Olfactory Dysfunction and Glaucoma
Abstract
:1. Introduction
2. Smell Dysfunction Causes
- Upper respiratory infections;
- Nasal and sinus conditions such as sinusitis, nasal polyps, or inflammation of the nasal passages can interfere with the ability to smell by blocking airflow or affecting olfactory receptors;
- Head trauma, including injuries to the head, especially to the frontal lobes or the area around the nose, can damage the olfactory nerves and cause loss of smell;
- Aging: as people age, there may be a natural decline in the sense of smell due to changes in the olfactory system;
- Medications: some medications, including certain antibiotics, antidepressants, and antihypertensives, can cause olfactory dysfunction as a side effect;
- Toxic chemical exposure: exposure to certain chemicals or toxins, such as solvents, pollutants, or heavy metals, can damage the olfactory system and cause loss of smell;
- Genetic factors: in rare cases, genetic conditions can affect a person’s ability to smell.
- Neurological conditions: neurological diseases, such as Alzheimer’s, Parkinson’s, multiple sclerosis, or epilepsy, can affect the sense of smell.
Olfactory Dysfunction Evaluation
3. Glaucoma and Neurodegeneration
4. Smell Function and Glaucoma
Authors | n | Smell Test | Outcomes |
---|---|---|---|
Mozaffarieh, M. et al. (2010) [66] | 36 NTG patients and 36 healthy controls; half participants in both groups had PVD. | SST | In both groups, subjects with PVD had better smell outcomes (p < 0.001) |
Gugleta, K. et al. (2010) [68] | 30 POAG patients | SST | Olfactory threshold was significantly lower in POAG than healthy controls (p = 0.01) |
Dikmetas, O. et al. (2022) [69] | 20 POAG patients | ||
20 PXG patients | SST | Complex olfactory abnormalities that affected threshold, discrimination, and identification differently in each group. The PXG group showed the worst TDI score. | |
20 PXS patients |
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cha, H.; Kim, S.; Seo, M.s.; Kim, H.s. Effects of olfactory stimulation on cognitive function and behavior problems in older adults with dementia: A systematic literature review. Geriatr. Nurs. 2021, 42, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- Mesholam, R.I.; Moberg, P.J.; Mahr, R.N.; Doty, R.L. Olfaction in Neurodegenerative Disease: A Meta-analysis of Olfactory Functioning in Alzheimer’s and Parkinson’s Diseases. Arch. Neurol. 1998, 55, 84. [Google Scholar] [CrossRef]
- Kotecha, A.; Corrêa, A.; Fisher, K.; Rushworth, J. Olfactory Dysfunction as a Global Biomarker for Sniffing out Alzheimer’s Disease: A Meta-Analysis. Biosensors 2018, 8, 41. [Google Scholar] [CrossRef]
- Sui, X.; Zhou, C.; Li, J.; Chen, L.; Yang, X.; Li, F. Hyposmia as a Predictive Marker of Parkinson’s Disease: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2019, 2019, 3753786. [Google Scholar] [CrossRef]
- Jung, H.J.; Shin, I.; Lee, J. Olfactory function in mild cognitive impairment and Alzheimer’s disease: A meta-analysis. Laryngoscope 2019, 129, 362–369. [Google Scholar] [CrossRef]
- Knight, J.E.; Yoneda, T.; Lewis, N.A.; Muniz-Terrera, G.; Bennett, D.A.; Piccinin, A.M. Transitions Between Mild Cognitive Impairment, Dementia, and Mortality: The Importance of Olfaction. J. Gerontol. Ser. A 2023, 78, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Parisi, V.; Coppola, G.; Centofanti, M.; Oddone, F.; Angrisani, A.M.; Ziccardi, L.; Ricci, B.; Quaranta, L.; Manni, G. Evidence of the neuroprotective role of citicoline in glaucoma patients. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2008; Volume 173, pp. 541–554. [Google Scholar] [CrossRef]
- Coppola, G.; Di Renzo, A.; Ziccardi, L.; Martelli, F.; Fadda, A.; Manni, G.; Barboni, P.; Pierelli, F.; Sadun, A.A.; Parisi, V. Optical Coherence Tomography in Alzheimer’s Disease: A Meta-Analysis. PLoS ONE 2015, 10, e0134750. [Google Scholar] [CrossRef] [PubMed]
- Trebbastoni, A.; D’antonio, F.; Bruscolini, A.; Marcelli, M.; Cecere, M.; Campanelli, A.; Imbriano, L.; de Lena, C.; Gharbiya, M. Retinal nerve fibre layer thickness changes in Alzheimer’s disease: Results from a 12-month prospective case series. Neurosci. Lett. 2016, 629, 165–170. [Google Scholar] [CrossRef]
- Lee, Y.W.; Lim, M.N.; Lee, J.Y.; Yoo, Y.J. Central retina thickness measured with spectral-domain optical coherence tomography in Parkinson disease: A meta-analysis. Medicine 2023, 102, e35354. [Google Scholar] [CrossRef]
- Mirmosayyeb, O.; Ebrahimi, N.; Barzegar, M.; Afshari-Safavi, A.; Bagherieh, S.; Shaygannejad, V. Olfactory dysfunction in patients with multiple sclerosis; A systematic review and meta-analysis. PLoS ONE 2022, 17, e0266492. [Google Scholar] [CrossRef]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Saccà, S.C.; Paluan, F.; Gandolfi, S.; Manni, G.; Cutolo, C.A.; Izzotti, A. Common aspects between glaucoma and brain neurodegeneration. Mutat. Res. Rev. Mutat. Res. 2020, 786, 108323. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Liu, S.; Zhang, X.; Hu, Y.; Shang, X.; Zhu, Z.; Huang, Y.; Wu, G.; Xiao, Y.; Du, Z.; et al. Shared genetic architecture between the two neurodegenerative diseases: Alzheimer’s disease and glaucoma. Front. Aging Neurosci. 2022, 14, 880576. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Saxena, R.; Tripathi, M.; Vibha, D.; Dhiman, R. Neurodegeneration in Alzheimer’s disease and glaucoma: Overlaps and missing links. Eye 2020, 34, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.W.; Chan, N.C.; Sadun, A.A. Glaucoma as Neurodegeneration in the Brain. EB 2021, 13, 21–28. [Google Scholar] [CrossRef]
- Yücel, Y.; Gupta, N. Glaucoma of the brain: A disease model for the study of transsynaptic neural degeneration. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2008; Volume 173, pp. 465–478. [Google Scholar] [CrossRef]
- You, M.; Rong, R.; Zeng, Z.; Xia, X.; Ji, D. Transneuronal Degeneration in the Brain During Glaucoma. Front. Aging Neurosci. 2021, 13, 643685. [Google Scholar] [CrossRef] [PubMed]
- Roalf, D.R.; Moberg, M.J.; Turetsky, B.I.; Brennan, L.; Kabadi, S.; Wolk, D.A.; Moberg, P.J. A quantitative meta-analysis of olfactory dysfunction in mild cognitive impairment. J. Neurol. Neurosurg. Psychiatry 2017, 88, 226–232. [Google Scholar] [CrossRef]
- Alonso, C.C.G.; Silva, F.G.; Costa, L.O.P.; Freitas, S.M.S.F. Smell tests can discriminate Parkinson’s disease patients from healthy individuals: A meta-analysis. Clin. Neurol. Neurosurg. 2021, 211, 107024. [Google Scholar] [CrossRef] [PubMed]
- Trentin, S.; Fraiman de Oliveira, B.S.; Ferreira Felloni Borges, Y.; de Mello Rieder, C.R. Systematic review and meta-analysis of Sniffin Sticks Test performance in Parkinson’s disease patients in different countries. Eur. Arch. Otorhinolaryngol. 2022, 279, 1123–1145. [Google Scholar] [CrossRef]
- Khurshid, K.; Crow, A.J.D.; Rupert, P.E.; Minniti, N.L.; Carswell, M.A.; Mechanic-Hamilton, D.J.; Kamath, V.; Doty, R.L.; Moberg, P.J.; Roalf, D.R. A Quantitative Meta-analysis of Olfactory Dysfunction in Epilepsy. Neuropsychol. Rev. 2019, 29, 328–337. [Google Scholar] [CrossRef]
- Lyu, Z.; Zheng, S.; Zhang, X.; Mai, Y.; Pan, J.; Hummel, T.; Hähner, A.; Zou, L. Olfactory impairment as an early marker of Parkinson’s disease in REM sleep behaviour disorder: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2021, 92, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Crow, A.J.D.; Janssen, J.M.; Vickers, K.L.; Parish-Morris, J.; Moberg, P.J.; Roalf, D.R. Olfactory Dysfunction in Neurodevelopmental Disorders: A Meta-analytic Review of Autism Spectrum Disorders, Attention Deficit/Hyperactivity Disorder and Obsessive–Compulsive Disorder. J. Autism. Dev. Disord. 2020, 50, 2685–2697. [Google Scholar] [CrossRef] [PubMed]
- Mai, Y.; Zhang, X.; Li, Z.; Wu, X.; Zeng, B.; Fang, Y.; Zou, L.; Zhao, J.; Hummel, T. Olfaction is a Marker of Severity but Not Diagnosis in Anorexia Nervosa: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2020, 30, 251–266. [Google Scholar] [CrossRef]
- Kamath, V.; Chaney, G.A.S.; DeRight, J.; Onyike, C.U. A meta-analysis of neuropsychological, social cognitive, and olfactory functioning in the behavioral and language variants of frontotemporal dementia. Psychol. Med. 2019, 49, 2669–2680. [Google Scholar] [CrossRef] [PubMed]
- Rahayel, S.; Frasnelli, J.; Joubert, S. The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: A meta-analysis. Behav. Brain Res. 2012, 231, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Dan, X.; Wechter, N.; Gray, S.; Mohanty, J.G.; Croteau, D.L.; Bohr, V.A. Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res. Rev. 2021, 70, 101416. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.d.M.e.; Mercer, P.B.S.; Witt, M.C.Z.; Pessoa, R.R. Olfactory dysfunction in Alzheimer’s disease Systematic review and meta-analysis. Dement. Neuropsychol. 2018, 12, 123–132. [Google Scholar] [CrossRef]
- Bang, Y.; Lim, J.; Choi, H.J. Recent advances in the pathology of prodromal non-motor symptoms olfactory deficit and depression in Parkinson’s disease: Clues to early diagnosis and effective treatment. Arch. Pharm. Res. 2021, 44, 588–604. [Google Scholar] [CrossRef]
- Fatuzzo, I.; Niccolini, G.F.; Zoccali, F.; Cavalcanti, L.; Bellizzi, M.G.; Riccardi, G.; de Vincentiis, M.; Fiore, M.; Petrella, C.; Minni, A.; et al. Neurons, Nose, and Neurodegenerative Diseases: Olfactory Function and Cognitive Impairment. Int. J. Mol. Sci. 2023, 24, 2117. [Google Scholar] [CrossRef]
- Toh, W.L.; Yolland, C.; Gurvich, C.; Barnes, J.; Rossell, S.L. Non-visual hallucinations in Parkinson’s disease: A systematic review. J. Neurol. 2023, 270, 2857–2889. [Google Scholar] [CrossRef]
- Fogue, C.; Lemdani, M.; Huart, C. Nasal chemosensory tests: Biomarker between dementia with Lewy bodies and Parkinson disease dementia. J. Rhinol. 2020, 58, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Brozzetti, L.; Sacchetto, L.; Cecchini, M.P.; Avesani, A.; Perra, D.; Bongianni, M.; Portioli, C.; Scupoli, M.; Ghetti, B.; Monaco, S.; et al. Neurodegeneration-Associated Proteins in Human Olfactory Neurons Collected by Nasal Brushing. Front. Neurosci. 2020, 14, 145. [Google Scholar] [CrossRef] [PubMed]
- Goektas, O.; Schmidt, F.; Bohner, G.; Erb, K.; Ludemann, L.; Dahlslett, B.; Harms, L.; Fleiner, F. Olfactory bulb volume and olfactory function in patients with multiple sclerosis. Rhin. 2011, 49, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Carnemolla, S.E.; Hsieh, J.W.; Sipione, R.; Landis, B.N.; Kumfor, F.; Piguet, O.; Manuel, A.L. Olfactory dysfunction in frontotemporal dementia and psychiatric disorders: A systematic review. Neurosci. Biobehav. Rev. 2020, 118, 588–611. [Google Scholar] [CrossRef] [PubMed]
- Simmen, D.; Briner, H.R. Olfaction in rhinology—Methods of assessing the sense of smell. Rhinology 2006, 44, 98–101. [Google Scholar] [PubMed]
- Saltagi, A.K.; Saltagi, M.Z.; Nag, A.K.; Wu, A.W.; Higgins, T.S.; Knisely, A.; Ting, J.Y.; Illing, E.A. Diagnosis of Anosmia and Hyposmia: A Systematic Review. Allergy Rhinol. 2021, 12, 21526567211026568. [Google Scholar] [CrossRef] [PubMed]
- Hummel, T.; Sekinger, B.; Wolf, S.R.; Pauli, E.; Kobal, G. ‘Sniffin’ Sticks’: Olfactory Performance Assessed by the Combined Testing of Odour Identification, Odor Discrimination and Olfactory Threshold. Chem. Senses 1997, 22, 39–52. [Google Scholar] [CrossRef]
- Kobal, G.; Klimek, L.; Wolfensberger, M.; Gudziol, H.; Temmel, A.; Owen, C.M.; Seeber, H.; Pauli, E.; Hummel, T. Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. Eur. Arch. Oto-Rhino-Laryngol. 2000, 257, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Rumeau, C.; Nguyen, D.T.; Jankowski, R. How to assess olfactory performance with the Sniffin’ Sticks test ®. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2016, 133, 203–206. [Google Scholar] [CrossRef]
- Doty, R.L.; Shaman, P.; Dann, M. Development of the university of pennsylvania smell identification test: A standardized microencapsulated test of olfactory function. Physiol. Behav. 1984, 32, 489–502. [Google Scholar] [CrossRef]
- Hernandez, A.K.; Landis, B.; Altundag, A.; Fjaeldstad, A.W.; Gane, S.; Holbrook, E.H.; Huart, C.; Konstantinidis, I.; Lechner, M.; Macchi, A.; et al. Olfactory Nomenclature: An Orchestrated Effort to Clarify Terms and Definitions of Dysosmia, Anosmia, Hyposmia, Normosmia, Hyperosmia, Olfactory Intolerance, Parosmia, and Phantosmia/Olfactory Hallucination. ORL 2023, 85, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Xie, L.; Dai, C.; Xie, B.; Liang, M.; Zhao, L.; Yin, X.; Wang, J. Progressive Thinning of Visual Cortex in Primary Open-Angle Glaucoma of Varying Severity. PLoS ONE 2015, 10, e0121960. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.W.; Wang, N.; Cai, S.; Fang, Z.; Yu, M.; Wu, Q.; Tang, L.; Guo, B.; Feng, Y.; Jonas, J.B.; et al. Structural Brain Abnormalities in Patients with Primary Open-Angle Glaucoma: A Study with 3T MR Imaging. Investig. Ophthalmol. Vis. Sci. 2013, 54, 545. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Muir, E.R.; Chalfin, S.; Nagi, K.S.; Duong, T.Q. MRI Study of the Posterior Visual Pathways in Primary Open Angle Glaucoma. J. Glaucoma 2017, 26, 173–181. [Google Scholar] [CrossRef]
- Parisi, V. Neural conduction in the visual pathways in ocular hypertension and glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 1997, 235, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Mastropasqua, L. Ophthalmology Up-to-Date; Fabiano: Asti, Italy, 2023; Volume 1, ISBN 9788831256575. [Google Scholar]
- Tezel, G. Hypoxia-Inducible Factor 1α in the Glaucomatous Retina and OpticNerve Head. Arch. Ophthalmol. 2004, 122, 1348. [Google Scholar] [CrossRef] [PubMed]
- Bayer, A.U.; Ferrari, F.; Erb, C. High Occurrence Rate of Glaucoma among Patients with Alzheimer’s Disease. Eur. Neurol. 2002, 47, 165–168. [Google Scholar] [CrossRef]
- Rossetti, L.; Iester, M.; Tranchina, L.; Ottobelli, L.; Coco, G.; Calcatelli, E.; Ancona, C.; Cirafici, P.; Manni, G. Can Treatment With Citicoline Eyedrops Reduce Progression in Glaucoma? The Results of a Randomized Placebo-controlled Clinical Trial. J. Glaucoma 2020, 29, 513–520. [Google Scholar] [CrossRef]
- Rossetti, L.; Goni, F.; Montesano, G.; Stalmans, I.; Topouzis, F.; Romano, D.; Galantin, E.; Delgado-Gonzales, N.; Giammaria, S.; Coco, G.; et al. The effect of citicoline oral solution on quality of life in patients with glaucoma: The results of an international, multicenter, randomized, placebo-controlled cross-over trial. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 1659–1668. [Google Scholar] [CrossRef]
- Bonvicini, M.; Travaglini, S.; Lelli, D.; Antonelli Incalzi, R.; Pedone, C. Is Citicoline Effective in Preventing and Slowing Down Dementia?—A Systematic Review and a Meta-Analysis. Nutrients 2023, 15, 386. [Google Scholar] [CrossRef]
- Piamonte, B.L.C.; Espiritu, A.I.; Anlacan, V.M.M. Effects of Citicoline as an Adjunct Treatment for Alzheimer’s Disease: A Systematic Review. JAD 2020, 76, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Mallone, F.; Sacchetti, M.; Bruscolini, A.; Scuderi, L.; Marenco, M.; Lambiase, A. Neurotrophic Factors in Glaucoma and Innovative Delivery Systems. Appl. Sci. 2020, 10, 9015. [Google Scholar] [CrossRef]
- Oddone, F.; Roberti, G.; Micera, A.; Busanello, A.; Bonini, S.; Quaranta, L.; Agnifili, L.; Manni, G. Exploring Serum Levels of Brain Derived Neurotrophic Factor and Nerve Growth Factor Across Glaucoma Stages. PLoS ONE 2017, 12, e0168565. [Google Scholar] [CrossRef] [PubMed]
- Lambiase, A.; Aloe, L.; Centofanti, M.; Parisi, V.; Bao, S.N.; Mantelli, F.; Colafrancesco, V.; Manni, G.L.; Bucci, M.G.; Bonini, S.; et al. Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: Implications for glaucoma. Proc. Natl. Acad. Sci. USA 2009, 106, 13469–13474. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.; Wang, P.; Tang, L.; Liu, X. Ocular Blood Flow and Normal Tension Glaucoma. BioMed Res. Int. 2015, 2015, 308505. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y.L.; Tham, C.C. Normal-tension glaucoma: Current concepts and approaches—A review. Clin. Exp. Ophthalmol. 2022, 50, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Flammer, J.; Konieczka, K.; Flammer, A.J. The primary vascular dysregulation syndrome: Implications for eye diseases. EPMA J. 2013, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Kiyota, N.; Kunikata, H.; Yamazaki, M.; Nishimura, T.; Shiga, Y.; Aoyagi, H.; Shidomi, M.; Tsuda, T.; Ohtsuka, T.; et al. Vasoreactivity of the optic nerve head, nailfold, and facial skin in response to cold provocation in normal-tension glaucoma patients. BMC Ophthalmol. 2023, 23, 316. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Kawakami, H.; Kanamoto, T.; Kato, T.; Yokoyama, T.; Sasaki, K.; Izumi, Y.; Matsumoto, M.; Mishima, H.K. High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J. Neurol. Sci. 2006, 246, 79–83. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Lai, Y.J.; Yen, Y.F.; Shen, Y.C.; Wang, C.Y.; Liang, C.Y.; Lin, K.H.; Fan, L.W. Association between normal tension glaucoma and the risk of Alzheimer’s disease: A nationwide population-based cohort study in Taiwan. BMJ Open 2018, 8, e022987. [Google Scholar] [CrossRef]
- Padhy, B.; Alone, D.P. Is pseudoexfoliation glaucoma a neurodegenerative disorder? J. Biosci. 2021, 46, 97. [Google Scholar] [CrossRef]
- Jeong, W.C.; Min, J.Y.; Kang, T.G.; Bae, H. Association between pseudoexfoliation and Alzheimer’s disease-related brain atrophy. PLoS ONE 2023, 18, e0286727. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarieh, M.; Hauenstein, D.; Schoetzau, A.; Konieczka, K.; Flammer, J. Smell perception in normal tension glaucoma patients. Mol. Vis. 2010, 16, 506–510. [Google Scholar] [PubMed]
- Wunderlich, K.; Zimmerman, C.; Gutmann, H.; Teuchner, B.; Flammer, J.; Drewe, J. Vasospastic persons exhibit differential expression of ABC-transport proteins. Mol. Vis. 2003, 9, 756–761. [Google Scholar] [PubMed]
- Gugleta, K.; Kochkorov, A.; Katamay, R.; Husner, A.; Welge-Lüssen, A.; Flammer, J.; Orgül, S. Olfactory Function in Primary Open-Angle Glaucoma Patients. Klin. Monatsbl. Augenheilkd. 2010, 227, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Dikmetas, O.; Aygün, O.; Kocabeyoglu, S.; Süslü, A.E.; Kilic, B.; Karakaya, J.; Iester, M.; Irkec, M. Smell Sensitivity in Primary Open-angle Glaucoma and Pseudoexfoliation Glaucoma. J. Glaucoma 2022, 31, 300–304. [Google Scholar] [CrossRef]
- Chiasseu, M.; Cueva Vargas, J.L.; Destroismaisons, L.; Vande Velde, C.; Leclerc, N.; Di Polo, A. Tau Accumulation, Altered Phosphorylation, and Missorting Promote Neurodegeneration in Glaucoma. J. Neurosci. 2016, 36, 5785–5798. [Google Scholar] [CrossRef]
- Beauchamp, L.C.; Chan, J.; Hung, L.W.; Padman, B.S.; Vella, L.J.; Liu, X.M.; Coleman, B.; Bush, A.I.; Lazarou, M.; Hill, A.F.; et al. Ablation of tau causes an olfactory deficit in a murine model of Parkinson’s disease. Acta Neuropathol. Commun. 2018, 6, 57. [Google Scholar] [CrossRef]
- Shih, M.C.; Gordis, T.M.; Lambert, P.R.; Nguyen, S.A.; Meyer, T.A. Hearing Loss in Exfoliation Syndrome: Systematic Review and Meta-Analysis. Laryngoscope 2023, 133, 1025–1035. [Google Scholar] [CrossRef]
- Meliante, L.A.; Piccotti, G.; Tanga, L.; Giammaria, S.; Manni, G.; Coco, G. Glaucoma, Pseudoexfoliation and Hearing Loss: A Systematic Literature Review. J. Clin. Med. 2024, 13, 1379. [Google Scholar] [CrossRef]
Alzheimer’s disease and Mild cognitive impairment | Jung et al. 2019 [5]. Roalf et al. 2017 [19]. Rahayel et al. 2012 [27]. Kotecha et al. 2018 [3]. Mesholam et al. 1998 [2]. |
Parkinson’s disease | Mesholam et al. 1998 [2]. Rahayel et al. 2012 [27] Sui et al. 2019 [4]. Lyu et al. 2021 [23]. Alonso et al. 2021 [20] Trentin et al. 2022 [21] |
Multiple sclerosis | Mirmosayyeb et al. 2022 [11] |
Epilepsy | Khurshid et al. 2019 [22] |
Rapid Eye Movement Sleep Behavior Disorder | Lyu et al. 2021 [23]. |
Autism-spectrum disorders | Crow et al. 2020 [24] |
Obsessive–Compulsive Disorder | Crow et al. 2020 [24] |
Severe anorexia nervosa | Mai et al. 2020 [25] |
Schizophrenia | Carnemolla et al. 2020 [36] |
Frontotemporal dementia | Carnemolla et al. 2020 [36] Kamath et al. 2019 [26] |
Term | Definition |
---|---|
Dysosmia | General term for smell dysfunction |
Quantitative smell dysfunction | |
Anosmia | Sense of smell is absent or almost absent, with an impact on daily life activity |
Hyposmia | Composite TDI score* < 10th percentile |
Normosmia | Composite TDI score* > 10th percentile |
Hyperosmia | Composite TDI score* > 90th percentile |
Qualitative smell dysfunction | |
Olfactory intolerance | Intolerance to common odors, unconfirmed with smell tests. |
Parosmia | Olfactory dysperception in the presence of a real odor stimulus |
Phantosmia | Olfactory dysperception in the absence of a real odor stimulus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannucci, V.; Bruscolini, A.; Iannella, G.; Visioli, G.; Alisi, L.; Salducci, M.; Greco, A.; Lambiase, A. Olfactory Dysfunction and Glaucoma. Biomedicines 2024, 12, 1002. https://doi.org/10.3390/biomedicines12051002
Iannucci V, Bruscolini A, Iannella G, Visioli G, Alisi L, Salducci M, Greco A, Lambiase A. Olfactory Dysfunction and Glaucoma. Biomedicines. 2024; 12(5):1002. https://doi.org/10.3390/biomedicines12051002
Chicago/Turabian StyleIannucci, Valeria, Alice Bruscolini, Giannicola Iannella, Giacomo Visioli, Ludovico Alisi, Mauro Salducci, Antonio Greco, and Alessandro Lambiase. 2024. "Olfactory Dysfunction and Glaucoma" Biomedicines 12, no. 5: 1002. https://doi.org/10.3390/biomedicines12051002
APA StyleIannucci, V., Bruscolini, A., Iannella, G., Visioli, G., Alisi, L., Salducci, M., Greco, A., & Lambiase, A. (2024). Olfactory Dysfunction and Glaucoma. Biomedicines, 12(5), 1002. https://doi.org/10.3390/biomedicines12051002