Comparative Evaluation of Dental Enamel Microhardness Following Various Methods of Interproximal Reduction: A Vickers Hardness Tester Investigation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Vickers Hardness Tester Investigation
3.2. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorobat, V.; Stanciu, D. Ortodontie si Ortopedie Dento-Faciala; Editura Medicala: Bucuresti, Romania, 2014; pp. 471–475. [Google Scholar]
- Rossouw, P.E.; Tortorella, A. Enamel reduction procedures in orthodontic treatment. J. Can. Dent. Assoc. 2003, 69, 378–383. [Google Scholar] [PubMed]
- Chudasama, D.; Sheridan, J.J. Guidelines for contemporary air-rotor stripping. J. Clin. Orthod. 2007, 41, 315–320. [Google Scholar] [PubMed]
- Barcoma, E.; Shroff, B.; Best, A.M.; Shoff, M.C.; Lindauer, S.J. Interproximal reduction of teeth: Differences in perspective between orthodontists and dentists. Angle Orthod. 2015, 85, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Laganà, G.; Malara, A.; Lione, R.; Danesi, C.; Meuli, S.; Cozza, P. Enamel interproximal reduction during treatment with clear aligners: Digital planning versus OrthoCAD analysis. BMC Oral Health 2021, 21, 199. [Google Scholar] [CrossRef] [PubMed]
- Lapenaite, E.; Lopatiene, K. Interproximal enamel reduction as a part of orthodontic treatment. Stomatologija 2014, 16, 19–24. [Google Scholar] [PubMed]
- Kaaouara, Y.; Mohind, H.B.; Azaroual, M.F.; Zaoui, F.; Bahije, L.; Benyahia, H. In vivo enamel stripping: A macroscopic and microscopic analytical study. Int. Orthod. 2019, 17, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Zachrisson, B.U. Interdental papilla reconstruction in adult orthodontics. World J. Orthod. 2004, 5, 67–73. [Google Scholar] [PubMed]
- Biavati, F.S.; Schiaffino, V.; Signore, A.; De Angelis, N.; Lanteri, V.; Ugolini, A. Evaluation of Enamel Surfaces after Different Techniques of Interproximal Enamel Reduction. J. Funct. Biomater. 2023, 14, 110. [Google Scholar]
- Zachrisson, B.U.; Minster, L.; Øgaard, B.; Birkhed, D. Dental health assessed after interproximal enamel reduction: Caries risk in posterior teeth. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Arman, A.; Cehreli, S.B.; Ozel, E.; Arhun, N.; Çetinşahin, A.; Soyman, M. Qualitative and quantitative evaluation of enamel after various stripping methods. Am. J. Orthod. Dentofac. Orthop. 2006, 130, 131.e7–131.e14. [Google Scholar] [CrossRef] [PubMed]
- Jost-Brinkmann, P.G.; Otani, H.; Nakata, M. Surface condition of primary teeth after approximal grinding and polishing. J. Clin. Pediatr. Dent. 1991, 16, 41–45. [Google Scholar] [PubMed]
- Hudson, A.L. A study of the effects of mesiodistal reduction of mandibular anterior teeth. Am. J. Orthod. 1956, 42, 615–624. [Google Scholar] [CrossRef]
- Sheridan, J.J. The physiologic rationale for air-rotor stripping. J. Clin. Orthod. 1997, 31, 609–612. [Google Scholar] [PubMed]
- Georgiadis, A.A.; Darmanin, P.; Topouzelis, N.; Ioannidou-Marathiotou, I. Indication and technical application of stripping. Balk. J. Dent. Med. 2015, 19, 3–7. [Google Scholar] [CrossRef]
- Zingler, S.; Sommer, A.; Sen, S.; Saure, D.; Langer, J.; Guillon, O.; Lux, C.J. Efficiency of powered systems for interproximal enamel reduction (IER) and enamel roughness before and after polishing—An in vitro study. Clin. Oral Investig. 2016, 20, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Frindel, C. Clear thinking about interproximal stripping. J. Dentofac. Anom. Orthod. 2010, 13, 187–199. [Google Scholar] [CrossRef]
- Yagci, F.; Turker, G.; Yilanci, H. Determination of the thickness of the safe enamel for laminate veneer preparation and orthodontic stripping by CBCT. Niger. J. Clin. Pract. 2021, 24, 525. [Google Scholar] [CrossRef] [PubMed]
- Skinner, H.C.W. Biominerals. Miner. Mag. 2005, 69, 621–641. [Google Scholar] [CrossRef]
- De Menezes Oliveira, M.A.H.; Torres, C.P.; Gomes-Silva, J.M.; Chinelatti, M.A.; De Menezes, F.C.H.; Palma-Dibb, R.G.; Borsatto, M.C. Microstructure and mineral composition of dental enamel of permanent and deciduous teeth. Microsc. Res. Tech. 2010, 73, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Currey, J.D.; Brear, K. Hardness, Young’s modulus and yield stress in mammalian mineralized tissues. J. Mater. Sci. Mater. Med. 1990, 1, 14–20. [Google Scholar] [CrossRef]
- White, S.N.; Paine, M.L.; Ngan, A.Y.W.; Miklus, V.G.; Luo, W.; Wang, H.; Snead, M.L. Ectopic Expression of Dentin Sialoprotein during Amelogenesis Hardens Bulk Enamel. J. Biol. Chem. 2007, 282, 5340–5345. [Google Scholar] [CrossRef]
- Joiner, A. The bleaching of teeth: A review of the literature. J. Dent. 2006, 34, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Low, I.M.; Duraman, N.; Mahmood, U. Mapping the structure, composition and mechanical properties of human teeth. Mater. Sci. Eng. C 2008, 28, 243–247. [Google Scholar] [CrossRef]
- Meredith, N.; Sherriff, M.; Setchell, D.J.; Swanson, S.A.V. Measurement of the microhardness and young’s modulus of human enamel and dentine using an indentation technique. Arch. Oral Biol. 1996, 41, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Cuy, J.L.; Mann, A.B.; Livi, K.J.; Teaford, M.F.; Weihs, T.P. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 2002, 47, 281–291. [Google Scholar] [CrossRef]
- Vartolomei, A.C.; Serbanoiu, D.C.; Ghiga, D.V.; Moldovan, M.; Cuc, S.; Pollmann, M.C.F.; Pacurar, M. Comparative Evaluation of Two Bracket Systems’ Kinetic Friction: Conventional and Self-Ligating. Materials 2022, 15, 4304. [Google Scholar] [CrossRef] [PubMed]
- JPytko-Polonczyk, J.; Jakubik, A.; Przeklasa-Bierowiec, A.; Muszynska, B. Artificial saliva and its use in biological experiments. J. Physiol. Pharmacol. 2017, 68, 807–813. [Google Scholar]
- Warkentin, M.; Freyse, C.; Specht, O.; Behrend, D.; Maletz, R.; Janda, R.; Ottl, P. Correlation of ultrasound microscopy and Vickers hardness measurements of human dentin and enamel—A pilot study. Dent. Mater. 2018, 34, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Almansour, A.; Addison, O.; Bartlett, D. The effect of location/site on polished human enamel after mechanical and chemical wear. J. Dent. 2024, 141, 104803. [Google Scholar] [CrossRef]
- Choudhary, A.; Gautam, A.; Chouksey, A.; Bhusan, M.; Nigam, M.; Tiwari, M. Interproximal enamel reduction in orthodontic treatment: A review. J. App. Dent. Med. Sci. 2015, 1, 123–127. [Google Scholar]
- Sheridan, J.J.; Ledoux, P.M. Air-rotor stripping and proximal sealants. An SEM evaluation. J. Clin. Orthod. 1989, 23, 790–794. [Google Scholar] [PubMed]
- Zachrisson, B.U.; Nyøygaard, L.; Mobarak, K. Dental health assessed more than 10 years after interproximal enamel reduction of mandibular anterior teeth. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Kravitz, N.D.; Kusnoto, B.; Agran, B.; Viana, G. Influence of Attachments and Interproximal Reduction on the Accuracy of Canine Rotation with Invisalign: A Prospective Clinical Study. Angle Orthod. 2008, 78, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Radlanski, R.J.; Jäger, A.; Schwestka, R.; Bertzbach, F. Plaque accumulations caused by interdental stripping. Am. J. Orthod. Dentofac. Orthop. 1988, 94, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Joseph, V.P.; Rossouw, P.E.; Basson, N.J. Orthodontic microabrasive reproximation. Am. J. Orthod. Dentofac. Orthop. 1992, 102, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Mikulewicz, M.; Szymkowski, J.; Matthews-Brzozowska, T. SEM and profilometric evaluation of enamel surface after air rotor stripping—An in vitro study. Acta Bioeng. Biomech. 2007, 9, 11. [Google Scholar]
- Giulio, A.B.; Matteo, Z.; Serena, I.P.; Silvia, M.; Luigi, C. In vitro evaluation of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) effect on stripped enamel surfaces. A SEM Investigation. J. Dent. 2009, 37, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Lippert, F.; Lynch, R.J.M. Comparison of Knoop and Vickers surface microhardness and transverse microradiography for the study of early caries lesion formation in human and bovine enamel. Arch. Oral. Biol. 2014, 59, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Kinney, J.H.; Balooch, M.; Marshall, S.J.; Marshall, G.W.; Weihs, T.P. Hardness and young’s modulus of human peritubular and intertubular dentine. Arch. Oral Biol. 1996, 41, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Pashley, D.; Okabe, A.; Parham, P. The relationship between dentin microhardness and tubule density. Dent. Traumatol. 1985, 1, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, N. Evaluation of Surface Microhardness Following Chemical and Microwave Disinfection of Commercially Available Acrylic Resin Denture Teeth. J. Clin. Diagn. Res. 2017, 11, 5. Available online: http://jcdr.net/article_fulltext.asp?issn=0973-709x&year=2017&volume=11&issue=5&page=ZC87&issn=0973-709x&id=9944 (accessed on 9 April 2024). [CrossRef] [PubMed]
- Ranjbar Omrani, L.; Khoshamad, S.; Tabatabaei Ghomshe, E.; Chiniforush, N.; Hashemi Kamangar, S.S. In Vitro Effect of Bleaching With 810 nm and 980 nm Diode Laser on Microhardness of Self-cure and Light-Cure Glass Ionomer Cements. J. Lasers Med. Sci. 2017, 8, 191–196. [Google Scholar] [CrossRef]
- Featherstone, J.D.B.; Ten Cate, J.M.; Shariati, M.; Arends, J. Comparison of Artificial Caries-Like Lesions by Quantitative Microradiography and Microhardness Profiles. Caries Res. 1983, 17, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Bayram, M.; Kusgoz, A.; Yesilyurt, C.; Nur, M. Effects of casein phosphopeptide-amorphous calcium phosphate application after interproximal stripping on enamel surface: An in-vivo study. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Quirynen, M.; Bollen, C.M.L. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man: A review of the literature. J. Clin. Periodontol. 1995, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Twesme, D.A.; Firestone, A.R.; Heaven, T.J.; Feagin, F.F.; Jacobson, A. Air-rotor stripping and enamel demineralization in vitro. Am. J. Orthod. Dentofac. Orthop. 1994, 105, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.C. Tooth-bound Fluoride and Dental Caries. J. Dent. Res. 1990, 69 (Suppl. S2), 595–600. [Google Scholar] [CrossRef]
- Danesh, G.; Hellak, A.; Lippold, C.; Ziebura, T.; Schafer, E. Enamel Surfaces Following Interproximal Reduction with Different Methods. Angle Orthod. 2007, 77, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Fillion, D. Apport de la sculpture amélaire interproximale à l’orthodontie de l’adulte (2e partie). Rev. Orthop. Dento Faciale 1993, 27, 189–214. [Google Scholar] [CrossRef]
- Cremonini, C.; Giannoccaro, V.; Palone, M.; Albertini, P. In Vitro Study of Tooth Surfaces After Interproximal Enamel Reduction: Extraoral Scanner and SEM Analysis. Pesqui. Bras. Odontopediatria Clín. Integr. 2021, 21 (Suppl. S1), e0021. [Google Scholar] [CrossRef]
- Nanwal, R.; Gupta, S.; Bhambri, E.; Ahuja, S.; Kothari, R. Comparative Evaluation of Newer Remineralizing Agents on Surface Characteristics of Tooth Surface After Slenderization: An In Vitro Study. J. Indian Orthod. Soc. 2021, 55, 169–175. [Google Scholar] [CrossRef]
- Mylonas, P.; Austin, R.S.; Moazzez, R.; Joiner, A.; Bartlett, D.W. In vitro evaluation of the early erosive lesion in polished and natural human enamel. Dent. Mater. 2018, 34, 1391–1400. [Google Scholar] [CrossRef] [PubMed]
Composition | Percentage % |
---|---|
Na2HPO4 NaHCO3 CaCl2 | 0.3 |
HCl-1M | 0.3 |
H2O | 99.4 |
IPR Instrument | Model | Manufacturer | Grit | Handpiece |
---|---|---|---|---|
Abrasive strips 15 microns | EVA active on both sides | Task Inc., Tokyo, Japan | 15 μm | Slow speed (5000 rpm) |
Abrasive strips 40 microns | EVA active on both sides | Task Inc., Tokyo, Japan | 40 μm | Slow speed (5000 rpm) |
Abrasive strips 60 microns | EVA active on both sides | Task Inc., Tokyo, Japan | 60 μm | Slow speed (5000 rpm) |
Abrasive strips 90 microns | EVA active on both sides | Task Inc., Tokyo, Japan | 90 μm | Slow speed (5000 rpm) |
Burs | 8392 “mosquito” bur | Komet, Rock Hill, South Carolina, USA | Red Fine grit | High speed (400,000 rpm) with water cooling |
Discs | Sof Lex System Kit | 3M, Neuss, Germany | Orange Fine 20 μm | Slow speed (5000 rpm) |
Instrument | Sample No. | Mean ± SD | Min | Max | p Value |
---|---|---|---|---|---|
15 μm abrasive strips * | 7 | 314.2 ± 145 | 148.1 | 499.6 | 0.8329 † |
40 μm abrasive strips * | 7 | 284.6 ± 127.5 | 143 | 457.1 | 0.2677 † |
60 μm abrasive strips * | 7 | 264 ± 108.4 | 143.1 | 420.3 | 0.2222 † |
90 μm abrasive strips * | 7 | 213.7 ± 118.6 | 149.3 | 423.9 | 0.1508 † |
Diamond burs * | 7 | 225.8 ± 43.49 | 184.2 | 285.3 | 0.0159 |
Abrasive discs * | 7 | 291.5 ± 96.04 | 148 | 395.8 | 0.4286 † |
Control | 7 | 354.4 ± 41.02 | 313.1 | 419.3 | - |
Instrument | 15 μm Abrasive Strips | 40 μm Abrasive Strips | 60 μm Abrasive Strips | 90 μm Abrasive Strips | Diamond Burs | Abrasive Discs |
---|---|---|---|---|---|---|
15 μm abrasive strips | - | 0.6943 † | 0.7242 † | 0.2222 † | 0.5697 † | 0.6620 † |
40 μm abrasive strips | 0.6943 † | - | 0.8763 † | 0.2677 † | 0.4038 † | 0.8357 † |
60 μm abrasive strips | 0.7242 † | 0.8763 † | - | 0.5476 † | 0.7302 † | 0.6623 † |
90 μm abrasive strips | 0.2222 † | 0.2677 † | 0.5476 † | - | 0.2857 † | 0.4286 † |
Diamond burs | 0.5697 † | 0.4038 † | 0.7302 † | 0.2857 † | - | 0.3524 † |
Abrasive discs | 0.6620 † | 0.8357 † | 0.6623 † | 0.4286 † | 0.3524 † | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serbanoiu, D.-C.; Vartolomei, A.-C.; Ghiga, D.-V.; Pop, S.I.; Panainte, I.; Moldovan, M.; Sarosi, C.; Petean, I.; Boileau, M.-J.; Pacurar, M. Comparative Evaluation of Dental Enamel Microhardness Following Various Methods of Interproximal Reduction: A Vickers Hardness Tester Investigation. Biomedicines 2024, 12, 1132. https://doi.org/10.3390/biomedicines12051132
Serbanoiu D-C, Vartolomei A-C, Ghiga D-V, Pop SI, Panainte I, Moldovan M, Sarosi C, Petean I, Boileau M-J, Pacurar M. Comparative Evaluation of Dental Enamel Microhardness Following Various Methods of Interproximal Reduction: A Vickers Hardness Tester Investigation. Biomedicines. 2024; 12(5):1132. https://doi.org/10.3390/biomedicines12051132
Chicago/Turabian StyleSerbanoiu, Dan-Cosmin, Aurel-Claudiu Vartolomei, Dana-Valentina Ghiga, Silvia Izabella Pop, Irinel Panainte, Marioara Moldovan, Codruta Sarosi, Ioan Petean, Marie-Jose Boileau, and Mariana Pacurar. 2024. "Comparative Evaluation of Dental Enamel Microhardness Following Various Methods of Interproximal Reduction: A Vickers Hardness Tester Investigation" Biomedicines 12, no. 5: 1132. https://doi.org/10.3390/biomedicines12051132
APA StyleSerbanoiu, D. -C., Vartolomei, A. -C., Ghiga, D. -V., Pop, S. I., Panainte, I., Moldovan, M., Sarosi, C., Petean, I., Boileau, M. -J., & Pacurar, M. (2024). Comparative Evaluation of Dental Enamel Microhardness Following Various Methods of Interproximal Reduction: A Vickers Hardness Tester Investigation. Biomedicines, 12(5), 1132. https://doi.org/10.3390/biomedicines12051132