Metabolome-Wide Mendelian Randomization Assessing the Causal Role of Serum and Cerebrospinal Metabolites in Traumatic Brain Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Source of GWAS Data
2.3. Instrumental Variable Identification
2.4. Statistical Analysis
2.5. Metabolic Pathway Analysis
2.6. Genetic Correlation and Directionality
3. Results
3.1. MR Results
3.2. Metabolic Pathway Analysis
3.3. Genetic Correlation and Directionality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Åkerlund, C.A.I.; Holst, A.; Stocchetti, N.; Steyerberg, E.W.; Menon, D.K.; Ercole, A.; Nelson, D.W.; Amrein, K.; Andelic, N.; Andreassen, L.; et al. Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: A CENTER-TBI study. Crit. Care 2022, 26, 228. [Google Scholar] [CrossRef] [PubMed]
- Khellaf, A.; Khan, D.Z.; Helmy, A. Recent advances in traumatic brain injury. J. Neurol. 2019, 266, 2878–2889. [Google Scholar] [CrossRef] [PubMed]
- VanderVeen, J.D. TBI as a Risk Factor for Substance Use Behaviors: A Meta-analysis. Arch. Phys. Med. Rehabil. 2021, 102, 1198–1209. [Google Scholar] [CrossRef] [PubMed]
- Cash, A.; Theus, M.H. Mechanisms of Blood-Brain Barrier Dysfunction in Traumatic Brain Injury. Int. J. Mol. Sci. 2020, 21, 3344. [Google Scholar] [CrossRef] [PubMed]
- Vella, M.A.; Crandall, M.L.; Patel, M.B. Acute Management of Traumatic Brain Injury. Surg. Clin. N. Am. 2017, 97, 1015–1030. [Google Scholar] [CrossRef] [PubMed]
- Aromatario, M.; Torsello, A.; D’errico, S.; Bertozzi, G.; Sessa, F.; Cipolloni, L.; Baldari, B. Traumatic Epidural and Subdural Hematoma: Epidemiology, Outcome, and Dating. Medicina 2021, 57, 125. [Google Scholar] [CrossRef] [PubMed]
- Orešič, M.; Posti, J.; Kamstrup-Nielsen, M.H.; Takala, R.S.; Lingsma, H.F.; Mattila, I.; Jäntti, S.; Katila, A.J.; Carpenter, K.; Ala-Seppälä, H.; et al. Human Serum Metabolites Associate with Severity and Patient Outcomes in Traumatic Brain Injury. EBioMedicine 2016, 12, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Taraskina, A.; Ignatyeva, O.; Lisovaya, D.; Ivanov, M.; Ivanova, L.; Golovicheva, V.; Baydakova, G.; Silachev, D.; Popkov, V.; Ivanets, T.; et al. Effects of Traumatic Brain Injury on the Gut Microbiota Composition and Serum Amino Acid Profile in Rats. Cells 2022, 11, 1409. [Google Scholar] [CrossRef] [PubMed]
- Banoei, M.M.; Lee, C.H.; Hutchison, J.; Panenka, W.; Wellington, C.; Wishart, D.S.; Winston, B.W. Using metabolomics to predict severe traumatic brain injury outcome (GOSE) at 3 and 12 months. Crit. Care 2023, 27, 295. [Google Scholar] [CrossRef] [PubMed]
- Thomas, I.; Dickens, A.M.; Posti, J.P.; Czeiter, E.; Duberg, D.; Sinioja, T.; Krakstrom, M.; Helmrich, I.R.A.R.; Wang, K.K.W.; Maas, A.I.R.; et al. Serum metabolome associated with severity of acute traumatic brain injury. Nat. Commun. 2022, 13, 2545. [Google Scholar] [CrossRef]
- Dickens, A.M.; Posti, J.P.; Takala, R.S.K.; Ala-Seppala, H.; Mattila, I.; Coles, J.P.; Frantzén, J.; Hutchinson, P.J.; Katila, A.J.; Kyllönen, A.; et al. Serum Metabolites Associated with Computed Tomography Findings after Traumatic Brain Injury. J. Neurotrauma 2018, 35, 2673–2683. [Google Scholar] [CrossRef] [PubMed]
- Boehm, F.J.; Zhou, X. Statistical methods for Mendelian randomization in genome-wide association studies: A review. Comput. Struct. Biotechnol. J. 2022, 20, 2338–2351. [Google Scholar] [CrossRef] [PubMed]
- Pierce, B.L.; Burgess, S. Efficient design for Mendelian randomization studies: Subsample and 2-sample instrumental variable estimators. Am. J. Epidemiol. 2013, 178, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Burgess, S.; Michaëlsson, K. Smoking and stroke: A mendelian randomization study. Ann. Neurol. 2019, 86, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Seyedsalehi, A.; Warrier, V.; Bethlehem, R.A.I.; Perry, B.I.; Burgess, S.; Murray, G.K. Educational attainment, structural brain reserve and Alzheimer’s disease: A Mendelian randomization analysis. Brain 2023, 146, 2059–2074. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Si, X.; Wang, J.; Wang, Z.; Chen, Y.; Liu, Y.; Yan, Y.; Tian, J.; Zhang, B.; Pu, J. Alzheimer Disease and Epilepsy: A Mendelian Randomization Study. Neurology 2023, 101, e399–e409. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.Y.; Fauman, E.B.; Petersen, A.K.; Krumsiek, J.; Santos, R.; Huang, J.; Arnold, M.; Erte, I.; Forgetta, V.; Yang, T.-P.; et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 2014, 46, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Carracedo-Reboredo, P.; Linares-Blanco, J.; Rodriguez-Fernandez, N.; Cedron, F.; Novoa, F.J.; Carballal, A.; Maojo, V.; Pazos, A.; Fernandez-Lozano, C. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J. 2021, 19, 4538–4558. [Google Scholar] [CrossRef] [PubMed]
- Panyard, D.J.; Kim, K.M.; Darst, B.F.; Deming, Y.K.; Zhong, X.; Wu, Y.; Kang, H.; Carlsson, C.M.; Johnson, S.C.; Asthana, S.; et al. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun. Biol. 2021, 4, 63. [Google Scholar] [CrossRef]
- Kals, M.; Kunzmann, K.; Parodi, L.; Radmanesh, F.; Wilson, L.; Izzy, S.; Anderson, C.D.; Puccio, A.M.; Okonkwo, D.O.; Temkin, N.; et al. A genome-wide association study of outcome from traumatic brain injury. EBioMedicine 2022, 77, 103933. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Xie, Z.; Li, X.; Hu, J.; He, H.; Li, Z. Exploring blood metabolites and thyroid disorders: A bidirectional mendelian randomization study. Front. Endocrinol. 2023, 14, 1270336. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wang, N.; Luo, Y.; Ma, C.; Chen, Z.; Chenzhao, C.; Zhang, F.; Qi, X.; Xiong, W. A cause-effect relationship between Graves’ disease and the gut microbiome contributes to the thyroid-gut axis: A bidirectional two-sample Mendelian randomization study. Front. Immunol. 2023, 14, 977587. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Li, X.; Wu, S.; Tian, Y.; Zhang, Y.; Wei, Z.; Jin, Z.; Li, X.; Chen, X.; Chen, W.-X. Assessing the causal association between human blood metabolites and the risk of epilepsy. J. Transl. Med. 2022, 20, 437. [Google Scholar] [CrossRef]
- Gill, D.; Brewer, C.F.; Monori, G.; Trégouët, D.; Franceschini, N.; Giambartolomei, C.; Tzoulaki, I.; Dehghan, A. Effects of Genetically Determined Iron Status on Risk of Venous Thromboembolism and Carotid Atherosclerotic Disease: A Mendelian Randomization Study. J. Am. Heart Assoc. 2019, 8, e012994. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef]
- Burgess, S.; Scott, R.A.; Timpson, N.J.; Davey Smith, G.; Thompson, S.G.; Consortium, E.-I. Using published data in Mendelian randomization: A blueprint for efficient identification of causal risk factors. Eur. J. Epidemiol. 2015, 30, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Hemani, G.; Bowden, J.; Davey Smith, G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum. Mol. Genet. 2018, 27, R195–R208. [Google Scholar] [CrossRef]
- O’Connor, L.J.; Price, A.L. Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat. Genet. 2018, 50, 1728–1734. [Google Scholar] [CrossRef]
- Reay, W.R.; Kiltschewskij, D.J.; Geaghan, M.P.; Atkins, J.R.; Carr, V.J.; Green, M.J.; Cairns, M.J. Genetic estimates of correlation and causality between blood-based biomarkers and psychiatric disorders. Sci. Adv. 2022, 8, eabj8969. [Google Scholar] [CrossRef]
- Yilmaz, A.; Liraz-Zaltsman, S.; Shohami, E.; Gordevicius, J.; Kerseviciute, I.; Sherman, E.; Bahado-Singh, R.O.; Graham, S.F. The longitudinal biochemical profiling of TBI in a drop weight model of TBI. Sci. Rep. 2023, 13, 22260. [Google Scholar] [CrossRef]
- Zheng, B.; Fan, J.; He, R.; Yin, R.; Wang, J.; Zhong, Y. Antioxidant status of uric acid, bilirubin, albumin and creatinine during the acute phase after traumatic brain injury: Sex-specific features. Int. J. Neurosci. 2021, 131, 833–842. [Google Scholar] [CrossRef]
- Khatri, N.; Thakur, M.; Pareek, V.; Kumar, S.; Sharma, S.; Datusalia, A.K. Oxidative Stress: Major Threat in Traumatic Brain Injury. CNS Neurol. Disord. Drug Targets 2018, 17, 689–695. [Google Scholar] [CrossRef]
- Rangasamy, S.B.; Raha, S.; Dasarathy, S.; Pahan, K. Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Improves Cognitive Functions in Mice after Controlled Cortical Impact Injury. Int. J. Mol. Sci. 2021, 23, 192. [Google Scholar] [CrossRef]
- Faverzani, J.L.; Steinmetz, A.; Deon, M.; Marchetti, D.P.; Guerreiro, G.; Sitta, A.; de Moura Coelho, D.; Lopes, F.F.; Nascimento, L.V.M.; Steffens, L.; et al. L-carnitine protects DNA oxidative damage induced by phenylalanine and its keto acid derivatives in neural cells: A possible pathomechanism and adjuvant therapy for brain injury in phenylketonuria. Metab. Brain Dis. 2021, 36, 1957–1968. [Google Scholar] [CrossRef] [PubMed]
- Bosarge, P.L.; Shoultz, T.H.; Griffin, R.L.; Kerby, J.D. Stress-induced hyperglycemia is associated with higher mortality in severe traumatic brain injury. J. Trauma Acute Care Surg. 2015, 79, 289–294. [Google Scholar] [CrossRef]
- Pappacena, S.; Bailey, M.; Cabrini, L.; Landoni, G.; Udy, A.; Pilcher, D.V.; Young, P.; Bellomo, R. Early dysglycemia and mortality in traumatic brain injury and subarachnoid hemorrhage. Minerva Anestesiol. 2019, 85, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Wolahan, S.M.; Lebby, E.; Mao, H.C.; McArthur, D.; Real, C.; Vespa, P.M.; Braas, D.; Glenn, T.C. Novel Metabolomic Comparison of Arterial and Jugular Venous Blood in Severe Adult Traumatic Brain Injury Patients and the Impact of Pentobarbital Infusion. J. Neurotrauma 2019, 36, 212–221. [Google Scholar] [CrossRef]
- Kolodziejczyk, J.; Saluk-Juszczak, J.; Wachowicz, B. In vitro study of the antioxidative properties of the glucose derivatives against oxidation of plasma components. J. Physiol. Biochem. 2011, 67, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wang, S.; Wu, C.; Cao, Y.; Gu, Q.; Zhu, Y.; Zhang, W.; Hu, W. Gut Microbiota Dysbiosis after Traumatic Brain Injury Contributes to Persistent Microglial Activation Associated with Upregulated Lyz2 and Shifted Tryptophan Metabolic Phenotype. Nutrients 2022, 14, 3467. [Google Scholar] [CrossRef]
- Meier, T.B.; Savitz, J. The Kynurenine Pathway in Traumatic Brain Injury: Implications for Psychiatric Outcomes. Biol. Psychiatry 2022, 91, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Rasmussen, L.; Saraswati, M.; Koehler, R.C.; Robertson, C.; Kannan, S. Traumatic Injury Leads to Inflammation and Altered Tryptophan Metabolism in the Juvenile Rabbit Brain. J. Neurotrauma 2018, 36, 74–86. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, M.; Chen, X.; Zhang, R.; Le, A.; Hong, M.; Zhang, Y.; Jia, L.; Zang, W.; Jiang, C.; et al. Tryptophan Metabolism in Central Nervous System Diseases: Pathophysiology and Potential Therapeutic Strategies. Aging Dis. 2023, 14, 858–878. [Google Scholar] [CrossRef] [PubMed]
- Dehhaghi, M.; Heng, B.; Guillemin, G.J. The kynurenine pathway in traumatic brain injuries and concussion. Front. Neurol. 2023, 14, 1210453. [Google Scholar] [CrossRef] [PubMed]
- Kelso, M.L.; Oestreich, J.H. Traumatic brain injury: Central and peripheral role of alpha7 nicotinic acetylcholine receptors. Curr. Drug Targets 2012, 13, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Del’Arco, A.E.; Argolo, D.S.; Guillemin, G.; Costa, M.F.D.; Costa, S.L.; Pinheiro, A.M. Neurological Infection, Kynurenine Pathway, and Parasitic Infection by Neospora caninum. Front. Immunol. 2021, 12, 714248. [Google Scholar] [CrossRef] [PubMed]
- Ji, T.; Pang, Y.; Cheng, M.; Wang, R.; Chen, X.; Zhang, C.; Liu, M.; Zhang, J.; Zhong, C. mNSCs overexpressing Rimkla transplantation facilitates cognitive recovery in a mouse model of traumatic brain injury. iScience 2023, 26, 107913. [Google Scholar] [CrossRef] [PubMed]
- Gurkoff, G.G.; Feng, J.-F.; Van, K.C.; Izadi, A.; Ghiasvand, R.; Shahlaie, K.; Song, M.; Lowe, D.A.; Zhou, J.; Lyeth, B.G. NAAG peptidase inhibitor improves motor function and reduces cognitive dysfunction in a model of TBI with secondary hypoxia. Brain Res. 2013, 1515, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Neale, J.H.; Yamamoto, T. N-acetylaspartylglutamate (NAAG) and glutamate carboxypeptidase II: An abundant peptide neurotransmitter-enzyme system with multiple clinical applications. Prog. Neurobiol. 2020, 184, 101722. [Google Scholar] [CrossRef]
- Zhong, C.; Zhao, X.; Van, K.C.; Bzdega, T.; Smyth, A.; Zhou, J.; Kozikowski, A.P.; Jiang, J.; O’Connor, W.T.; Berman, R.F.; et al. NAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat. J. Neurochem. 2006, 97, 1015–1025. [Google Scholar] [CrossRef]
- Yoon, H.; Ro, Y.S.; Jung, E.; Moon, S.B.; Park, G.J.; Lee, S.G.W.; Shin, S.D. Serum Caffeine Concentration at the Time of Traumatic Brain Injury and Its Long-Term Clinical Outcomes. J. Neurotrauma 2023, 40, 2386–2395. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Dai, S.; An, J.; Chen, X.; Xiong, R.; Liu, P.; Wang, H.; Zhao, Y.; Zhu, M.; Liu, X.; et al. Chronic but not acute treatment with caffeine attenuates traumatic brain injury in the mouse cortical impact model. Neuroscience 2008, 151, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Liu, W.; Zheng, F.; Huang, W.; Xing, Z.; Peng, W.; Tang, T.; Luo, J.; Yi, L.; Wang, Y. VISSA-PLS-DA-Based Metabolomics Reveals a Multitargeted Mechanism of Traditional Chinese Medicine for Traumatic Brain Injury. ASN Neuro 2020, 12, 1759091420910957. [Google Scholar] [CrossRef] [PubMed]
- Menshchikov, P.; Ivantsova, A.; Manzhurtsev, A.; Ublinskiy, M.; Yakovlev, A.; Melnikov, I.; Kupriyanov, D.; Akhadov, T.; Semenova, N. Separate N-acetyl aspartyl glutamate, N-acetyl aspartate, aspartate, and glutamate quantification after pediatric mild traumatic brain injury in the acute phase. Magn. Reson. Med. 2020, 84, 2918–2931. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Zhou, Y.; Feng, D.; Li, P.; Tang, T.; Luo, J.; Wang, Y. Metabolomics analysis of the hippocampus in a rat model of traumatic brain injury during the acute phase. Brain Behav. 2020, 10, e01520. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.T.; Liu, J.; Zhou, S.M.; Xu, G.; Gao, Y.Q.; Liu, W.Y. UHPLC-QTOFMS-Based Metabolomic Analysis of the Hippocampus in Hypoxia Preconditioned Mouse. Front. Physiol. 2018, 9, 1950. [Google Scholar] [CrossRef]
- Triozzi, P.L.; Stirling, E.R.; Song, Q.; Westwood, B.; Kooshki, M.; Forbes, M.E.; Holbrook, B.C.; Cook, K.L.; Alexander-Miller, M.A.; Miller, L.D.; et al. Circulating Immune Bioenergetic, Metabolic, and Genetic Signatures Predict Melanoma Patients’ Response to Anti-PD-1 Immune Checkpoint Blockade. Clin. Cancer Res. 2022, 28, 1192–1202. [Google Scholar] [CrossRef]
Characteristic | Resource | Sample Size | Year | Population |
---|---|---|---|---|
Exposure | ||||
Serum metabolites | Shin et al. [17] | 7824 | 2017 | European |
CSF 1 metabolites | Panyard et al. [19] | 291 | 2017 | European |
Outcome | ||||
TBI 2 | Kals et al. [20] | 4710 | 2023 | European |
Serum Metabolites | Method | SNP | Pval | OR (95% CI) | Cochran Q Test | Pleiotropy Test | MR-PRESSO Global Test |
---|---|---|---|---|---|---|---|
creatinine | IVW 1 | 26 | 0.012 | 0.039 (0.0031, 0.4915) | 0.827 | 0.313 | 0.831 |
caffeine | IVW 1 | 12 | 0.031 | 0.6122 (0.3924, 0.9553) | 0.508 | 0.466 | 0.516 |
kynurenine | IVW 1 | 42 | 0.033 | 4.368 (1.1272, 16.9261) | 0.179 | 0.258 | 0.184 |
aspartate | IVW 1 | 4 | 0.033 | 0.1207 (0.0174, 0.8391) | 0.486 | 0.313 | 0.535 |
taurocholate | IVW 1 | 15 | 0.010 | 1.6133 (1.1199, 2.3243) | 0.819 | 0.253 | 0.856 |
homocitrulline | IVW 1 | 7 | 0.017 | 0.1636 (0.0369, 0.7242) | 0.367 | 0.476 | 0.412 |
levulinate (4-oxovalerate) | IVW 1 | 60 | 0.020 | 0.236 (0.0701, 0.7948) | 0.297 | 0.336 | 0.31 |
scyllo-inositol | IVW 1 | 10 | 0.026 | 0.1431 (0.0258, 0.7951) | 0.879 | 0.382 | 0.901 |
phenol sulfate | IVW 1 | 17 | 0.024 | 3.1293 (1.1601, 8.4411) | 0.445 | 0.562 | 0.465 |
gamma-glutamylphenylalanine | IVW 1 | 37 | 0.022 | 0.166 (0.0357, 0.7709) | 0.886 | 0.863 | 0.904 |
4-acetaminophen sulfate | IVW 1 | 28 | 0.007 | 1.0748 (1.0199, 1.1326) | 0.256 | 0.179 | 0.011 |
octadecanedioate | IVW 1 | 10 | 0.040 | 0.2778 (0.0816, 0.9457) | 0.160 | 0.767 | 0.03 |
margarate (17:0) | IVW 1 | 8 | 0.025 | 0.1136 (0.0169, 0.7623) | 0.543 | 0.024 | 0.49 |
serotonin (5HT) | IVW 1 | 15 | 0.016 | 0.229 (0.0691, 0.7589) | 0.656 | 0.178 | 0.658 |
phosphate | IVW 1 | 5 | 0.028 | 0.0246 (0.0009, 0.6679) | 0.950 | 0.637 | 0.975 |
beta-hydroxyisovalerate | IVW 1 | 23 | 0.008 | 0.1792 (0.0507, 0.633) | 0.523 | 0.862 | 0.603 |
Metabolites | Method | SNP | Pval | OR | Cochran Q Test | Pleiotropy Test | MR-PRESSO Global Test |
---|---|---|---|---|---|---|---|
Indoleacetate levels | IVW 1 | 31 | 0.049457 | 0.8162 (0.6665, 0.9995) | 0.651 | 0.309 | 0.645 |
Argininosuccinate levels | IVW 1 | 32 | 0.038322 | 1.1256 (1.0064, 1.2589) | 0.682 | 0.601 | 0.694 |
Benzoate levels | IVW 1 | 65 | 0.044046 | 0.8562 (0.7361, 0.9959) | 0.146 | 0.644 | 0.156 |
Gluconate levels | IVW 1 | 37 | 0.028267 | 0.7464 (0.5747, 0.9693) | 0.199 | 0.551 | 0.219 |
Indoleacetate levels | IVW 1 | 31 | 0.033053 | 0.8836 (0.7885, 0.9901) | 0.651 | 0.309 | 0.645 |
Kynurenate levels | IVW 1 | 24 | 0.001944 | 0.8377 (0.7489, 0.937) | 0.542 | 0.847 | 0.588 |
N-acetyl-aspartyl-glutamate (NAAG) levels | IVW 1 | 34 | 0.019227 | 0.8398 (0.7255, 0.972) | 0.945 | 0.869 | 0.949 |
N-formylanthranilic acid levels | IVW 1 | 83 | 0.015553 | 1.0998 (1.0182, 1.1879) | 0.481 | 0.572 | 0.496 |
Phenyllactate (pla) levels | IVW 1 | 86 | 0.01988 | 1.1192 (1.018, 1.2305) | 0.577 | 0.061 | 0.584 |
Trans-4-hydroxyproline levels | IVW 1 | 50 | 0.016672 | 1.1904 (1.0321, 1.3729) | 0.931 | 0.041 | 0.934 |
X-12906 levels | IVW 1 | 24 | 0.004793 | 1.7082 (1.1775, 2.4781) | 0.588 | 0.156 | 0.631 |
3-(3-amino-3-carboxypropyl)uridine levels | IVW 1 | 8 | 0.025419 | 0.4764 (0.2486, 0.9128) | 0.664 | 0.922 | 0.696 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, A.; Qiu, Y.; Song, B.; Tao, Y.; Wang, M.; Yin, Z.; Xie, M.; Chen, Z.; Wang, Z.; Sun, X. Metabolome-Wide Mendelian Randomization Assessing the Causal Role of Serum and Cerebrospinal Metabolites in Traumatic Brain Injury. Biomedicines 2024, 12, 1178. https://doi.org/10.3390/biomedicines12061178
Duan A, Qiu Y, Song B, Tao Y, Wang M, Yin Z, Xie M, Chen Z, Wang Z, Sun X. Metabolome-Wide Mendelian Randomization Assessing the Causal Role of Serum and Cerebrospinal Metabolites in Traumatic Brain Injury. Biomedicines. 2024; 12(6):1178. https://doi.org/10.3390/biomedicines12061178
Chicago/Turabian StyleDuan, Aojie, Youjia Qiu, Bingyi Song, Yuchen Tao, Menghan Wang, Ziqian Yin, Minjia Xie, Zhouqing Chen, Zhong Wang, and Xiaoou Sun. 2024. "Metabolome-Wide Mendelian Randomization Assessing the Causal Role of Serum and Cerebrospinal Metabolites in Traumatic Brain Injury" Biomedicines 12, no. 6: 1178. https://doi.org/10.3390/biomedicines12061178
APA StyleDuan, A., Qiu, Y., Song, B., Tao, Y., Wang, M., Yin, Z., Xie, M., Chen, Z., Wang, Z., & Sun, X. (2024). Metabolome-Wide Mendelian Randomization Assessing the Causal Role of Serum and Cerebrospinal Metabolites in Traumatic Brain Injury. Biomedicines, 12(6), 1178. https://doi.org/10.3390/biomedicines12061178