.; Mansour, R.; Kalot, M.A.; McGreal, K.; Chebib, F.T.; Perrone, R.D.; Yu, A.; Mustafa, R.A. A Systematic Review of Reported Outcomes in ADPKD Studies. Kidney Int. Rep. 2022, 7, 1964–1979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Blumenfeld, J.D.; Prince, M.R. MRI in autosomal dominant polycystic kidney disease. J. Magn. Reson. Imaging 2019, 50, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Rahbari-Oskoui, F.; Mittal, A.; Mittal, P.; Chapman, A. Renal relevant radiology: Radiologic imaging in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 2014, 9, 406–415. [Google Scholar] [CrossRef]
- Finazzo, F.; Cavoli, G.L.; Mongiovì, R.; Bono, L.; Ferrantelli, A.; Tralongo, A. The Relevance of the Imaging in Autosomal Dominant Polycystic Kidney Disease Management. Saudi J. Kidney Dis. Transpl. 2022, 33, 218–220. [Google Scholar] [CrossRef]
- Gradzik, M.; Niemczyk, M.; Gołębiowski, M.; Pączek, L. Diagnostic Imaging of Autosomal Dominant Polycystic Kidney Disease. Pol. J. Radiol. 2016, 81, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Odedra, D.; Sabongui, S.; Khalili, K.; Schieda, N.; Pei, Y.; Krishna, S. Autosomal Dominant Polycystic Kidney Disease: Role of Imaging in Diagnosis and Management. Radiographics 2023, 43, e220126. [Google Scholar] [CrossRef]
- Brenner, D.J.; Hall, E.J. Computed tomography--an increasing source of radiation exposure. N. Engl. J. Med. 2007, 357, 2277–2284. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.R.; Arnoldus, C.; Frisoli, J.K. Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J. Magn. Reson. Imaging 1996, 6, 162–166. [Google Scholar] [CrossRef]
- Attari, H.; Cao, Y.; Elmholdt, T.R.; Zhao, Y.; Prince, M.R. A Systematic Review of 639 Patients with Biopsy-confirmed Nephrogenic Systemic Fibrosis. Radiology 2019, 292, 376–386. [Google Scholar] [CrossRef]
- Gibbs, G.F.; Huston, J., 3rd; Bernstein, M.A.; Riederer, S.J.; Brown, R.D., Jr. Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. Am. J. Neuroradiol. 2004, 25, 84–87. [Google Scholar]
- Zhu, C.; Dev, H.; Sharbatdaran, A.; He, X.; Shimonov, D.; Chevalier, J.M.; Blumenfeld, J.D.; Wang, Y.; Teichman, K.; Shih, G.; et al. Clinical Quality Control of MRI Total Kidney Volume Measurements in Autosomal Dominant Polycystic Kidney Disease. Tomography 2023, 9, 1341–1355. [Google Scholar] [CrossRef] [PubMed]
- Dev, H.; Zhu, C.; Sharbatdaran, A.; Raza, S.I.; Wang, S.J.; Romano, D.J.; Goel, A.; Teichman, K.; Moghadam, M.C.; Shih, G.; et al. Effect of Averaging Measurements From Multiple MRI Pulse Sequences on Kidney Volume Reproducibility in Autosomal Dominant Polycystic Kidney Disease. J. Magn. Reson. Imaging 2023, 58, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.V.; Chebib, F.T.; Poudyal, B.; Holmes, H.L.; Alan, S.; Landsittel, D.P.; Bae, K.T.; Chapman, A.B.; Frederic, R.-O.; Mrug, M. Utility of new image-derived biomarkers for autosomal dominant polycystic kidney disease prognosis using automated instance cyst segmentation. Kidney Int. 2023, 104, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Morgan, P.S.; Ashburner, J.; Smith, J.; Rorden, C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 2016, 264, 47–56. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Hu, Z.; Dev, H.; Romano, D.J.; Sharbatdaran, A.; Raza, S.I.; Wang, S.J.; Teichman, K.; Shih, G.; Chevalier, J.M.; et al. Test Retest Reproducibility of Organ Volume Measurements in ADPKD Using 3D Multimodality Deep Learning. Acad. Radiol. 2024, 31, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [PubMed]
- Marcus, D.S.; Olsen, T.R.; Ramaratnam, M.; Buckner, R.L. The Extensible Neuroimaging Archive Toolkit: An informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics 2007, 5, 11–34. [Google Scholar] [CrossRef]
- Kim, J.A.; Blumenfeld, J.D.; Chhabra, S.; Dutruel, S.P.; Thimmappa, N.D.; Bobb, W.O.; Donahue, S.; Rennert, H.E.; Tan, A.Y.; Giambrone, A.E.; et al. Pancreatic Cysts in Autosomal Dominant Polycystic Kidney Disease: Prevalence and Association with PKD2 Gene Mutations. Radiology 2016, 280, 762–770. [Google Scholar] [CrossRef]
- McNicholas, B.A.; Kotaro, Y.; Martin, W.; Sharma, A.; Kamath, P.S.; Edwards, M.E.; Kremers, W.K.; Chari, S.T.; Torres, V.E.; Harris, P.C. Pancreatic cysts and intraductal papillary mucinous neoplasm in autosomal dominant polycystic kidney disease. Pancreas 2019, 48, 698–705. [Google Scholar] [CrossRef]
- Chapman, A.B.; Devuyst, O.; Eckardt, K.U.; Gansevoort, R.T.; Harris, T.; Horie, S.; Kasiske, B.L.; Odland, D.; Pei, Y.; Perrone, R.D.; et al. Autosomal-dominant polycystic kidney disease (ADPKD): Executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2015, 88, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.U.; Messchendorp, A.L.; Birn, H.; Capasso, G.; Cornec-Le Gall, E.; Devuyst, O.; van Eerde, A.; Guirchoun, P.; Harris, T.; Hoorn, E.J.; et al. An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: Consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders, the European Rare Kidney Disease Reference Network and Polycystic Kidney Disease International. Nephrol. Dial. Transplant. 2022, 37, 825–839. [Google Scholar] [CrossRef] [PubMed]
- Chebib, F.T.; Torres, V.E. Assessing risk of rapid progression in autosomal dominant polycystic kidney disease and special considerations for disease-modifying therapy. Am. J. Kidney Dis. 2021, 78, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Borrego Utiel, F.J.; Espinosa Hernández, M. How to Estimate Kidney Growth in Patients with Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2023, 34, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Irazabal, M.V.; Rangel, L.J.; Bergstralh, E.J.; Osborn, S.L.; Harmon, A.J.; Sundsbak, J.L.; Bae, K.T.; Chapman, A.B.; Grantham, J.J.; Mrug, M.; et al. Imaging classification of autosomal dominant polycystic kidney disease: A simple model for selecting patients for clinical trials. J. Am. Soc. Nephrol. 2015, 26, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Bais, T.; Geertsema, P.; Knol, M.G.E.; van Gastel, M.D.A.; de Haas, R.J.; Meijer, E.; Gansevoort, R.T. Validation of the Mayo Imaging Classification System for Predicting Kidney Outcomes in ADPKD. Clin. J. Am. Soc. Nephrol. 2024, 19, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.E.; Blais, J.D.; Czerwiec, F.S.; Erickson, B.J.; Torres, V.E.; Kline, T.L. Standardizing total kidney volume measurements for clinical trials of autosomal dominant polycystic kidney disease. Clin. Kidney J. 2019, 12, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Bae, K.T.; Tao, C.; Feldman, R.; Yu, A.S.L.; Torres, V.E.; Perrone, R.D.; Chapman, A.B.; Brosnahan, G.; Steinman, T.I.; Braun, W.E.; et al. Volume Progression and Imaging Classification of Polycystic Liver in Early Autosomal Dominant Polycystic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2022, 17, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Bae, K.T.; Zhu, F.; Chapman, A.B.; Torres, V.E.; Grantham, J.J.; Guay-Woodford, L.M.; Baumgarten, D.A.; King, B.F., Jr.; Wetzel, L.H.; Kenney, P.J.; et al. Magnetic resonance imaging evaluation of hepatic cysts in early autosomal-dominant polycystic kidney disease: The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort. Clin. J. Am. Soc. Nephrol. 2006, 1, 64–69. [Google Scholar] [CrossRef]
- Kim, H.; Park, H.C.; Ryu, H.; Kim, K.; Kim, H.S.; Oh, K.H.; Yu, S.J.; Chung, J.W.; Cho, J.Y.; Kim, S.H.; et al. Clinical Correlates of Mass Effect in Autosomal Dominant Polycystic Kidney Disease. PLoS ONE 2015, 10, e0144526. [Google Scholar] [CrossRef]
- Torres, V.E. Treatment of polycystic liver disease: One size does not fit all. Am. J. Kidney Dis. 2007, 49, 725–728. [Google Scholar] [CrossRef] [PubMed]
- Schnelldorfer, T.; Torres, V.E.; Zakaria, S.; Rosen, C.B.; Nagorney, D.M. Polycystic liver disease: A critical appraisal of hepatic resection, cyst fenestration, and liver transplantation. Ann. Surg. 2009, 250, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Gevers, T.J.; Drenth, J.P. Diagnosis and management of polycystic liver disease. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 101–108. [Google Scholar] [CrossRef] [PubMed]
- JYNARQUE. Otsuka America Pharmaceutical, Inc. 2020. Available online: https://www.otsuka-us.com/sites/g/files/qhldwo8366/files/media/static/JYNARQUE-PI.pdf (accessed on 12 May 2024).
- Haueise, T.; Schick, F.; Stefan, N.; Machann, J. Comparison of the accuracy of commercial two-point and multi-echo Dixon MRI for quantification of fat in liver, paravertebral muscles, and vertebral bone marrow. Eur. J. Radiol. 2024, 172, 111359. [Google Scholar] [CrossRef]
- Nowak, K.L.; Steele, C.; Gitomer, B.; Wang, W.; Ouyang, J.; Chonchol, M.B. Overweight and Obesity and Progression of ADPKD. Clin. J. Am. Soc. Nephrol. 2021, 16, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.L.; Murray, K.; You, Z.; Gitomer, B.; Brosnahan, G.; Abebe, K.Z.; Braun, W.; Chapman, A.; Harris, P.C.; Miskulin, D. Pain and obesity in autosomal dominant polycystic kidney disease: A post hoc analysis of the Halt Progression of Polycystic Kidney Disease (HALT-PKD) studies. Kidney Med. 2021, 3, 536–545.e1. [Google Scholar] [CrossRef]
- Romero-Corral, A.; Somers, V.K.; Sierra-Johnson, J.; Thomas, R.J.; Collazo-Clavell, M.; Korinek, J.; Allison, T.G.; Batsis, J.; Sert-Kuniyoshi, F.; Lopez-Jimenez, F. Accuracy of body mass index in diagnosing obesity in the adult general population. Int. J. Obes. 2008, 32, 959–966. [Google Scholar] [CrossRef]
- Nowak, K.L.; Moretti, F.; Bussola, N.; Steele, C.; Gregory, A.V.; Kline, T.L.; Ramanathan, S.; Trapletti, G.; Furlanello, C.; McCormick, L. Visceral Adiposity and Progression of ADPKD: A Cohort Study of Patients from the TEMPO 3: 4 Trial. Am. J. Kidney Dis. 2024, in press. [Google Scholar] [CrossRef]
- Wu, C.H.; Lai, T.S.; Chen, Y.M.; Chen, C.M.; Yang, S.C.; Liang, P.C. Quantification of Abdominal Muscle Mass and Diagnosis of Sarcopenia with Cross-Sectional Imaging in Patients with Polycystic Kidney Disease: Correlation with Total Kidney Volume. Diagnostics 2022, 12, 755. [Google Scholar] [CrossRef]
- Urine Output. Available online: https://www.cdc.gov/dengue/training/cme/ccm/page57297.html (accessed on 12 May 2024).
- Ho, T.A.; Godefroid, N.; Gruzon, D.; Haymann, J.P.; Maréchal, C.; Wang, X.; Serra, A.; Pirson, Y.; Devuyst, O. Autosomal dominant polycystic kidney disease is associated with central and nephrogenic defects in osmoregulation. Kidney Int. 2012, 82, 1121–1129. [Google Scholar] [CrossRef]
- Kramers, B.J.; van Gastel, M.D.A.; Boertien, W.E.; Meijer, E.; Gansevoort, R.T. Determinants of Urine Volume in ADPKD Patients Using the Vasopressin V2 Receptor Antagonist Tolvaptan. Am. J. Kidney Dis. 2019, 73, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Todorova, P.; Arjune, S.; Hendrix, C.; Oehm, S.; Schmidt, J.; Krauß, D.; Burkert, K.; Burst, V.R.; Benzing, T.; Boehm, V.; et al. Interaction Between Determinants Governing Urine Volume in Patients With ADPKD on Tolvaptan and its Impact on Quality of Life. Kidney Int. Rep. 2023, 8, 1616–1626. [Google Scholar] [CrossRef] [PubMed]
- Oporto, F.R.; Gómez, C.A.; Cosano, G.M.; Aguilera, A.L.; Rocha, J.L. Prospective Study on Individualized Dose Adjustment of Tolvaptan Based on Urinary Osmolality in Patients With ADPKD. Kidney Int. Rep. 2024, 9, 1031–1039. [Google Scholar] [CrossRef]
- Dev, H.; Zhu, C.; Barash, I.; Blumenfeld, J.D.; He, X.; RoyChoudhury, A.; Wu, A.; Prince, M.R. Feasibility of Water Therapy for Slowing Autosomal Dominant Polycystic Kidney Disease Progression. Kidney360, 2024; ahead of print. [Google Scholar] [CrossRef]
- Dahl, N.K.; Torres, V.E. What is the Appropriate Dose of Tolvaptan in ADPKD? Kidney Int. Rep. 2024, 9, 737–739. [Google Scholar] [CrossRef] [PubMed]
- Gobburu, J.; Ivaturi, V.; Wang, X.; Shoaf, S.E.; Jadhav, P.; Perrone, R.D. Comparing Effects of Tolvaptan and Instruction to Increase Water Consumption in ADPKD: Post-hoc Analysis of TEMPO 3: 4. Kidney360 2023, 4, 1702–1707. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Pal, A.; Fox, M. Volume and position change of the stomach during gastric accommodation and emptying: A detailed three-dimensional morphological analysis based on MRI. Neurogastroenterol. Motil. 2020, 32, e13865. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, D.; Mark, E.B.; Liao, D.; Brock, C.; Frøkjær, J.B.; Drewes, A.M. A novel MRI-based three-dimensional model of stomach volume, surface area, and geometry in response to gastric filling and emptying. Neurogastroenterol. Motil. 2023, 35, e14497. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Wasserthal, J.; Breit, H.C.; Meyer, M.T.; Pradella, M.; Hinck, D.; Sauter, A.W.; Heye, T.; Boll, D.T.; Cyriac, J.; Yang, S.; et al. TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images. Radiol. Artif. Intell. 2023, 5, e230024. [Google Scholar] [CrossRef]
- Kart, T.; Fischer, M.; Winzeck, S.; Glocker, B.; Bai, W.; Bülow, R.; Emmel, C.; Friedrich, L.; Kauczor, H.U.; Keil, T.; et al. Automated imaging-based abdominal organ segmentation and quality control in 20,000 participants of the UK Biobank and German National Cohort Studies. Sci. Rep. 2022, 12, 18733. [Google Scholar] [CrossRef]
- Nankivell, B.J.; Nankivell, L.F.J.; Elder, G.J.; Gruenewald, S.M. How unmeasured muscle mass affects estimated GFR and diagnostic inaccuracy. EClinicalMedicine 2020, 29, 100662. [Google Scholar] [CrossRef] [PubMed]
- Machann, J.; Hasenbalg, M.; Dienes, J.; Wagner, R.; Sandforth, A.; Fritz, V.; Birkenfeld, A.L.; Nikolaou, K.; Kullmann, S.; Schick, F. Short-term variability of proton density fat fraction in pancreas and liver assessed by multiecho chemical-shift encoding-based MRI at 3 T. J. Magn. Reson. Imaging 2022, 56, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; He, X.; Blumenfeld, J.D.; Hu, Z.; Dev, H.; Sattar, U.; Bazojoo, V.; Sharbatdaran, A.; Aspal, M.; Romano, D.; et al. A Primer for Utilizing Deep Learning and Abdominal MRI Imaging Features to Monitor Autosomal Dominant Polycystic Kidney Disease Progression. Biomedicines 2024, 12, 1133. https://doi.org/10.3390/biomedicines12051133
Zhu C, He X, Blumenfeld JD, Hu Z, Dev H, Sattar U, Bazojoo V, Sharbatdaran A, Aspal M, Romano D, et al. A Primer for Utilizing Deep Learning and Abdominal MRI Imaging Features to Monitor Autosomal Dominant Polycystic Kidney Disease Progression. Biomedicines. 2024; 12(5):1133. https://doi.org/10.3390/biomedicines12051133
Chicago/Turabian StyleZhu, Chenglin, Xinzi He, Jon D. Blumenfeld, Zhongxiu Hu, Hreedi Dev, Usama Sattar, Vahid Bazojoo, Arman Sharbatdaran, Mohit Aspal, Dominick Romano, and et al. 2024. "A Primer for Utilizing Deep Learning and Abdominal MRI Imaging Features to Monitor Autosomal Dominant Polycystic Kidney Disease Progression" Biomedicines 12, no. 5: 1133. https://doi.org/10.3390/biomedicines12051133
APA StyleZhu, C., He, X., Blumenfeld, J. D., Hu, Z., Dev, H., Sattar, U., Bazojoo, V., Sharbatdaran, A., Aspal, M., Romano, D., Teichman, K., Ng He, H. Y., Wang, Y., Soto Figueroa, A., Weiss, E., Prince, A. G., Chevalier, J. M., Shimonov, D., Moghadam, M. C., ... Prince, M. R. (2024). A Primer for Utilizing Deep Learning and Abdominal MRI Imaging Features to Monitor Autosomal Dominant Polycystic Kidney Disease Progression. Biomedicines, 12(5), 1133. https://doi.org/10.3390/biomedicines12051133