Exploring Symptom Overlaps: Post-COVID-19 Neurological Syndrome and Post-Concussion Syndrome in Athletes
Abstract
:1. Introduction
2. Pathophysiology and Symptomatology
2.1. Post-Concussion Syndrome
2.2. From Pathophysiology to Symptomatology
2.3. Symptoms of PCS
3. Comparative Analysis
3.1. Overlapping Symptoms
3.2. Differences in Symptomatology and Pathophysiology
4. Management and Rehabilitation Strategies
4.1. COVID-19 Neurological Syndrome
4.2. Post-Concussion Syndrome
5. Implications for Athletes
6. Dual Challenge of COVID-19 and Concussions
7. Adapting Management Strategies
8. Future Directions and Conclusions
- -
- Implement Multidisciplinary Care: Adopt needs-based multidisciplinary care models that integrate medical, psychological, and rehabilitative expertise to effectively address the diverse needs of PPCS patients.
- -
- Tailor Rehabilitation Programs: Develop personalized rehabilitation programs guided by pathophysiological insights and comprehensive assessment to target specific symptoms and underlying mechanisms contributing to PPCS.
- -
- Utilize Technology: Harness technology for treatment delivery and monitoring to enhance precision in symptom management and rehabilitation progress tracking, as recommended.
- -
- Emphasize BioPsychoSocial Assessment: Ensure accurate diagnosis and treatment planning through a BioPsychoSocial framework, addressing biological, psychological, and social factors that influence PPCS outcomes.
- -
- Promote Further Research: Support ongoing research efforts to refine diagnostic criteria, optimize rehabilitation techniques, and improve long-term outcomes for PPCS patients.
9. Research Gaps: Uncharted Territories in Neurological Effects
10. Holistic Approach: The Convergence of Disciplines
11. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Winter, D.; Braw, Y. COVID-19: Impact of diagnosis threat and suggestibility on subjective cognitive complaints. Int. J. Clin. Health Psychol. 2022, 22, 100253. [Google Scholar] [CrossRef]
- Wang, D.H.; Trojian, T.H.; Leddy, J.J. Post–COVID-19 Neurological Syndrome and Concussion. Clin. J. Sport Med. 2022, 32, 555–557. [Google Scholar] [CrossRef]
- Pierpoint, L.A.; Collins, C.L. Epidemiology of Sport-Related Concussion. Clin. Sports Med. 2021, 40, 1–18. [Google Scholar] [CrossRef]
- Harmon, K.G.; Clugston, J.R.; Dec, K.; Hainline, B.; Herring, S.; Kane, S.F.; Kontos, A.P.; Leddy, J.J.; McCrea, M.; Poddar, S.K.; et al. American Medical Society for Sports Medicine position statement on concussion in sport. Br. J. Sports Med. 2019, 53, 213–225. [Google Scholar] [CrossRef]
- Rosenthal, J.A.; Foraker, R.E.; Collins, C.L.; Comstock, R.D. National High School Athlete Concussion Rates From 2005–2006 to 2011–2012. Am. J. Sports Med. 2014, 42, 1710–1715. [Google Scholar] [CrossRef]
- Bakhos, L.L.; Lockhart, G.R.; Myers, R.; Linakis, J.G. Emergency department visits for concussion in young child athletes. Pediatrics 2010, 126, e550–e556. [Google Scholar] [CrossRef] [PubMed]
- Iverson, G.L.; Wojtowicz, M.; Brooks, B.L.; Maxwell, B.A.; Atkins, J.E.; Zafonte, R.; Berkner, P.D. High School Athletes With ADHD and Learning Difficulties Have a Greater Lifetime Concussion History. J. Atten. Disord. 2020, 24, 1095–1101. [Google Scholar] [CrossRef]
- Kuhn, A.W.; Solomon, G.S. Concussion in the National Hockey League: A systematic review of the literature. Concussion 2015, 1, CNC1. [Google Scholar] [CrossRef]
- Raukar, N.P.; Cooper, L.T. Implications of SARS-CoV-2-Associated Myocarditis in the Medical Evaluation of Athletes. Sports Health 2021, 13, 145–148. [Google Scholar] [CrossRef]
- Symanski, J.D.; Tso, J.V.; Phelan, D.M.; Kim, J.H. Myocarditis in the Athlete: A Focus on COVID-19 Sequelae. Clin. Sports Med. 2022, 41, 455–472. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Levine, B.D.; Phelan, D.; Emery, M.S.; Martinez, M.W.; Chung, E.H.; Thompson, P.D.; Baggish, A.L. Coronavirus Disease 2019 and the Athletic Heart: Emerging Perspectives on Pathology, Risks, and Return to Play. JAMA Cardiol. 2021, 6, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Daniels, C.J.; Rajpal, S.; Greenshields, J.T.; Rosenthal, G.L.; Chung, E.H.; Terrin, M.; Jeudy, J.; Mattson, S.E.; Law, I.H.; Borchers, J.; et al. Prevalence of Clinical and Subclinical Myocarditis in Competitive Athletes With Recent SARS-CoV-2 Infection: Results From the Big Ten COVID-19 Cardiac Registry. JAMA Cardiol. 2021, 6, 1078–1087. [Google Scholar] [CrossRef] [PubMed]
- Groppa, S.A.; Ciolac, D.; Duarte, C.; Garcia, C.; Gasnaș, D.; Leahu, P.; Efremova, D.; Gasnaș, A.; Bălănuță, T.; Mîrzac, D.; et al. Molecular Mechanisms of SARS-CoV-2/COVID-19 Pathogenicity on the Central Nervous System: Bridging Experimental Probes to Clinical Evidence and Therapeutic Interventions. Adv. Exp. Med. Biol. 2022, 1376, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Najjar, S.; Najjar, A.; Chong, D.J.; Pramanik, B.K.; Kirsch, C.; Kuzniecky, R.I.; Pacia, S.V.; Azhar, S. Central nervous system complications associated with SARS-CoV-2 infection: Integrative concepts of pathophysiology and case reports. J Neuroinflammation 2020, 17, 231. [Google Scholar] [CrossRef] [PubMed]
- Spudich, S.; Nath, A. Nervous system consequences of COVID-19. Science 2022, 375, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.R. COVID-19 and the nervous system. J. Neurovirol. 2020, 26, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Premraj, L.; Kannapadi, N.; Briggs, J.; Seal, S.; Battaglini, D.; Fanning, J.P.; Suen, J.Y.; Robba, C.; Fraser, J.F.; Cho, S.M. Mid and Long-Term Neurological and Neuropsychiatric Manifestations of Post-COVID-19 Syndrome: A Meta-Analysis. J. Neurol. Sci. 2022, 434, 120162. [Google Scholar] [CrossRef]
- Mavroudis, I.; Kazis, D.; Chowdhury, R.; Petridis, F.; Costa, V.; Balmuș, I.-M.; Ciobîcã, A.; Luca, A.-C.; Radu, I.; Dobrin, R.; et al. Post-Concussion Syndrome and Chronic Traumatic Encephalopathy: Narrative Review on the Neuropathology, Neuroimaging and Fluid Biomarkers. Diagnostics 2022, 12, 740. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.J. Long COVID or Post-COVID-19 Syndrome: Putative Pathophysiology, Risk Factors, and Treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef]
- Batiha, G.E.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Welson, N.N. Pathophysiology of Post-COVID Syndromes: A New Perspective. Virol. J. 2022, 19, 158. [Google Scholar] [CrossRef]
- Castanares-Zapatero, D.; Chalon, P.; Kohn, L.; Dauvrin, M.; Detollenaere, J.; De Noordhout, C.M.; Jong, C.P.-D.; Cleemput, I.; Van Den Heede, K. Pathophysiology and Mechanism of Long COVID: A Comprehensive Review. Ann. Med. 2022, 54, 1473–1487. [Google Scholar] [CrossRef] [PubMed]
- Mehandru, S.; Mérad, M. Pathological Sequelae of Long-Haul COVID. Nat. Immunol. 2022, 23, 194–202. [Google Scholar] [CrossRef]
- Barlow, K.M.; Brooks, B.L.; Esser, M.J.; Kirton, A.; Mikrogianakis, A.; Zemek, R.L.; MacMaster, F.P.; Nettel-Aguirre, A.; Yeates, K.O.; Kirk, V.; et al. Efficacy of Melatonin in Children With Postconcussive Symptoms: A Randomized Clinical Trial. Pediatrics 2020, 145, e20192812. [Google Scholar] [CrossRef] [PubMed]
- Barlow, K.M.; Brooks, B.L.; MacMaster, F.P.; Kirton, A.; Seeger, T.; Esser, M.; Crawford, S.; Nettel-Aguirre, A.; Zemek, R.; Angelo, M.; et al. A double-blind, placebo-controlled intervention trial of 3 and 10 mg sublingual melatonin for post-concussion syndrome in youths (PLAYGAME): Study protocol for a randomized controlled trial. Trials 2014, 15, 271. [Google Scholar] [CrossRef] [PubMed]
- Wongchitrat, P.; Shukla, M.; Sharma, R.; Govitrapong, P.; Reiter, R.J. Role of Melatonin on Virus-Induced Neuropathogenesis—A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection. Antioxidants 2021, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Iyer, K.K.; Zalesky, A.; Cocchi, L.; Barlow, K.M. Neural correlates of sleep recovery following melatonin treatment for pediatric concussion: A randomized control trial. J. Neurotrauma 2020, 37, 2647–2655. [Google Scholar] [CrossRef] [PubMed]
- Choe, M. The Pathophysiology of Concussion. Curr. Pain Headache Rep. 2016, 20, 42. [Google Scholar] [CrossRef] [PubMed]
- Giza, C.C.; Hovda, D.A. The new neurometabolic cascade of concussion. Neurosurgery 2014, 75 (Suppl. S4), S24–S33. [Google Scholar] [CrossRef] [PubMed]
- Jassam, Y.N.; Izzy, S.; Whalen, M.; McGavern, D.B.; El Khoury, J. Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron 2017, 95, 1246–1265. [Google Scholar] [CrossRef]
- Yoshino, A.; Hovda, D.A.; Kawamata, T.; Katayama, Y.; Becker, D.P. Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: Evidence of a hyper- and subsequent hypometabolic state. Brain Res. 1991, 561, 106–119. [Google Scholar] [CrossRef]
- Yuen, T.J.; Browne, K.D.; Iwata, A.; Smith, D.H. Sodium channelopathy induced by mild axonal trauma worsens outcome after a repeat injury. J. Neurosci. Res. 2009, 87, 3620–3625. [Google Scholar] [CrossRef] [PubMed]
- Tang-Schomer, M.D.; Johnson, V.E.; Baas, P.W.; Stewart, W.; Smith, D.H. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp. Neurol. 2012, 233, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Choe, M.C.; Babikian, T.; DiFiori, J.; Hovda, D.A.; Giza, C.C. A pediatric perspective on concussion pathophysiology. Curr. Opin. Pediatr. 2012, 24, 689–695. [Google Scholar] [CrossRef]
- Shenton, M.E.; Hamoda, H.M.; Schneiderman, J.S.; Bouix, S.; Pasternak, O.; Rathi, Y.; Vu, M.-A.; Purohit, M.P.; Helmer, K.; Koerte, I.; et al. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 2012, 6, 137–192. [Google Scholar] [CrossRef]
- Koerte, I.K.; Hufschmidt, J.; Muehlmann, M.; Lin, A.P.; Shenton, M.E. Advanced Neuroimaging of Mild Traumatic Brain Injury. In Translational Research in Traumatic Brain Injury; Laskowitz, D., Grant, G., Eds.; CRC Press/Taylor and Francis Group: Boca Raton, FL, USA, 2016. Available online: http://www.ncbi.nlm.nih.gov/books/NBK326714/ (accessed on 22 January 2016).
- Jurick, S.M.; Bangen, K.J.; Evangelista, N.D.; Sanderson-Cimino, M.; Delano-Wood, L.; Jak, A.J. Advanced neuroimaging to quantify myelin in vivo: Application to mild TBI. Brain Inj. 2016, 30, 1452–1457. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Lee, S.M.; Cai, Y.; Sutton, R.L.; Hovda, D.A. Differential gene expression in hippocampus following experimental brain trauma reveals distinct features of moderate and severe injuries. J Neurotrauma 2004, 21, 1141–1153. [Google Scholar] [CrossRef]
- Shultz, S.R.; MacFabe, D.F.; Foley, K.A.; Taylor, R.; Cain, D.P. Sub-concussive brain injury in the Long-Evans rat induces acute neuroinflammation in the absence of behavioral impairments. Behav. Brain Res. 2012, 229, 145–152. [Google Scholar] [CrossRef]
- Chang, L.; Munsaka, S.M.; Kraft-Terry, S.; Ernst, T. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. J. Neuroimmune Pharmacol. 2013, 8, 576–593. [Google Scholar] [CrossRef]
- Albrecht, D.S.; Granziera, C.; Hooker, J.M.; Loggia, M.L. In Vivo Imaging of Human Neuroinflammation. ACS Chem. Neurosci. 2016, 7, 470–483. [Google Scholar] [CrossRef]
- Henry, L.C.; Tremblay, S.; Boulanger, Y.; Ellemberg, D.; Lassonde, M. Neurometabolic Changes in the Acute Phase after Sports Concussions Correlate with Symptom Severity. J. Neurotrauma 2010, 27, 65–76. [Google Scholar] [CrossRef]
- Lin, A.P.; Liao, H.J.; Merugumala, S.K.; Prabhu, S.P.; Meehan, W.P.; Ross, B.D. Metabolic imaging of mild traumatic brain injury. Brain Imaging Behav. 2012, 6, 208–223. [Google Scholar] [CrossRef]
- Alosco, M.L.; Jarnagin, J.; Rowland, B.; Liao, H.; Stern, R.A.; Lin, A. Magnetic Resonance Spectroscopy as a Biomarker for Chronic Traumatic Encephalopathy. Semin. Neurol. 2017, 37, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.P.; Ramadan, S.; Stern, R.A.; Box, H.C.; Nowinski, C.J.; Ross, B.D.; Mountford, C.E. Changes in the neurochemistry of athletes with repetitive brain trauma: Preliminary results using localized correlated spectroscopy. Alzheimers Res. Ther. 2015, 7, 13. [Google Scholar] [CrossRef]
- Ross, B.D.; Ernst, T.; Kreis, R.; Haseler, L.J.; Bayer, S.; Danielsen, E.; Blüml, S.; Shonk, T.; Mandigo, J.C.; Caton, W.; et al. 1H MRS in acute traumatic brain injury. J. Magn. Reson. Imaging 1998, 8, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Vagnozzi, R.; Signoretti, S.; Cristofori, L.; Alessandrini, F.; Floris, R.; Isgrò, E.; Ria, A.; Marziale, S.; Zoccatelli, G.; Tavazzi, B.; et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: A multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain 2010, 133, 3232–3242. [Google Scholar] [CrossRef]
- Vagnozzi, R.; Signoretti, S.; Tavazzi, B.; Floris, R.; Ludovici, A.; Marziali, S.; Tarascio, G.; Amorini, A.M.; Di Pietro, V.; Delfini, R.; et al. Temporal window of metabolic brain vulnerability to concussion: A pilot 1H-magnetic resonance spectroscopic study in concussed athletes—Part III. Neurosurgery 2008, 62, 1286–1295, discussion 1295–1296. [Google Scholar] [CrossRef]
- Poole, V.N.; Abbas, K.; Shenk, T.E.; Breedlove, E.L.; Breedlove, K.M.; Robinson, M.E.; Leverenz, L.J.; Nauman, E.A.; Talavage, T.M.; Dydak, U. MR spectroscopic evidence of brain injury in the non-diagnosed collision sport athlete. Dev. Neuropsychol. 2014, 39, 459–473. [Google Scholar] [CrossRef]
- Braun, M.; Vaibhav, K.; Saad, N.M.; Fatima, S.; Vender, J.R.; Baban, B.; Hoda, N.; Dhandapani, K.M. White matter damage after traumatic brain injury: A role for damage associated molecular patterns. Biochim. Biophys Acta 2017, 1863 Pt B, 2614–2626. [Google Scholar] [CrossRef]
- Foell, D.; Wittkowski, H.; Roth, J. Mechanisms of disease: A “DAMP” view of inflammatory arthritis. Nat. Clin. Pract. Rheumatol. 2007, 3, 382–390. [Google Scholar] [CrossRef]
- Russo, M.V.; McGavern, D.B. Immune Surveillance of the CNS following Infection and Injury. Trends Immunol. 2015, 36, 637–650. [Google Scholar] [CrossRef]
- Vénéreau, E.; Ceriotti, C.; Bianchi, M.E. DAMPs from Cell Death to New Life. Front. Immunol. 2015, 6, 422. [Google Scholar] [CrossRef]
- Yang, S.; Xu, L.; Yang, T.; Wang, F. High-mobility group box-1 and its role in angiogenesis. J. Leukoc. Biol. 2014, 95, 563–574. [Google Scholar] [CrossRef]
- van Beijnum, J.R.; Nowak-Sliwinska, P.; van den Boezem, E.; Hautvast, P.; Buurman, W.A.; Griffioen, A.W. Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene 2013, 32, 363–374. [Google Scholar] [CrossRef]
- Mitola, S.; Belleri, M.; Urbinati, C.; Coltrini, D.; Sparatore, B.; Pedrazzi, M.; Melloni, E.; Presta, M. Cutting edge: Extracellular high mobility group box-1 protein is a proangiogenic cytokine. J. Immunol. 2006, 176, 12–15. [Google Scholar] [CrossRef]
- Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.-B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005, 8, 752–758. [Google Scholar] [CrossRef]
- Fourgeaud, L.; Través, P.G.; Tufail, Y.; Leal-Bailey, H.; Lew, E.D.; Burrola, P.G.; Callaway, P.; Zagórska, A.; Rothlin, C.V.; Nimmerjahn, A.; et al. TAM receptors regulate multiple features of microglial physiology. Nature 2016, 532, 240–244. [Google Scholar] [CrossRef]
- Madathil, S.K.; Wilfred, B.S.; Urankar, S.E.; Yang, W.; Leung, L.Y.; Gilsdorf, J.S.; Shear, D.A. Early Microglial Activation Following Closed-Head Concussive Injury Is Dominated by Pro-Inflammatory M-1 Type. Front. Neurol. 2018, 9, 964. [Google Scholar] [CrossRef]
- Cristofori, L.; Tavazzi, B.; Gambin, R.; Vagnozzi, R.; Signoretti, S.; Amorini, A.M.; Fazzina, G.; Lazzarino, G. Biochemical analysis of the cerebrospinal fluid: Evidence for catastrophic energy failure and oxidative damage preceding brain death in severe head injury: A case report. Clin. Biochem. 2005, 38, 97–100. [Google Scholar] [CrossRef]
- Mouzon, B.C.; Bachmeier, C.; Ferro, A.; Ojo, J.; Crynen, G.; Acker, C.M.; Davies, P.; Mullan, M.; Stewart, W.; Crawford, F. Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann. Neurol. 2014, 75, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Kierans, A.S.; Kirov, I.I.; Gonen, O.; Haemer, G.; Nisenbaum, E.; Babb, J.S.; Grossman, R.I.; Lui, Y.W. Myoinositol and glutamate complex neurometabolite abnormality after mild traumatic brain injury. Neurology 2014, 82, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Shutter, L.; Tong, K.A.; Holshouser, B.A. Proton MRS in acute traumatic brain injury: Role for glutamate/glutamine and choline for outcome prediction. J. Neurotrauma 2004, 21, 1693–1705. [Google Scholar] [CrossRef]
- Ashwal, S.; Holshouser, B.; Tong, K.; Serna, T.; Osterdock, R.; Gross, M.; Kido, D. Proton MR spectroscopy detected glutamate/glutamine is increased in children with traumatic brain injury. J. Neurotrauma 2004, 21, 1539–1552. [Google Scholar] [CrossRef]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Katz, L.C.; LaMantia, A.-S.; McNamara, J.O.; Williams, S.M. Glutamate Receptors. In Neuroscience, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2001. Available online: https://www.ncbi.nlm.nih.gov/books/NBK10802/ (accessed on 14 January 2020).
- Guerriero, R.M.; Giza, C.C.; Rotenberg, A. Glutamate and GABA imbalance following traumatic brain injury. Curr. Neurol. Neurosci. Rep. 2015, 15, 27. [Google Scholar] [CrossRef]
- Rao, V.L.; Baþkaya, M.K.; Doðan, A.; Rothstein, J.D.; Dempsey, R.J. Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. J. Neurochem. 1998, 70, 2020–2027. [Google Scholar] [CrossRef]
- Zander, N.E.; Piehler, T.; Banton, R.; Benjamin, R. Effects of repetitive low-pressure explosive blast on primary neurons and mixed cultures. J. Neurosci. Res. 2016, 94, 827–836. [Google Scholar] [CrossRef]
- Paiva, W.S.; De Andrade, A.F.; Monaco; Amorim, R.L.O.; Tavares, W.M.; DE Figueiredo, E.G.; Teixeira, M.J. Serum sodium disorders in patients with traumatic brain injury. Ther. Clin. Risk Manag. 2011, 7, 345–349. [Google Scholar] [CrossRef]
- Grover, H.; Qian, Y.; Boada, F.E.; Lakshmanan, K.; Flanagan, S.; Lui, Y.W. MRI Evidence of Altered Callosal Sodium in Mild Traumatic Brain Injury. AJNR Am. J. Neuroradiol. 2018, 39, 2200–2204. [Google Scholar] [CrossRef]
- Dwyer, B.; Katz, D.I. Postconcussion Syndrome. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 163–178. [Google Scholar]
- Mavroudis, I.; Ciobîcã, A.; Luca, A.-C.; Balmuș, I.-M. Post-Traumatic Headache: A Review of Prevalence, Clinical Features, Risk Factors, and Treatment Strategies. J. Clin. Med. 2023, 12, 4233. [Google Scholar] [CrossRef] [PubMed]
- Smulligan, K.L.; Wingerson, M.J.; Seehusen, C.N.; Wilson, J.C.; Howell, D.R. Postconcussion Dizziness Severity Predicts Daily Step Count during Recovery among Adolescent Athletes. Med. Sci. Sports Exerc. 2022, 54, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Manley, G.; Gardner, A.J.; Schneider, K.; Guskiewicz, K.M.; Bailes, J.E.; Cantu, R.C.; Castellani, R.J.; Turner, M.S.; Jordan, B.; Randolph, C.; et al. A Systematic Review of Potential Long-Term Effects of Sport-Related Concussion. Br. J. Sports Med. 2017, 51, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Ceban, F.; Ling, S.; Lui, L.M.W.; Lee, Y.; Gill, H.; Teopiz, K.M.; Rodrigues, N.B.; Subramaniapillai, M.; Di Vincenzo, J.D.; Cao, B.; et al. Fatigue and Cognitive Impairment in Post-COVID-19 Syndrome: A Systematic Review and Meta-Analysis. Brain Behav. Immun. 2022, 101, 93–135. [Google Scholar] [CrossRef] [PubMed]
- McInnes, K.; Friesen, C.; MacKenzie, D.; Westwood, D.A.; Boe, S.G. Mild Traumatic Brain Injury (mTBI) and Chronic Cognitive Impairment: A Scoping Review. PLoS ONE 2017, 12, e0174847, Erratum in PLoS ONE 2019, 14, e0218423. [Google Scholar] [CrossRef] [PubMed]
- Brustman, K.; Eagle, S.R.; Mucha, A.; Trbovich, A.; Collins, M.W.; Kontos, A.P. Association of Sleep Symptoms with Mood and Vestibular Subtypes Following Sport-Related Concussion. Appl. Neuropsychol. Child. 2020, 11, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Stefanou, M.; Palaiodimou, L.; Bakola, E.; Smyrnis, N.; Papadopoulou, Ì.; Paraskevas, G.P.; Rizos, E.; Boutati, E.; Grigoriadis, N.; Krogias, C.; et al. Neurological Manifestations of Long-COVID Syndrome: A Narrative Review. Ther. Adv. Chronic Dis. 2022, 13, 204062232210768. [Google Scholar] [CrossRef]
- Aiyegbusi, O.L.; Hughes, S.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. Symptoms, Complications and Management of Long COVID: A Review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long Covid—Mechanisms, Risk Factors, and Management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef] [PubMed]
- Smulligan, K.L.; Wilson, J.C.; Seehusen, C.N.; Wingerson, M.J.; Magliato, S.N.; Howell, D.R. Postconcussion Dizziness, Sleep Quality, and Postural Instability: A Cross-Sectional Investigation. J. Athl. Train. 2021, 57, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Ashina, H.; Porreca, F.; Anderson, T.; Amin, F.M.; Ashina, M.; Schytz, H.W.; Dodick, D.W. Post-Traumatic Headache: Epidemiology and Pathophysiological Insights. Nat. Rev. Neurol. 2019, 15, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Tana, C.; Bentivegna, E.; Cho, S.-J.; Harriott, A.M.; García-Azorín, D.; Labastida-Ramírez, A.; Ornello, R.; Raffaelli, B.; Beltrán, E.R.; Ruscheweyh, R.; et al. Long COVID Headache. J. Headache Pain 2022, 23, 93. [Google Scholar] [CrossRef]
- Foster, E.; Bayley, M.; Langer, L.; Saverino, C.; Chandra, T.; Barnard, C.; Comper, P. The Toronto Concussion Study: Sense of Smell Is Not Associated with Concussion Severity or Recovery. Brain Inj. 2022, 36, 759–767. [Google Scholar] [CrossRef]
- Najafloo, R.; Majidi, J.; Asghari, A.; Aleemardani, M.; Kamrava, S.K.; Simorgh, S.; Seifalian, A.; Bagher, Z.; Seifalian, A.M. Mechanism of Anosmia Caused by Symptoms of COVID-19 and Emerging Treatments. ACS Chem. Neurosci. 2021, 12, 3795–3805. [Google Scholar] [CrossRef] [PubMed]
- Yoen, H.; Yoo, R.E.; Choi, S.H.; Kim, E.; Oh, B.M.; Yang, D.; Hwang, I.-K.; Kang, K.M.; Yun, T.J.; Kim, J.H.; et al. Blood-Brain Barrier Disruption in Mild Traumatic Brain Injury Patients with Post-Concussion Syndrome: Evaluation with Region-Based Quantification of Dynamic Contrast-Enhanced MR Imaging Parameters Using Automatic Whole-Brain Segmentation. Korean J. Radiol. 2021, 22, 118. [Google Scholar] [CrossRef] [PubMed]
- Kempuraj, D.; Aenlle, K.; Cohen, J.R.; Mathew, A.S.; Isler, D.; Pangeni, R.P.; Nathanson, L.; Theoharides, T.C.; Klimas, N.G. COVID-19 and Long COVID: Disruption of the Neurovascular Unit, Blood-Brain Barrier, and Tight Junctions. Neuroscientist 2023, 11, 10738584231194927. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.R.; Arnold, A.C.; Barboi, A.; Claydon, V.E.; Limberg, J.K.; Lucci, V.-E.M.; Numan, M.T.; Peltier, A.; Snapper, H.; Vernino, S. Long-COVID Postural Tachycardia Syndrome: An American Autonomic Society Statement. Clin. Auton. Res. 2021, 31, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Skjeldal, O.H.; Skandsen, T.; Kinge, E.; Glott, T.; Solbakk, A. Long-Term Post-Concussion Symptoms. Tidsskr. Nor. Laegeforening 2022, 142. [Google Scholar] [CrossRef]
- Davis, H.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major Findings, Mechanisms and Recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Chee, Y.J.; Fan, B.E.; Young, B.E.; Dalan, R.; Lye, D.C. Clinical Trials on the Pharmacological Treatment of Long COVID: A Systematic Review. J. Med. Virol. 2022, 95, e28289. [Google Scholar] [CrossRef] [PubMed]
- Quatman-Yates, C.; Hunter-Giordano, A.; Shimamura, K.K.; Landel, R.F.; Alsalaheen, B.; Hanke, T.; McCulloch, K.; Altman, R.D.; Beattie, P.; Berz, K.; et al. Physical Therapy Evaluation and Treatment after Concussion/Mild Traumatic Brain Injury. J. Orthop. Sports Phys. Ther. 2020, 50, CPG1–CPG73. [Google Scholar] [CrossRef] [PubMed]
- Komici, K.; Bianco, A.; Perrotta, F.; Dello Iacono, A.; Bencivenga, L.; D’Agnano, V.; Rocca, A.; Bianco, A.; Rengo, G.; Guerra, G. Clinical Characteristics, Exercise Capacity and Pulmonary Function in Post-COVID-19 Competitive Athletes. J. Clin. Med. 2021, 10, 3053. [Google Scholar] [CrossRef]
- Singh, I.; Joseph, P.; Heerdt, P.M.; Cullinan, M.; Lutchmansingh, D.D.; Gulati, M.; Possick, J.D.; Systrom, D.M.; Waxman, A.B. Persistent Exertional Intolerance After COVID-19: Insights From Invasive Cardiopulmonary Exercise Testing. Chest 2022, 161, 54–63. [Google Scholar] [CrossRef]
- Baratto, C.; Caravita, S.; Faini, A.; Perego, G.B.; Senni, M.; Badano, L.P.; Parati, G. Impact of COVID-19 on exercise pathophysiology: A combined cardiopulmonary and echocardiographic exercise study. J. Appl. Physiol. 2021, 130, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Ladlow, P.; O’sullivan, O.; Bennett, A.N.; Barker-Davies, R.; Houston, A.; Chamley, R.; May, S.; Mills, D.; Dewson, D.; Rogers-Smith, K.; et al. The effect of medium-term recovery status after COVID-19 illness on cardiopulmonary exercise capacity in a physically active adult population. J. Appl. Physiol. 2022, 132, 1525–1535. [Google Scholar] [CrossRef] [PubMed]
- Richmond, L.M. No Surprises Act Brings New Billing Rules, Disclosures; Doctors Sue. Psychiatr. News 2022, 57, 2. [Google Scholar] [CrossRef]
- Arbula, S.; Pisanu, E.; Bellavita, G.; Menichelli, A.; Lunardelli, A.; Furlanis, G.; Manganotti, P.; Cappa, S.; Rumiati, R. Insights into attention and memory difficulties in post-COVID syndrome using standardized neuropsychological tests and experimental cognitive tasks. Sci. Rep. 2024, 14, 4405. [Google Scholar] [CrossRef] [PubMed]
- Warren, S.; Drake, J.; Wu, C.K. Cognitive Complications of COVID-19 Infection. Rhode Isl. Med. J. 2022, 105, 27–30. [Google Scholar]
- Daroische, R.; Hemminghyth, M.S.; Eilertsen, T.H.; Breitve, M.H.; Chwiszczuk, L.J. Cognitive Impairment After COVID-19-A Review on Objective Test Data. Front. Neurol. 2021, 12, 699582. [Google Scholar] [CrossRef] [PubMed]
- Son, C.; Hegde, S.; Smith, A.; Wang, X.; Sasangohar, F. Effects of COVID-19 on College Students’ Mental Health in the United States: Interview Survey Study. J. Med. Internet Res. 2020, 22, e21279. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hegde, S.; Son, C.; Keller, B.; Smith, A.; Sasangohar, F. Investigating Mental Health of US College Students During the COVID-19 Pandemic: Cross-Sectional Survey Study. J. Med. Internet Res. 2020, 22, e22817. [Google Scholar] [CrossRef] [PubMed]
- Romano, R.J.; Devarakonda, L. Pandemic-related mental health crises should serve as wake-up call for NCAA. Coll. Athl. Law 2023, 19, 8. [Google Scholar] [CrossRef]
- McLellan, M.; Heffernan, C.; Xu, J.; Billimek, J.; Kim, B.Y. Mental Health and Substance Use in NCAA Athletes in the Context of the COVID-19 Pandemic and Lockdown. Cureus 2022, 14, e29836. [Google Scholar] [CrossRef]
- Zhao, E.; Tranovich, M.J.; DeAngelo, R.; Kontos, A.P.; Wright, V.J. Chronic exercise preserves brain function in masters athletes when compared to sedentary counterparts. Phy. Sportsmed. 2016, 44, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Tseng, B.Y.; Uh, J.; Rossetti, H.C.; Cullum, C.M.; Diaz-Arrastia, R.F.; Levine, B.D.; Lu, H.; Zhang, R. Masters athletes exhibit larger regional brain volume and better cognitive performance than sedentary older adults. J. Magn. Reason. Imaging 2013, 38, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Hüttermann, S.; Memmert, D. Does the inverted-U function disappear in expert athletes? An analysis of the attentional behavior under physical exercise of athletes and non-athletes. Physiol. Behav. 2014, 131, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Mischel, N.A.; Llewellyn-Smith, I.J.; Mueller, P.J. Physical (in)activity-dependent structural plasticity in bulbospinal catecholaminergic neurons of rat rostral ventrolateral medulla. J. Comp. Neurol. 2014, 522, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Renz-Polster, H.; Scheibenbogen, C. Post-COVID-Syndrom Mit Fatigue Und Belastungsintoleranz: Myalgische Enzephalomyelitis Bzw. Chronisches Fatigue-Syndrom. Inn. Med. 2022, 63, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Pelo, R.; Suttman, E.; Fino, P.C.; McFarland, M.; Dibble, L.E.; Cortez, M. Autonomic Dysfunction and Exercise Intolerance in Concussion: A Scoping Review. Clin. Auton. Res. 2023, 33, 149–163. [Google Scholar] [CrossRef]
- Verow, P. Sports and occupational medicine: Two sides of the same coin? Occup. Med. 2006, 56, 224–225. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, S. Sports medicine concept in occupational medicine. Occup. Med. 2007, 57, 152. [Google Scholar] [CrossRef]
- Sánchez A, Sports medicine vs occupational medicine: Two divergent specialties with a common past. Arch. Med. Deporte 2017, 34, 152–156.
Aspect | PCNS/PASC | PCS |
---|---|---|
Symptoms | Cognitive difficulties (brain fog), headaches, dizziness, fatigue, sleep disturbances, mood changes, anosmia, ageusia | Cognitive difficulties (memory, attention), headaches, dizziness, fatigue, sleep disturbances, mood changes, anosmia, ageusia |
Pathophysiology |
|
|
Mechanisms of BBB Disruption | Systemic inflammation and cytokine release from immune response to SARS-CoV-2 | Mechanical forces from initial injury causing ionic fluxes and metabolic disturbances |
Neurological Pathways | Olfactory and taste pathways, autonomic regulation | Cognitive processing, vestibular function, post-traumatic headache syndromes |
Current Treatment Approaches |
|
|
Role of Exercise and Rehab |
|
|
Implications for Athletes |
|
|
Aspect | PCNS/PASC | PCS |
---|---|---|
Rehabilitation Goals |
|
|
Types of Exercises and Therapies |
|
|
Pharmacological Interventions |
|
|
Psychological Support |
|
|
Implications for Athletes |
|
|
Return to Sport Activity |
|
|
Factors to Consider |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavroudis, I.; Petridis, F.; Petroaie, A.D.; Ciobica, A.; Kamal, F.Z.; Honceriu, C.; Iordache, A.; Ionescu, C.; Novac, B.; Novac, O. Exploring Symptom Overlaps: Post-COVID-19 Neurological Syndrome and Post-Concussion Syndrome in Athletes. Biomedicines 2024, 12, 1587. https://doi.org/10.3390/biomedicines12071587
Mavroudis I, Petridis F, Petroaie AD, Ciobica A, Kamal FZ, Honceriu C, Iordache A, Ionescu C, Novac B, Novac O. Exploring Symptom Overlaps: Post-COVID-19 Neurological Syndrome and Post-Concussion Syndrome in Athletes. Biomedicines. 2024; 12(7):1587. https://doi.org/10.3390/biomedicines12071587
Chicago/Turabian StyleMavroudis, Ioannis, Foivos Petridis, Antoneta Dacia Petroaie, Alin Ciobica, Fatima Zahra Kamal, Cezar Honceriu, Alin Iordache, Cătălina Ionescu, Bogdan Novac, and Otilia Novac. 2024. "Exploring Symptom Overlaps: Post-COVID-19 Neurological Syndrome and Post-Concussion Syndrome in Athletes" Biomedicines 12, no. 7: 1587. https://doi.org/10.3390/biomedicines12071587
APA StyleMavroudis, I., Petridis, F., Petroaie, A. D., Ciobica, A., Kamal, F. Z., Honceriu, C., Iordache, A., Ionescu, C., Novac, B., & Novac, O. (2024). Exploring Symptom Overlaps: Post-COVID-19 Neurological Syndrome and Post-Concussion Syndrome in Athletes. Biomedicines, 12(7), 1587. https://doi.org/10.3390/biomedicines12071587