Alterations in Skeletal Muscle Insulin Signaling DNA Methylation: A Pilot Randomized Controlled Trial of Olanzapine in Healthy Volunteers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Population
2.2. Study Procedures and Assessments
2.3. DNA Methylation Analysis
2.4. Statistics
3. Results
3.1. Study Flow, Patient Characteristics and Clinical Measurements
3.2. Adverse Effects
3.3. Methylation Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dennis, J.A.; Gittner, L.S.; Payne, J.D.; Nugent, K. Characteristics of U.S. adults taking prescription antipsychotic medications, National Health and Nutrition Examination Survey 2013–2018. BMC Psychiatry 2020, 20, 483. [Google Scholar] [CrossRef]
- Maher, A.R.; Maglione, M.; Bagley, S.; Suttorp, M.; Hu, J.H.; Ewing, B.; Wang, Z.; Timmer, M.; Sultzer, D.; Shekelle, P.G. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: A systematic review and meta-analysis. JAMA J. Am. Med. Assoc. 2011, 306, 1359–1369. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Barner, J.C.; Cho, E. Trends in off-label use of antipsychotic medications among Texas Medicaid children and adolescents from 2013 to 2016. J. Manag. Care Spec. Pharm. 2021, 27, 1035–1045. [Google Scholar] [CrossRef]
- Bobo, W.V.; Cooper, W.O.; Stein, C.M.; Olfson, M.; Graham, D.; Daugherty, J.; Fuchs, D.C.; Ray, W.A. Antipsychotics and the risk of type 2 diabetes mellitus in children and youth. JAMA Psychiatry 2013, 70, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Bak, M.; Fransen, A.; Janssen, J.; van Os, J.; Drukker, M. Almost all antipsychotics result in weight gain: A meta-analysis. PLoS ONE 2014, 9, e94112. [Google Scholar] [CrossRef] [PubMed]
- Rummel-Kluge, C.; Komossa, K.; Schwarz, S.; Hunger, H.; Schmid, F.; Lobos, C.A.; Kissling, W.; Davis, J.M.; Leucht, S. Head-to-head comparisons of metabolic side effects of second generation antipsychotics in the treatment of schizophrenia: A systematic review and meta-analysis. Schizophr. Res. 2010, 123, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Bak, M.; Drukker, M.; Cortenraad, S.; Vandenberk, E.; Guloksuz, S. Antipsychotics result in more weight gain in antipsychotic naive patients than in patients after antipsychotic switch and weight gain is irrespective of psychiatric diagnosis: A meta-analysis. PLoS ONE 2021, 16, e0244944. [Google Scholar] [CrossRef] [PubMed]
- Pillinger, T.; McCutcheon, R.A.; Vano, L.; Mizuno, Y.; Arumuham, A.; Hindley, G.; Beck, K.; Natesan, S.; Efthimiou, O.; Cipriani, A.; et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. Lancet Psychiatry 2020, 7, 64–77. [Google Scholar] [CrossRef]
- Huhn, M.; Nikolakopoulou, A.; Schneider-Thoma, J.; Krause, M.; Samara, M.; Peter, N.; Arndt, T.; Bäckers, L.; Rothe, P.; Cipriani, A.; et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: A systematic review and network meta-analysis. Lancet 2019, 394, 939–951. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Wondmkun, Y.T. Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes Metab. Syndr. Obes. 2020, 13, 3611–3616. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009, 32 (Suppl. S2), S157–S163. [Google Scholar] [CrossRef]
- Abdul-Ghani, M.A.; DeFronzo, R.A. Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol. 2010, 2010, 476279. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chi, X.; Wang, Y.; Setrerrahmane, S.; Xie, W.; Xu, H. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Signal Transduct. Target. Ther. 2022, 7, 216. [Google Scholar] [CrossRef] [PubMed]
- Handy, R.M.; Holloway, G.P. Insights into the development of insulin resistance: Unraveling the interaction of physical inactivity, lipid metabolism and mitochondrial biology. Front. Physiol. 2023, 14, 1151389. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell. Physiol. 2019, 234, 8152–8161. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, P.; Weiskirchen, R. Cellular and Molecular Mechanisms of Insulin Resistance. Curr. Tissue Microenviron. Rep. 2024, 1–12. Available online: https://link.springer.com/article/10.1007/s43152-024-00056-3 (accessed on 28 March 2024). [CrossRef]
- Burghardt, K.J.; Seyoum, B.; Mallisho, A.; Burghardt, P.R.; Kowluru, R.A.; Yi, Z. Atypical antipsychotics, insulin resistance and weight; a meta-analysis of healthy volunteer studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 83, 55–63. [Google Scholar] [CrossRef]
- Pillinger, T.; Beck, K.; Gobjila, C.; Donocik, J.G.; Jauhar, S.; Howes, O.D. Impaired Glucose Homeostasis in First-Episode Schizophrenia: A Systematic Review and Meta-analysis. JAMA Psychiatry 2017, 74, 261–269. [Google Scholar] [CrossRef]
- Vestri, H.S.; Maianu, L.; Moellering, D.R.; Garvey, W.T. Atypical antipsychotic drugs directly impair insulin action in adipocytes: Effects on glucose transport, lipogenesis, and antilipolysis. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2007, 32, 765–772. [Google Scholar] [CrossRef]
- Houseknecht, K.L.; Robertson, A.S.; Zavadoski, W.; Gibbs, E.M.; Johnson, D.E.; Rollema, H. Acute effects of atypical antipsychotics on whole-body insulin resistance in rats: Implications for adverse metabolic effects. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2007, 32, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.M.; Nasrallah, H.A.; McEvoy, J.P.; Goff, D.C.; Davis, S.M.; Chakos, M.; Patel, J.K.; Keefe, R.S.; Stroup, T.S.; Lieberman, J.A. The Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Schizophrenia Trial: Clinical comparison of subgroups with and without the metabolic syndrome. Schizophr. Res. 2005, 80, 9–18. [Google Scholar] [CrossRef]
- McEvoy, J.P.; Meyer, J.M.; Goff, D.C.; Nasrallah, H.A.; Davis, S.M.; Sullivan, L.; Meltzer, H.Y.; Hsiao, J.; Scott Stroup, T.; Lieberman, J.A. Prevalence of the metabolic syndrome in patients with schizophrenia: Baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III. Schizophr. Res. 2005, 80, 19–32. [Google Scholar] [CrossRef]
- Henderson, D.C.; Cagliero, E.; Gray, C.; Nasrallah, R.A.; Hayden, D.L.; Schoenfeld, D.A.; Goff, D.C. Clozapine, diabetes mellitus, weight gain, and lipid abnormalities: A five-year naturalistic study. Am. J. Psychiatry 2000, 157, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Teff, K.L.; Rickels, M.R.; Grudziak, J.; Fuller, C.; Nguyen, H.L.; Rickels, K. Antipsychotic-induced insulin resistance and postprandial hormonal dysregulation independent of weight gain or psychiatric disease. Diabetes 2013, 62, 3232–3240. [Google Scholar] [CrossRef] [PubMed]
- Albaugh, V.L.; Singareddy, R.; Mauger, D.; Lynch, C.J. A double blind, placebo-controlled, randomized crossover study of the acute metabolic effects of olanzapine in healthy volunteers. PLoS ONE 2011, 6, e22662. [Google Scholar] [CrossRef] [PubMed]
- Albaugh, V.L.; Vary, T.C.; Ilkayeva, O.; Wenner, B.R.; Maresca, K.P.; Joyal, J.L.; Breazeale, S.; Elich, T.D.; Lang, C.H.; Lynch, C.J. Atypical antipsychotics rapidly and inappropriately switch peripheral fuel utilization to lipids, impairing metabolic flexibility in rodents. Schizophr. Bull. 2010, 38, 153–166. [Google Scholar] [CrossRef]
- Grajales, D.; Ferreira, V.; Valverde, Á.M. Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells 2019, 8, 1336. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X.F.; Shao, R.; Chen, C.; Deng, C. Molecular Mechanisms of Antipsychotic Drug-Induced Diabetes. Front. Neurosci. 2017, 11, 643. [Google Scholar] [CrossRef]
- Smith, D.A.; Sadler, M.C.; Altman, R.B. Promises and challenges in pharmacoepigenetics. Camb. Prisms Precis. Med. 2023, 1, e18. [Google Scholar] [CrossRef] [PubMed]
- Lacal, I.; Ventura, R. Epigenetic Inheritance: Concepts, Mechanisms and Perspectives. Front. Mol. Neurosci. 2018, 11, 292. [Google Scholar] [CrossRef] [PubMed]
- Dhar, G.A.; Saha, S.; Mitra, P.; Nag Chaudhuri, R. DNA methylation and regulation of gene expression: Guardian of our health. Nucleus 2021, 64, 259–270. [Google Scholar] [CrossRef]
- Greenberg, M.V.C.; Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 2019, 20, 590–607. [Google Scholar] [CrossRef]
- Ahmed, S.A.H.; Ansari, S.A.; Mensah-Brown, E.P.K.; Emerald, B.S. The role of DNA methylation in the pathogenesis of type 2 diabetes mellitus. Clin. Epigenet. 2020, 12, 104. [Google Scholar] [CrossRef]
- Burghardt, K.J.; Khoury, A.S.; Msallaty, Z.; Yi, Z.; Seyoum, B. Antipsychotic Medications and DNA Methylation in Schizophrenia and Bipolar Disorder: A Systematic Review. Pharmacotherapy 2020, 40, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59 (Suppl. S20), 22–33; quiz 34–57. [Google Scholar]
- Pacini, G.; Bergman, R.N. MINMOD: A computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. Comput. Methods Programs Biomed. 1986, 23, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Boston, R.C.; Stefanovski, D.; Moate, P.J.; Sumner, A.E.; Watanabe, R.M.; Bergman, R.N. MINMOD Millennium: A computer program to calculate glucose effectiveness and insulin sensitivity from the frequently sampled intravenous glucose tolerance test. Diabetes Technol. Ther. 2003, 5, 1003–1015. [Google Scholar] [CrossRef]
- Knopp, J.L.; Holder-Pearson, L.; Chase, J.G. Insulin Units and Conversion Factors: A Story of Truth, Boots, and Faster Half-Truths. J. Diabetes Sci. Technol. 2019, 13, 597–600. [Google Scholar] [CrossRef]
- Coates, P.A.; Luzio, S.D.; Brunel, P.; Owens, D.R. Comparison of estimates of insulin sensitivity from minimal model analysis of the insulin-modified frequently sampled intravenous glucose tolerance test and the isoglycemic hyperinsulinemic clamp in subjects with NIDDM. Diabetes 1995, 44, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.G.; Ljunggren, S.; Larsen, F.; Nyström, T. A simple intravenous glucose tolerance test for assessment of insulin sensitivity. Theor. Biol. Med. Model. 2011, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Crouter, S.E.; Antczak, A.; Hudak, J.R.; DellaValle, D.M.; Haas, J.D. Accuracy and reliability of the ParvoMedics TrueOne 2400 and MedGraphics VO2000 metabolic systems. Eur. J. Appl. Physiol. 2006, 98, 139–151. [Google Scholar] [CrossRef]
- Shanely, R.A.; Zwetsloot, K.A.; Triplett, N.T.; Meaney, M.P.; Farris, G.E.; Nieman, D.C. Human skeletal muscle biopsy procedures using the modified Bergstrom technique. J. Vis. Exp. JoVE 2014, e51812. [Google Scholar] [CrossRef]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2000, 24, 38–48. [Google Scholar] [CrossRef]
- Evenson, K.R.; Wen, F. Performance of the ActiGraph accelerometer using a national population-based sample of youth and adults. BMC Res. Notes 2015, 8, 7. [Google Scholar] [CrossRef]
- Waddell, L.; Taylor, M. A new self-rating scale for detecting atypical or second-generation antipsychotic side effects. J. Psychopharmacol. 2008, 22, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Morris, T.J.; Webster, A.P.; Yang, Z.; Beck, S.; Feber, A.; Teschendorff, A.E. ChAMP: Updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics 2017, 33, 3982–3984. [Google Scholar] [CrossRef]
- Zhou, W.; Laird, P.W.; Shen, H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017, 45, e22. [Google Scholar] [CrossRef]
- Nordlund, J.; Bäcklin, C.L.; Wahlberg, P.; Busche, S.; Berglund, E.C.; Eloranta, M.L.; Flaegstad, T.; Forestier, E.; Frost, B.M.; Harila-Saari, A.; et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol. 2013, 14, r105. [Google Scholar] [CrossRef]
- Teschendorff, A.E.; Marabita, F.; Lechner, M.; Bartlett, T.; Tegner, J.; Gomez-Cabrero, D.; Beck, S. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 2013, 29, 189–196. [Google Scholar] [CrossRef]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef]
- Teschendorff, A.E.; Menon, U.; Gentry-Maharaj, A.; Ramus, S.J.; Gayther, S.A.; Apostolidou, S.; Jones, A.; Lechner, M.; Beck, S.; Jacobs, I.J.; et al. An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS ONE 2009, 4, e8274. [Google Scholar] [CrossRef]
- Liang, H.; Ward, W.F. PGC-1alpha: A key regulator of energy metabolism. Adv. Physiol. Educ. 2006, 30, 145–151. [Google Scholar] [CrossRef]
- Finck, B.N.; Kelly, D.P. PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. J. Clin. Investig. 2006, 116, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.F.; Ku, H.C.; Lin, H. PGC-1α as a Pivotal Factor in Lipid and Metabolic Regulation. Int. J. Mol. Sci. 2018, 19, 3447. [Google Scholar] [CrossRef]
- Chan, M.C.; Arany, Z. The many roles of PGC-1α in muscle—Recent developments. Metab. Clin. Exp. 2014, 63, 441–451. [Google Scholar] [CrossRef]
- Nierenberg, A.A.; Ghaznavi, S.A.; Sande Mathias, I.; Ellard, K.K.; Janos, J.A.; Sylvia, L.G. Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha as a Novel Target for Bipolar Disorder and Other Neuropsychiatric Disorders. Biol. Psychiatry 2018, 83, 761–769. [Google Scholar] [CrossRef]
- Sarsenbayeva, A.; Marques-Santos, C.M.; Thombare, K.; Di Nunzio, G.; Almby, K.E.; Lundqvist, M.; Eriksson, J.W.; Pereira, M.J. Effects of second-generation antipsychotics on human subcutaneous adipose tissue metabolism. Psychoneuroendocrinology 2019, 110, 104445. [Google Scholar] [CrossRef]
- Zhao, S.; Lin, Q.; Xiong, W.; Li, L.; Straub, L.; Zhang, D.; Zapata, R.; Zhu, Q.; Sun, X.N.; Zhang, Z.; et al. Hyperleptinemia contributes to antipsychotic drug-associated obesity and metabolic disorders. Sci. Transl. Med. 2023, 15, eade8460. [Google Scholar] [CrossRef] [PubMed]
- Zapata, R.C.; Osborn, O. Susceptibility of male wild type mouse strains to antipsychotic-induced weight gain. Physiol. Behav. 2020, 220, 112859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lian, J.; He, M.; Deng, C.; Wang, H.; Huang, X.F. Olanzapine reduced brown adipose tissue thermogenesis and locomotor activity in female rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 51, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.S.; Befroy, D.E.; Codella, R.; Kim, S.; Reznick, R.M.; Hwang, Y.J.; Liu, Z.X.; Lee, H.Y.; Distefano, A.; Samuel, V.T.; et al. Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc. Natl. Acad. Sci. USA 2008, 105, 19926–19931. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef] [PubMed]
- Tavares, G.; Martins, F.O.; Melo, B.F.; Matafome, P.; Conde, S.V. Peripheral Dopamine Directly Acts on Insulin-Sensitive Tissues to Regulate Insulin Signaling and Metabolic Function. Front. Pharmacol. 2021, 12, 713418. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, C.; Xu, Y.; Hou, W.; Chen, J.; Li, Q.; Liu, Z.; Dou, G.; Sun, Y.; Li, R.; Ma, X.; et al. Mechanistic/mammalian target of rapamycin and side effects of antipsychotics: Insights into mechanisms and implications for therapy. Transl. Psychiatry 2022, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, C.; Tian, Y.; Wang, X.; Jiang, R.; Zhang, M.; Wang, L.; Yang, G.; Gao, Y.; Song, C.; et al. TOX and ADIPOQ Gene Polymorphisms Are Associated with Antipsychotic-Induced Weight Gain in Han Chinese. Sci. Rep. 2017, 7, 45203. [Google Scholar] [CrossRef]
- Boloc, D.; Gortat, A.; Cheng-Zhang, J.Q.; García-Cerro, S.; Rodríguez, N.; Parellada, M.; Saiz-Ruiz, J.; Cuesta, M.J.; Gassó, P.; Lafuente, A.; et al. Improving pharmacogenetic prediction of extrapyramidal symptoms induced by antipsychotics. Transl. Psychiatry 2018, 8, 276. [Google Scholar] [CrossRef]
- Bentzinger, C.F.; Romanino, K.; Cloëtta, D.; Lin, S.; Mascarenhas, J.B.; Oliveri, F.; Xia, J.; Casanova, E.; Costa, C.F.; Brink, M.; et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 2008, 8, 411–424. [Google Scholar] [CrossRef]
- Risson, V.; Mazelin, L.; Roceri, M.; Sanchez, H.; Moncollin, V.; Corneloup, C.; Richard-Bulteau, H.; Vignaud, A.; Baas, D.; Defour, A.; et al. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J. Cell Biol. 2009, 187, 859–874. [Google Scholar] [CrossRef] [PubMed]
- Engl, J.; Laimer, M.; Niederwanger, A.; Kranebitter, M.; Starzinger, M.; Pedrini, M.T.; Fleischhacker, W.W.; Patsch, J.R.; Ebenbichler, C.F. Olanzapine impairs glycogen synthesis and insulin signaling in L6 skeletal muscle cells. Mol. Psychiatry 2005, 10, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, J.O.; Lee, S.K.; Jung, J.H.; You, G.Y.; Park, S.H.; Park, M.; Kim, S.D.; Kim, H.S. Clozapine activates AMP-activated protein kinase (AMPK) in C2C12 myotube cells and stimulates glucose uptake. Life Sci. 2010, 87, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Tulipano, G.; Spano, P.; Cocchi, D. Effects of olanzapine on glucose transport, proliferation and survival in C2C12 myoblasts. Mol. Cell. Endocrinol. 2008, 292, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Panariello, F.; Perruolo, G.; Cassese, A.; Giacco, F.; Botta, G.; Barbagallo, A.P.; Muscettola, G.; Beguinot, F.; Formisano, P.; de Bartolomeis, A. Clozapine impairs insulin action by up-regulating Akt phosphorylation and Ped/Pea-15 protein abundance. J. Cell. Physiol. 2012, 227, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Castellani, L.N.; Peppler, W.T.; Sutton, C.D.; Whitfield, J.; Charron, M.J.; Wright, D.C. Glucagon receptor knockout mice are protected against acute olanzapine-induced hyperglycemia. Psychoneuroendocrinology 2017, 82, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, T.; Shirakawa, H.; Nakagawa, T.; Kaneko, S. Prevention of antipsychotic-induced hyperglycaemia by vitamin D: A data mining prediction followed by experimental exploration of the molecular mechanism. Sci. Rep. 2016, 6, 26375. [Google Scholar] [CrossRef] [PubMed]
- Boyda, H.N.; Ramos-Miguel, A.; Procyshyn, R.M.; Töpfer, E.; Lant, N.; Choy, H.H.; Wong, R.; Li, L.; Pang, C.C.; Honer, W.G.; et al. Routine exercise ameliorates the metabolic side-effects of treatment with the atypical antipsychotic drug olanzapine in rats. Int. J. Neuropsychopharmacol./Off. Sci. J. Coll. Int. Neuropsychopharmacol. (CINP) 2014, 17, 77–90. [Google Scholar] [CrossRef]
- Burghardt, K.J.; Seyoum, B.; Dass, S.; Sanders, E.; Mallisho, A.; Yi, Z. Association of Protein Kinase B (AKT) DNA Hypermethylation with Maintenance Atypical Antipsychotic Treatment in Patients with Bipolar Disorder. Pharmacotherapy 2018, 38, 428–435. [Google Scholar] [CrossRef]
Baseline Variable | Olanzapine Baseline | Placebo Baseline | Between-Group p-Value |
---|---|---|---|
Age | 23.83 ± 1.00 | 27.00 ± 5.59 | 0.20 |
Sex (% female) | 33 | 50 | 0.56 |
Weight | 64.07 ± 8.63 | 64.87 ± 4.75 | 0.85 |
BMI | 21.79 ± 2.28 | 21.57 ± 1.32 | 0.85 |
Fasting Glucose | 82.65 ± 4.67 | 86.62 ± 4.91 | 0.18 |
Fasting Insulin | 35.09 ± 16.06 | 26.41 ± 9.97 | 0.29 |
HOMA-IR | 1.18 ± 0.49 | 0.95 ± 0.38 | 0.39 |
Beta Cell | 151.95 ± 157.79 | 75.80 ± 34.00 | 0.32 |
AIRg | 740.83 ± 472.21 | 542.12 ± 410.72 | 0.48 |
DI & | 3260.07 ± 1511.27 | 1855.06 ± 1326.76 | 0.14 |
Sg | 0.034 ± 0.014 | 0.021 ± 0.0094 | 0.11 |
SI | 6.18 ± 3.65 | 3.82 ± 2.47 | 0.49 |
Resting Energy Expenditure & | 1361.37 ± 239.81 | 1368.33 ± 106.03 | 0.95 |
Hunger Score Day 2 | 6.96 ± 0.43 | 6.68 ± 1.38 | 0.64 |
Endpoint Variable | Olanzapine Endpoint | Placebo Endpoint | Between-Group p-Value |
---|---|---|---|
Weight (kg) | 64.83 ± 8.53 a | 65.00 ± 4.98 | 0.052 |
BMI | 22.06 ± 2.33 a | 21.62 ± 1.42 | 0.060 |
Fasting Glucose | 86.00 ± 7.59 | 85.62 ± 4.65 | 0.089 |
Fasting Insulin | 8.06 ± 4.06 | 7.30 ± 2.26 a | 0.57 |
HOMA-IR | 1.68 ± 0.76 | 1.55 ± 0.51 a | 0.69 |
Beta Cell | 175.05 ± 187.90 | 130.47 ± 32.76 | 0.11 |
AIRg | 953.50 ± 682.95 | 692.67 ± 533.82 | 0.93 |
DI & | 2325.54 ± 1182.02 | 2654.15 ± 1257.78 | 0.10 |
Sg | 0.028 ± 0.010 | 0.022 ± 0.013 | 0.34 |
SI | 3.55 ± 2.26 | 6.14 ± 5.36 | 0.034 * |
Resting Energy Expenditure & | 1519.20 ± 486.10 | 1194.40 ± 107.60 | 0.078 |
Hunger Score Day 6 | 7.69 ± 1.32 | 6.16 ± 0.61 | 0.13 |
Average Steps Per Day | 3884.72 ± 1702.32 | 2322.08 ± 1197.18 | 0.096 |
Adverse Effect Variable | Day 2 | Day 4 | Day 6 | Day 7 |
---|---|---|---|---|
Olanzapine GASS Score | 8.83 ± 5.12 | 10.33 ± 5.01 | 9.00 ± 3.58 | 9.33 ± 5.16 |
Placebo Gass Score | 4.00 ± 1.73 | 5.67 ± 6.91 | 6.67 ± 9.29 | 6.33 ± 10.05 |
All Participant GASS Score | 6.42 ± 5.14 | 8.00 ± 6.25 | 7.83 ± 6.82 | 7.83 ± 7.78 |
p-value for Group Comparison | 0.10 | 0.21 | 0.58 | 0.53 |
Gene | Methylation Site Number | Raw p-Value | FDR Corrected p-Value | Delta Beta * | Gene Feature | CG Type |
---|---|---|---|---|---|---|
PPARGC1A | cg24160354 | 4.05 × 10−3 | 1.58 × 10−2 | −0.52 | Body | Opensea |
PRKAR1B | cg24368702 | 1.36 × 10−5 | 2.40 × 10−4 | 0.25 | 5’UTR | Shelf |
RPTOR | cg09803959 | 4.50 × 10−6 | 1.09 × 10−4 | 0.21 | Body | Shore |
HK1 | cg23177739 | 1.68 × 10−6 | 5.42 × 10−5 | −0.20 | Body | Opensea |
RAF1 | cg25055867 | 1.68 × 10−3 | 8.13 × 10−3 | 0.19 | Body | Opensea |
PRKACA | cg19586199 | 5.26 × 10−4 | 3.43 × 10−3 | −0.19 | TSS200 | Shelf |
CBLB | cg15276228 | 3.46 × 10−3 | 1.42 × 10−2 | −0.18 | Body | Opensea |
PRKCZ | cg17156349 | 3.31 × 10−4 | 2.41 × 10−5 | 0.17 | Body | Opensea |
PRKAG2 | cg21764708 | 1.86 × 10−8 | 2.50 × 10−6 | 0.17 | 5’UTR | Opensea |
MKNK1 | cg25263021 | 4.50 × 10−6 | 1.09 × 10−4 | 0.17 | Body | Opensea |
BRAF | cg10155158 | 2.05 × 10−5 | 3.15 × 10−4 | 0.16 | Body | Opensea |
TSC2 | cg16424182 | 1.65 × 10−5 | 1.45 × 10−3 | 0.16 | Body | Shore |
PRKAG2 | cg21008208 | 3.49 × 10−7 | 1.80 × 10−5 | 0.16 | Body | Opensea |
RHEB | cg07943849 | 4.41 × 10−6 | 1.08 × 10−4 | 0.16 | Body | Opensea |
PIK3R1 | cg25091228 | 3.43 × 10−5 | 4.64 × 10−4 | −0.16 | TSS200 | Shore |
SREBF1 | cg13891611 | 6.99 × 10−9 | 1.47 × 10−6 | −0.16 | Body | Shelf |
EIF4E1B | cg07135540 | 4.22 × 10−9 | 1.20 × 10−6 | 0.15 | TSS1500 | Shore |
PTPRF | cg15620905 | 3.32 × 10−7 | 1.77 × 10−5 | 0.15 | Body | Opensea |
FOXO1 | cg07109046 | 3.31 × 10−9 | 1.20 × 10−6 | 0.15 | Body | Opensea |
INPP5A | cg11145302 | 0.004125 | 1.61 × 10−2 | 0.14 | Body | Shore |
PRKAR2A | cg01004980 | 2.50 × 10−5 | 3.69 × 10−4 | −0.14 | Body | Shore |
MAPK10 | cg05045427 | 9.90 × 10−8 | 7.75 × 10−6 | −0.14 | 5’UTR | Opensea |
SREBF1 | cg17029706 | 9.87 × 10−9 | 1.87 × 10−6 | −0.14 | Body | Opensea |
IRS1 | cg22612792 | 1.15 × 10−3 | 6.01 × 10−3 | −0.14 | 3’UTR | Opensea |
IRS1 | cg14283647 | 1.13 × 10−2 | 3.45 × 10−2 | −0.14 | 1stExon | Shore |
PRKAG2 | cg01005180 | 1.30 × 10−6 | 4.58 × 10−5 | 0.14 | Body | Opensea |
RPTOR | cg05249744 | 3.67 × 10−3 | 1.48 × 10−2 | 0.14 | Body | Shelf |
RPTOR | cg22636722 | 3.05 × 10−3 | 1.29 × 10−2 | 0.14 | Body | Shore |
RPTOR | cg24667756 | 2.51 × 10−5 | 3.69 × 10−4 | 0.14 | Body | Shelf |
PRKCI | cg21140290 | 1.06 × 10−5 | 2.01 × 10−4 | 0.14 | Body | Opensea |
Gene | Number of Significant Probes | Proportion of Total Probes Analyzed within Gene | Direction of Methylation Change |
---|---|---|---|
RPS6KB1 | 1 | 16.7 | ↑ |
PPP1R3A | 1 | 14.3 | ↓ |
MAPK8 | 3 | 11.1 | All ↑ |
SREBF1 | 5 | 10.9 | 1↑ 4↓ |
IRS1 | 4 | 10.8 | All ↓ |
PHKG1 | 1 | 9.1 | ↓ |
RHEB | 3 | 8.6 | 2↑ 1↓ |
PYGM | 2 | 7.4 | 1↑ 1↓ |
CALML6 | 1 | 7.1 | ↓ |
PRKAR2A | 1 | 7.1 | ↓ |
MAPK10 | 4 | 7.0 | 2↑ 2↓ |
MKNK1 | 2 | 6.3 | All ↑ |
PKLR | 1 | 6.3 | ↓ |
HK1 | 4 | 6.0 | 3↑ 1↓ |
CALM3 | 1 | 5.3 | ↑ |
CBL | 1 | 5.0 | ↓ |
GCK | 2 | 4.8 | 1↑ 1↓ |
PTPN1 | 2 | 4.5 | 1↑ 1↓ |
CRK | 1 | 4.5 | ↓ |
SLC2A4 | 1 | 4.3 | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burghardt, K.J.; Burghardt, P.R.; Howlett, B.H.; Dass, S.E.; Zahn, B.; Imam, A.A.; Mallisho, A.; Msallaty, Z.; Seyoum, B.; Yi, Z. Alterations in Skeletal Muscle Insulin Signaling DNA Methylation: A Pilot Randomized Controlled Trial of Olanzapine in Healthy Volunteers. Biomedicines 2024, 12, 1057. https://doi.org/10.3390/biomedicines12051057
Burghardt KJ, Burghardt PR, Howlett BH, Dass SE, Zahn B, Imam AA, Mallisho A, Msallaty Z, Seyoum B, Yi Z. Alterations in Skeletal Muscle Insulin Signaling DNA Methylation: A Pilot Randomized Controlled Trial of Olanzapine in Healthy Volunteers. Biomedicines. 2024; 12(5):1057. https://doi.org/10.3390/biomedicines12051057
Chicago/Turabian StyleBurghardt, Kyle J., Paul R. Burghardt, Bradley H. Howlett, Sabrina E. Dass, Brent Zahn, Ahmad A. Imam, Abdullah Mallisho, Zaher Msallaty, Berhane Seyoum, and Zhengping Yi. 2024. "Alterations in Skeletal Muscle Insulin Signaling DNA Methylation: A Pilot Randomized Controlled Trial of Olanzapine in Healthy Volunteers" Biomedicines 12, no. 5: 1057. https://doi.org/10.3390/biomedicines12051057
APA StyleBurghardt, K. J., Burghardt, P. R., Howlett, B. H., Dass, S. E., Zahn, B., Imam, A. A., Mallisho, A., Msallaty, Z., Seyoum, B., & Yi, Z. (2024). Alterations in Skeletal Muscle Insulin Signaling DNA Methylation: A Pilot Randomized Controlled Trial of Olanzapine in Healthy Volunteers. Biomedicines, 12(5), 1057. https://doi.org/10.3390/biomedicines12051057