Next Issue
Volume 12, August
Previous Issue
Volume 12, June
 
 

Biomedicines, Volume 12, Issue 7 (July 2024) – 249 articles

Cover Story (view full-size image): EGFR tyrosine kinase inhibitors (TKIs) are key drugs in the treatment of non-small cell lung cancer patients with EGFR-activating mutations. First-, second-, and third-generation (abbreviated as 1G, 2G, and 3G) EGFR-TKIs have been applied in clinical use, and osimertinib (3G-TKI) is now the standard-of-care as front-line treatment in many countries. In this study, we searched for an optimal TKI after front-line osimertinib failure using in vitro models harboring EGFR-activating mutation plus osimertinib-resistant secondary mutation by comparing erlotinib (1G-TKI), novel 3G-TKIs, and BI4020 (4G-TKI). We also explored acquired resistance mechanisms to BI4020 assuming that it may be used as a front-line TKI in the near future. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 7728 KiB  
Article
Unveiling the Potential of Migrasomes: A Machine-Learning-Driven Signature for Diagnosing Acute Myocardial Infarction
by Yihao Zhu, Yuxi Chen, Jiajin Xu and Yao Zu
Biomedicines 2024, 12(7), 1626; https://doi.org/10.3390/biomedicines12071626 - 22 Jul 2024
Viewed by 1560
Abstract
Background: Recent studies have demonstrated that the migrasome, a newly functional extracellular vesicle, is potentially significant in the occurrence, progression, and diagnosis of cardiovascular diseases. Nonetheless, its diagnostic significance and biological mechanism in acute myocardial infarction (AMI) have yet to be fully explored. [...] Read more.
Background: Recent studies have demonstrated that the migrasome, a newly functional extracellular vesicle, is potentially significant in the occurrence, progression, and diagnosis of cardiovascular diseases. Nonetheless, its diagnostic significance and biological mechanism in acute myocardial infarction (AMI) have yet to be fully explored. Methods: To remedy this gap, we employed an integrative machine learning (ML) framework composed of 113 ML combinations within five independent AMI cohorts to establish a predictive migrasome-related signature (MS). To further elucidate the biological mechanism underlying MS, we implemented single-cell RNA sequencing (scRNA-seq) of cardiac Cd45+ cells from AMI-induced mice. Ultimately, we conducted mendelian randomization (MR) and molecular docking to unveil the therapeutic effectiveness of MS. Results: MS demonstrated robust predictive performance and superior generalization, driven by the optimal combination of Stepglm and Lasso, on the expression of nine migrasome genes (BMP1, ITGB1, NDST1, TSPAN1, TSPAN18, TSPAN2, TSPAN4, TSPAN7, TSPAN9, and WNT8A). Notably, ITGB1 was found to be predominantly expressed in cardiac macrophages in AMI-induced mice, mechanically regulating macrophage transformation between anti-inflammatory and pro-inflammatory. Furthermore, we showed a positive causality between genetic predisposition towards ITGB1 expression and AMI risk, positioning it as a causative gene. Finally, we showed that ginsenoside Rh1, which interacts closely with ITGB1, could represent a novel therapeutic approach for repressing ITGB1. Conclusions: Our MS has implications in forecasting and curving AMI to inform future diagnostic and therapeutic strategies for AMI. Full article
Show Figures

Figure 1

14 pages, 3233 KiB  
Article
CRISPR-Cas System, Antimicrobial Resistance, and Enterococcus Genus—A Complicated Relationship
by Carmen Costache, Ioana Colosi, Dan-Alexandru Toc, Karla Daian, David Damacus, Alexandru Botan, Adelina Toc, Adrian Gabriel Pana, Paul Panaitescu, Vlad Neculicioiu, Pavel Schiopu, Dumitrana Iordache and Anca Butiuc-Keul
Biomedicines 2024, 12(7), 1625; https://doi.org/10.3390/biomedicines12071625 - 22 Jul 2024
Viewed by 1203
Abstract
(1) Background: The rise in antibiotic resistant bacteria poses a significant threat to public health worldwide, necessitating innovative solutions. This study explores the role of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in the context of antibiotic resistance among different species from the [...] Read more.
(1) Background: The rise in antibiotic resistant bacteria poses a significant threat to public health worldwide, necessitating innovative solutions. This study explores the role of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in the context of antibiotic resistance among different species from the Enterococcus genus. (2) Methods: The genomes of Enterococcus included in the study were analyzed using CRISPRCasFinder to distinguish between CRISPR-positive (level 4 CRISPR) and CRISPR-negative genomes. Antibiotic resistance genes were identified, and a comparative analysis explored potential associations between CRISPR presence and antibiotic resistance profiles in Enterococcus species. (3) Results: Out of ten antibiotic resistance genes found in Enterococcus species, only one, the efmA gene, showed a strong association with CRISPR-negative isolates, while the others did not significantly differ between CRISPR-positive and CRISPR-negative Enterococcus genomes. (4) Conclusion: These findings indicate that the efmA gene may be more prevalent in CRISPR-negative Enterococcus genomes, and they may contribute to a better understanding of the molecular mechanisms underlying the acquisition of antibiotic resistance genes in Enterococcus species. Full article
Show Figures

Figure 1

31 pages, 4261 KiB  
Review
Preclinical Models of Hepatocellular Carcinoma: Current Utility, Limitations, and Challenges
by Antonio Cigliano, Weiting Liao, Giovanni A. Deiana, Davide Rizzo, Xin Chen and Diego F. Calvisi
Biomedicines 2024, 12(7), 1624; https://doi.org/10.3390/biomedicines12071624 - 22 Jul 2024
Cited by 1 | Viewed by 2111
Abstract
Hepatocellular carcinoma (HCC), the predominant primary liver tumor, remains one of the most lethal cancers worldwide, despite the advances in therapy in recent years. In addition to the traditional chemically and dietary-induced HCC models, a broad spectrum of novel preclinical tools have been [...] Read more.
Hepatocellular carcinoma (HCC), the predominant primary liver tumor, remains one of the most lethal cancers worldwide, despite the advances in therapy in recent years. In addition to the traditional chemically and dietary-induced HCC models, a broad spectrum of novel preclinical tools have been generated following the advent of transgenic, transposon, organoid, and in silico technologies to overcome this gloomy scenario. These models have become rapidly robust preclinical instruments to unravel the molecular pathogenesis of liver cancer and establish new therapeutic approaches against this deadly disease. The present review article aims to summarize and discuss the commonly used preclinical models for HCC, evaluating their strengths and weaknesses. Full article
Show Figures

Figure 1

10 pages, 2457 KiB  
Article
Inhibition of Protease-Activated Receptor-2 Activation in Parkinson’s Disease Using 1-Piperidin Propionic Acid
by Santina Quarta, Michele Sandre, Mariagrazia Ruvoletto, Marta Campagnolo, Aron Emmi, Alessandra Biasiolo, Patrizia Pontisso and Angelo Antonini
Biomedicines 2024, 12(7), 1623; https://doi.org/10.3390/biomedicines12071623 - 22 Jul 2024
Viewed by 1404
Abstract
In Parkinson’s disease, neuroinflammation is a double-edged sword; when inflammation occurs it can have harmful effects, despite its important role in battling infections and healing tissue. Once triggered by microglia, astrocytes acquire a reactive state and shift from supporting the survival of neurons [...] Read more.
In Parkinson’s disease, neuroinflammation is a double-edged sword; when inflammation occurs it can have harmful effects, despite its important role in battling infections and healing tissue. Once triggered by microglia, astrocytes acquire a reactive state and shift from supporting the survival of neurons to causing their destruction. Activated microglia and Proteinase-activated receptor-2 (PAR2) are key points in the regulation of neuroinflammation. 1-Piperidin Propionic Acid (1-PPA) has been recently described as a novel inhibitor of PAR2. The aim of our study was to evaluate the effect of 1-PPA in neuroinflammation and microglial activation in Parkinson’s disease. Protein aggregates and PAR2 expression were analyzed using Thioflavin S assay and immunofluorescence in cultured human fibroblasts from Parkinson’s patients, treated or untreated with 1-PPA. A significant decrease in amyloid aggregates was observed after 1-PPA treatment in all patients. A parallel decrease in PAR2 expression, which was higher in sporadic Parkinson’s patients, was also observed both at the transcriptional and protein level. In addition, in mouse LPS-activated microglia, the inflammatory profile was significantly downregulated after 1-PPA treatment, with a remarkable decrease in IL-1β, IL-6, and TNF-α, together with a decreased expression of PAR2. In conclusion, 1-PPA determines the reduction in neuroglia inflammation and amyloid aggregates formation, suggesting that the pharmacological inhibition of PAR2 could be proposed as a novel strategy to control neuroinflammation. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Graphical abstract

11 pages, 1542 KiB  
Article
The Kinetics of Inflammation-Related Proteins and Cytokines in Children Undergoing CAR-T Cell Therapy—Are They Biomarkers of Therapy-Related Toxicities?
by Paweł Marschollek, Karolina Liszka, Monika Mielcarek-Siedziuk, Iwona Dachowska-Kałwak, Natalia Haze, Anna Panasiuk, Igor Olejnik, Tomasz Jarmoliński, Jowita Frączkiewicz, Zuzanna Gamrot, Anna Radajewska, Iwona Bil-Lula and Krzysztof Kałwak
Biomedicines 2024, 12(7), 1622; https://doi.org/10.3390/biomedicines12071622 - 21 Jul 2024
Cited by 1 | Viewed by 1022
Abstract
CD19-targeted CAR-T cell therapy has revolutionized the treatment of relapsed/refractory (r/r) pre-B acute lymphoblastic leukemia (ALL). However, it can be associated with acute toxicities related to immune activation, particularly cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cytokines released from [...] Read more.
CD19-targeted CAR-T cell therapy has revolutionized the treatment of relapsed/refractory (r/r) pre-B acute lymphoblastic leukemia (ALL). However, it can be associated with acute toxicities related to immune activation, particularly cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cytokines released from activated immune cells play a key role in their pathophysiology. This study was a prospective analysis of proinflammatory proteins and cytokines in children treated with tisagenlecleucel. Serial measurements of C-reactive protein, fibrinogen, ferritin, IL-6, IL-8, IL-10, IFNγ, and TNFα were taken before treatment and on consecutive days after infusion. The incidence of CRS was 77.8%, and the incidence of ICANS was 11.1%. No CRS of grade ≥ 3 was observed. All complications occurred within 14 days following infusion. Higher biomarker concentrations were found in children with CRS grade ≥ 2. Their levels were correlated with disease burden and CAR-T cell dose. While cytokine release syndrome was common, most cases were mild, primarily due to low disease burden before lymphodepleting chemotherapy (LDC). ICANS occurred less frequently but exhibited various clinical courses. None of the toxicities were fatal. All of the analyzed biomarkers rose within 14 days after CAR-T infusion, with most reaching their maximum around the third day following the procedure. Full article
(This article belongs to the Special Issue Advances in CAR-T Cell Therapy)
Show Figures

Figure 1

18 pages, 3364 KiB  
Article
Superior Anticancer and Antifungal Activities of New Sulfanyl-Substituted Niclosamide Derivatives
by Jingyi Ma, Dileepkumar Veeragoni, Hindole Ghosh, Nicole Mutter, Gisele Barbosa, Lauren Webster, Rainer Schobert, Wendy van de Sande, Prasad Dandawate and Bernhard Biersack
Biomedicines 2024, 12(7), 1621; https://doi.org/10.3390/biomedicines12071621 - 21 Jul 2024
Viewed by 1109
Abstract
The approved anthelmintic salicylanilide drug niclosamide has shown promising anticancer and antimicrobial activities. In this study, new niclosamide derivatives with trifluoromethyl, trifluoromethylsulfanyl, and pentafluorosulfanyl substituents replacing the nitro group of niclosamide were prepared (including the ethanolamine salts of two promising salicylanilides) and tested [...] Read more.
The approved anthelmintic salicylanilide drug niclosamide has shown promising anticancer and antimicrobial activities. In this study, new niclosamide derivatives with trifluoromethyl, trifluoromethylsulfanyl, and pentafluorosulfanyl substituents replacing the nitro group of niclosamide were prepared (including the ethanolamine salts of two promising salicylanilides) and tested for their anticancer activities against esophageal adenocarcinoma (EAC) cells. In addition, antifungal activity against a panel of Madurella mycetomatis strains, the most abundant causative agent of the neglected tropical disease eumycetoma, was evaluated. The new compounds revealed higher activities against EAC and fungal cells than the parent compound niclosamide. The ethanolamine salt 3a was the most active compound against EAC cells (IC50 = 0.8–1.0 µM), and its anticancer effects were mediated by the downregulation of anti-apoptotic proteins (BCL2 and MCL1) and by decreasing levels of β-catenin and the phosphorylation of STAT3. The plausibility of binding to the latter factors was confirmed by molecular docking. The compounds 2a and 2b showed high in vitro antifungal activity against M. mycetomatis (IC50 = 0.2–0.3 µM) and were not toxic to Galleria mellonella larvae. Slight improvements in the survival rate of G. mellonella larvae infected with M. mycetomatis were observed. Thus, salicylanilides such as 2a and 3a can become new anticancer and antifungal drugs. Full article
Show Figures

Figure 1

19 pages, 2164 KiB  
Article
Effect of Palmitoylethanolamide Compared to a Placebo on the Gut Microbiome and Biochemistry in an Overweight Adult Population: A Randomised, Placebo Controlled, Double-Blind Study
by Romeo Batacan, Jr., David Briskey, Yadav Sharma Bajagai, Chelsie Smith, Dana Stanley and Amanda Rao
Biomedicines 2024, 12(7), 1620; https://doi.org/10.3390/biomedicines12071620 - 20 Jul 2024
Viewed by 1528
Abstract
This study investigates the effects of palmitoylethanolamide (PEA) on the gut microbiome of overweight adults. Fifty-eight participants (twenty males, thirty-eight females) aged 18–65 years with a BMI range of 30–40 kg/m2 were recruited. Participants were randomised to receive PEA (n = [...] Read more.
This study investigates the effects of palmitoylethanolamide (PEA) on the gut microbiome of overweight adults. Fifty-eight participants (twenty males, thirty-eight females) aged 18–65 years with a BMI range of 30–40 kg/m2 were recruited. Participants were randomised to receive PEA (n = 36) or a placebo (n = 22) for 12 weeks. Microbiota composition, richness, diversity, and metabolic functions, faecal short chain fatty acids and calprotectin, pathology markers, and health-related questionnaires were analysed throughout the 12 weeks of supplementation. PEA supplementation significantly reduced triglyceride levels and IL-2 concentrations. No significant differences were found in the overall microbiota composition between the groups, and microbiota richness and diversity remained consistent for both groups. Functional analysis demonstrated no differences in functional richness and diversity, but specific pathways were modified. PEA supplementation resulted in a decrease in the abundance of pathways related to aromatic compound degradation, NAD interconversion, and L-glutamate degradation, while pathways associated with molybdopterin biosynthesis and O-antigen building blocks exhibited increased abundance. Increased production of O-antigen results in smooth LPS associated with reduced pathogenic stealth and persistence. PEA supplementation may influence specific microbial species, metabolic pathways, and reduce serum triglyceride and IL-2 concentration, shedding light on the intricate relationship between PEA, the microbiome, and host health. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

11 pages, 1943 KiB  
Article
Developing a Polygenic Risk Score with Age and Sex to Identify High-Risk Myopia in Taiwan
by Hui-Ju Lin, Yu-Te Huang, Wen-Ling Liao, Yu-Chuen Huang, Ya-Wen Chang, Angel L. Weng and Fuu-Jen Tsai
Biomedicines 2024, 12(7), 1619; https://doi.org/10.3390/biomedicines12071619 - 20 Jul 2024
Viewed by 799
Abstract
Myopia is the leading cause of impaired vision, and its prevalence is increasing among Asian populations. This study aimed to develop a polygenic risk score (PRS) followed by replication to predict myopia in the Taiwanese population. In total, 23,688 participants with cycloplegic autorefraction-measured [...] Read more.
Myopia is the leading cause of impaired vision, and its prevalence is increasing among Asian populations. This study aimed to develop a polygenic risk score (PRS) followed by replication to predict myopia in the Taiwanese population. In total, 23,688 participants with cycloplegic autorefraction-measured mean spherical equivalent (SE), genetic, and demographic data were included. The myopia PRS was generated based on genome-wide association study (GWAS) outcomes in a Taiwanese population and previously published GWAS reports. The results demonstrated that the inclusion of age and sex in the PRS had an area under the curve (AUC) of 0.80, 0.78, and 0.73 (p < 0.001) for participants aged >18 years with high (SE < −6.0 diopters (D); n = 1089), moderate (−6.0 D < SE ≤ −3.0 D; n = 3929), and mild myopia (−3.0 D < SE ≤ −1.0 D; n = 2241), respectively. Participants in the top PRS quartile had a 1.30-fold greater risk of high myopia (95% confidence interval = 1.09–1.55, p = 0.003) compared with that in the remaining participants. Further, a higher PRS significantly increased the risk of high myopia (SE ≤ −2.0 D) in children ≤6 years of age (p = 0.027). In conclusion, including the PRS, age, and sex improved the prediction of high myopia risk in the Taiwanese population. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

9 pages, 513 KiB  
Article
The Impact of Pentraxin 3 Serum Levels and Angiotensin-Converting Enzyme Polymorphism on Pulmonary Infiltrates and Mortality in COVID-19 Patients
by Zdravka Krivdić Dupan, Vlatka Periša, Mirjana Suver Stević, Martina Mihalj, Maja Tolušić Levak, Silva Guljaš, Tamer Salha, Domagoj Loinjak, Martina Kos, Matej Šapina, Ivana Canjko, Mirela Šambić Penc, Marin Štefančić and Nenad Nešković
Biomedicines 2024, 12(7), 1618; https://doi.org/10.3390/biomedicines12071618 - 20 Jul 2024
Viewed by 749
Abstract
Objectives: The aim of this study was to examine the impact of the pentraxin 3 (PTX3) serum level and angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism on the severity of radiographic pulmonary infiltrates and the clinical outcomes of COVID-19. Methods: The severity of [...] Read more.
Objectives: The aim of this study was to examine the impact of the pentraxin 3 (PTX3) serum level and angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism on the severity of radiographic pulmonary infiltrates and the clinical outcomes of COVID-19. Methods: The severity of COVID-19 pulmonary infiltrates was evaluated within a week of admission by analyzing chest X-rays (CXR) using the modified Brixia (MBrixa) scoring system. The insertion (I)/deletion (D) polymorphism of the ACE gene and the serum levels of PTX3 were determined for all patients included in the study. Results: This study included 80 patients. Using a cut-off serum level of PTX3 ≥ 2.765 ng/mL, the ROC analysis (AUC 0.871, 95% CI 0.787–0.954, p < 0.001) showed a sensitivity of 85.7% and specificity of 78.8% in predicting severe MBrixa scores. Compared to ACE I/I polymorphism, D/D polymorphism significantly increased the risk of severe CXR infiltrates, OR 7.7 (95% CI: 1.9–30.1), and p = 0.002. Significant independent predictors of severe CXR infiltrates include hypertension (OR 7.71), PTX3 (OR 1.20), and ACE D/D polymorphism (OR 18.72). Hypertension (OR 6.91), PTX3 (OR 1.47), and ACE I/I polymorphism (OR 0.09) are significant predictors of poor outcomes. Conclusion: PTX3 and ACE D/D polymorphism are significant predictors of the severity of COVID-19 pneumonia. PTX3 is a significant predictor of death. Full article
Show Figures

Figure 1

11 pages, 934 KiB  
Review
Expanding the Perspective on PARP1 and Its Inhibitors in Cancer Therapy: From DNA Damage Repair to Immunomodulation
by Flurina Böhi and Michael O. Hottiger
Biomedicines 2024, 12(7), 1617; https://doi.org/10.3390/biomedicines12071617 - 20 Jul 2024
Viewed by 2064
Abstract
The emergence of PARP inhibitors as a therapeutic strategy for tumors with high genomic instability, particularly those harboring BRCA mutations, has advanced cancer treatment. However, recent advances have illuminated a multifaceted role of PARP1 beyond its canonical function in DNA damage repair. This [...] Read more.
The emergence of PARP inhibitors as a therapeutic strategy for tumors with high genomic instability, particularly those harboring BRCA mutations, has advanced cancer treatment. However, recent advances have illuminated a multifaceted role of PARP1 beyond its canonical function in DNA damage repair. This review explores the expanding roles of PARP1, highlighting its crucial interplay with the immune system during tumorigenesis. We discuss PARP1’s immunomodulatory effects in macrophages and T cells, with a particular focus on cytokine expression. Understanding these immunomodulatory roles of PARP1 not only holds promise for enhancing the efficacy of PARP inhibitors in cancer therapy but also paves the way for novel treatment regimens targeting immune-mediated inflammatory diseases. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression 2.0)
Show Figures

Figure 1

9 pages, 347 KiB  
Article
Gemtuzumab Ozogamicin and Stem Cell Mobilization for Autologous Stem Cell Transplantation in Favorable Risk Acute Myeloid Leukemia
by Danaë Martinez Flores, Dilara Akhoundova, Katja Seipel, Myriam Legros, Marie-Noelle Kronig, Michael Daskalakis, Ulrike Bacher and Thomas Pabst
Biomedicines 2024, 12(7), 1616; https://doi.org/10.3390/biomedicines12071616 - 19 Jul 2024
Viewed by 859
Abstract
Gemtuzumab ozogamicin (GO), a CD33-targeting antibody drug conjugate, previously showed longer relapse-free survival when combined with induction chemotherapy in patients with favorable-risk acute myeloid leukemia (AML). In this patient population, characterized by lower relapse risk as compared to other ELN risk groups, autologous [...] Read more.
Gemtuzumab ozogamicin (GO), a CD33-targeting antibody drug conjugate, previously showed longer relapse-free survival when combined with induction chemotherapy in patients with favorable-risk acute myeloid leukemia (AML). In this patient population, characterized by lower relapse risk as compared to other ELN risk groups, autologous stem cell transplantation (ASCT) can be used as consolidation strategy. However, there are limited data on the impact of GO on the peripheral blood stem cell (PBSC) mobilization potential. We therefore retrospectively analyzed data from 54 AML patients with favorable-risk AML treated with (n = 17) or without (n = 37) GO during induction treatment. We observed no significant differences in the PBSC mobilization rate between patients treated with vs. without GO. The mobilization success in a first attempt directly following cycle 2 was 65% vs. 70% (p = 0.92); and the mobilization success in a subsequent second attempt after hematologic recovery and repeated stimulation procedure was 24% vs. 19% (p = 0.56). No significant impact on treatment outcome in terms of EFS (p = 0.31) or OS (p = 0.99) was observed. Thus, our results suggest that the addition of GO to induction regimens does not negatively impact PBSC mobilization in favorable-risk AML patients. To our best knowledge, this is the first study comparing the stem cell mobilization potential in favorable-risk AML patients treated with vs. without GO. Full article
(This article belongs to the Special Issue Advances in the Pathogenesis and Treatment of Acute Myeloid Leukemia)
Show Figures

Figure 1

22 pages, 2938 KiB  
Article
Candidate Key Proteins in Tinnitus—A Bioinformatic Study of Synaptic Transmission in the Cochlear Nucleus
by Johann Gross, Marlies Knipper and Birgit Mazurek
Biomedicines 2024, 12(7), 1615; https://doi.org/10.3390/biomedicines12071615 - 19 Jul 2024
Viewed by 904
Abstract
The aim of this study was to identify key proteins of synaptic transmission in the cochlear nucleus (CN) that are involved in normal hearing, acoustic stimulation, and tinnitus. A gene list was compiled from the GeneCards database using the keywords “synaptic transmission” AND [...] Read more.
The aim of this study was to identify key proteins of synaptic transmission in the cochlear nucleus (CN) that are involved in normal hearing, acoustic stimulation, and tinnitus. A gene list was compiled from the GeneCards database using the keywords “synaptic transmission” AND “tinnitus” AND “cochlear nucleus” (Tin). For comparison, two gene lists with the keywords “auditory perception” (AP) AND “acoustic stimulation” (AcouStim) were built. The STRING protein–protein interaction (PPI) network and the Cytoscape data analyzer were used to identify the top two high-degree proteins (HDPs) and their high-score interaction proteins (HSIPs), together referred to as key proteins. The top1 key proteins of the Tin-process were BDNF, NTRK1, NTRK3, and NTF3; the top2 key proteins are FOS, JUN, CREB1, EGR1, MAPK1, and MAPK3. Highly significant GO terms in CN in tinnitus were “RNA polymerase II transcription factor complex”, “late endosome”, cellular response to cadmium ion”, “cellular response to reactive oxygen species”, and “nerve growth factor signaling pathway”, indicating changes in vesicle and cell homeostasis. In contrast to the spiral ganglion, where important changes in tinnitus are characterized by processes at the level of cells, important biological changes in the CN take place at the level of synapses and transcription. Full article
Show Figures

Figure 1

14 pages, 2063 KiB  
Article
Breakthrough COVID-19 Infections after Booster SARS-CoV-2 Vaccination in a Greek Cohort of People Living with HIV during the Delta and Omicron Waves
by Konstantinos Protopapas, Konstantinos Thomas, Charalampos D. Moschopoulos, Eirini Oktapoda, Eirini Marousi, Eirini Marselou, Nikiforos Stamoulis, Christos Filis, Pinelopi Kazakou, Chrysanthi Oikonomopoulou, Georgios Zampetas, Ourania Efstratiadou, Katerina Chavatza, Dimitra Kavatha, Anastasia Antoniadou and Antonios Papadopoulos
Biomedicines 2024, 12(7), 1614; https://doi.org/10.3390/biomedicines12071614 - 19 Jul 2024
Viewed by 891
Abstract
Introduction: Currently approved SARS-CoV-2 vaccines have been proven effective in protecting against severe COVID-19; however, they show variable efficacy against symptomatic infection and disease transmission. We studied the breakthrough COVID-19 infection (BTI) after booster vaccination against SARS-CoV-2 in people living with HIV (PWH). [...] Read more.
Introduction: Currently approved SARS-CoV-2 vaccines have been proven effective in protecting against severe COVID-19; however, they show variable efficacy against symptomatic infection and disease transmission. We studied the breakthrough COVID-19 infection (BTI) after booster vaccination against SARS-CoV-2 in people living with HIV (PWH). Methods: This was a retrospective, single-center, descriptive cohort study involving PWH, who were followed in the HIV Clinic of “Attikon” University Hospital in Athens, Greece. A BTI was defined as a case of laboratory-confirmed COVID-19 occurring at least 14 days after the third (booster) vaccine dose. Results: We studied 733 PWH [males: 89%, mean age: 45.2 ± 11.3 years, mean BMI: 26.1 ± 4.1, HIV stage at diagnosis (CDC classification): A/B/C = 80/9/11%, MSM: 72.6%] with well-controlled HIV infection. At least one comorbidity was recorded in 54% of cases. A history of ≥1 vaccination was reported by 90%, with 75% having been vaccinated with ≥3 vaccines. Four hundred and two (55%) PWH had a history of COVID-19 and 302 (41.2%) had a BTI, with only 15 (3.7%) needing hospitalization. Only one patient was admitted to the ICU, and no death was reported. Regarding BTI after booster dose, increased age (OR = 0.97, 95% CI: 0.96–0.99, per 1-year increase), and COVID-19 infection prior to booster dose (OR = 0.38, 95% CI: 0.21–0.68) were associated with a lower likelihood for BTI, whereas higher BMI (OR = 1.04, 95% CI: 1.01–1.08) and MSM as a mode of HIV transmission were associated with increased risk (OR = 2.59, 95% CI: 1.47–4.56). The incidence rate of total COVID-19 and BTI followed the epidemic curve of the general population, with the highest incidence recorded in June 2022. Conclusions: A significant proportion of PWH with well-controlled HIV infection experienced a BTI, with the majority of them having mild infection. These data, which include the period of Omicron variant predominance, confirm the importance of vaccination in the protection against severe COVID-19. Full article
(This article belongs to the Special Issue Emerging Insights into HIV)
Show Figures

Figure 1

17 pages, 2511 KiB  
Review
Nanofiber Graft Therapy to Prevent Shoulder Stiffness and Adhesions after Rotator Cuff Tendon Repair: A Comprehensive Review
by Jong Pil Yoon, Hyunjin Kim, Sung-Jin Park, Dong-Hyun Kim, Jun-Young Kim, Du Han Kim and Seok Won Chung
Biomedicines 2024, 12(7), 1613; https://doi.org/10.3390/biomedicines12071613 - 19 Jul 2024
Cited by 1 | Viewed by 1217
Abstract
Stiffness and adhesions following rotator cuff tears (RCTs) are common complications that negatively affect surgical outcomes and impede healing, thereby increasing the risk of morbidity and failure of surgical interventions. Tissue engineering, particularly through the use of nanofiber scaffolds, has emerged as a [...] Read more.
Stiffness and adhesions following rotator cuff tears (RCTs) are common complications that negatively affect surgical outcomes and impede healing, thereby increasing the risk of morbidity and failure of surgical interventions. Tissue engineering, particularly through the use of nanofiber scaffolds, has emerged as a promising regenerative medicine strategy to address these complications. This review critically assesses the efficacy and limitations of nanofiber-based methods in promoting rotator cuff (RC) regeneration and managing postrepair stiffness and adhesions. It also discusses the need for a multidisciplinary approach to advance this field and highlights important considerations for future clinical trials. Full article
(This article belongs to the Topic Advanced Functional Materials for Regenerative Medicine)
Show Figures

Figure 1

24 pages, 9764 KiB  
Article
The Effects of Cathepsin B Inhibition in the Face of Diffuse Traumatic Brain Injury and Secondary Intracranial Pressure Elevation
by Martina Hernandez, Sean Regan, Rana Ansari, Amanda Logan-Wesley, Radina Lilova, Chelsea Levi, Karen Gorse and Audrey Lafrenaye
Biomedicines 2024, 12(7), 1612; https://doi.org/10.3390/biomedicines12071612 - 19 Jul 2024
Cited by 1 | Viewed by 855
Abstract
Traumatic brain injury (TBI) affects millions of people each year. Previous studies using the central fluid percussion injury (CFPI) model in adult male rats indicated that elevated intracranial pressure (ICP) was associated with long-term effects, including neuronal cell loss and increased sensory sensitivity [...] Read more.
Traumatic brain injury (TBI) affects millions of people each year. Previous studies using the central fluid percussion injury (CFPI) model in adult male rats indicated that elevated intracranial pressure (ICP) was associated with long-term effects, including neuronal cell loss and increased sensory sensitivity post-injury and secondary ICP elevation, which were not seen following injury alone. Investigations also indicated that cathepsin B (Cath B), a lysosomal cysteine protease, may play a role in the pathological progression of neuronal membrane disruption; however, the specific impact of Cath B inhibition following CFPI remained unknown. Thus, the focus of this study was to evaluate the effects of Cath B inhibition via the intracerebroventricular infusion of the Cath B inhibitor to the CA-074 methyl ester (CA-074Me) 2w following injury with or without secondary ICP elevation. This was accomplished using adult male rats continuously infused with CA-074Me or 10% DMSO as a vehicle control for 2w following either sham injury, CFPI only, or CFPI with subsequent ICP elevation to 20 mmHg. We assessed Cath B activity and evaluated the protein levels of Cath B and Cath B-binding partners AIF, Bcl-XL, and Bak. We also conducted histological analyses of the total cell counts to assess for cell loss, membrane disruption, and Cath B localization. Finally, we investigated somatosensory changes with the whisker nuisance task. Overall, this study demonstrated that Cath B is not a direct driver of membrane disruption; however, the administration of CA-074Me alters Cath B localization and reduces hypersensitivity, emphasizing Cath B as an important component in late secondary pathologies. Full article
Show Figures

Figure 1

13 pages, 2960 KiB  
Article
Overexpression of BubR1 Mitotic Checkpoint Protein Predicts Short Survival and Influences the Progression of Cholangiocarcinoma
by Nongnapas Pokaew, Piya Prajumwongs, Kulthida Vaeteewoottacharn, Sopit Wongkham, Chawalit Pairojkul and Kanlayanee Sawanyawisuth
Biomedicines 2024, 12(7), 1611; https://doi.org/10.3390/biomedicines12071611 - 19 Jul 2024
Viewed by 869
Abstract
Budding Uninhibited by Benzimidazole-Related 1 (BubR1) or BUB1 Mitotic Checkpoint Serine/Threonine Kinase B (BUB1B) is an essential component of the spindle assembly checkpoint (SAC), which controls chromosome separation during mitosis. Overexpression of BubR1 has been associated with the progression of various cancers. This [...] Read more.
Budding Uninhibited by Benzimidazole-Related 1 (BubR1) or BUB1 Mitotic Checkpoint Serine/Threonine Kinase B (BUB1B) is an essential component of the spindle assembly checkpoint (SAC), which controls chromosome separation during mitosis. Overexpression of BubR1 has been associated with the progression of various cancers. This study demonstrated that high expression of BubR1 correlated with cholangiocarcinogenesis in a hamster cholangiocarcinoma (CCA) model and was associated with shorter survival in patients with CCA. Co-expression of BubR1 and MPS1, which is a SAC-related protein, indicated a shorter survival rate in patients with CCA. Knockdown of BubR1 expression by specific siRNA (siBubR1) significantly decreased cell proliferation and colony formation while inducing apoptosis in CCA cell lines. In addition, suppression of BubR1 inhibited migration and invasion abilities via epithelial–mesenchymal transition (EMT). A combination of siBubR1 and chemotherapeutic drugs showed synergistic effects in CCA cell lines. Taken together, this finding suggested that BubR1 had oncogenic functions, which influenced CCA progression. Suppression of BubR1 might be an alternative option for CCA treatment. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

18 pages, 1364 KiB  
Review
The Role of the PI3K/Akt/mTOR Axis in Head and Neck Squamous Cell Carcinoma
by Qian Jiang, Jingyi Xiao, Yao-Ching Hsieh, Neha Love Kumar, Lei Han, Yuntao Zou and Huang Li
Biomedicines 2024, 12(7), 1610; https://doi.org/10.3390/biomedicines12071610 - 19 Jul 2024
Viewed by 1299
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies globally, representing a significant public health problem with a poor prognosis. The development of efficient therapeutic strategies for HNSCC prevention and treatment is urgently needed. The PI3K/AKT/mTOR (PAM) signaling [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies globally, representing a significant public health problem with a poor prognosis. The development of efficient therapeutic strategies for HNSCC prevention and treatment is urgently needed. The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved transduction network in eukaryotic cells that promotes cell survival, growth, and cycle progression. Dysfunction in components of this pathway, such as hyperactivity of PI3K, loss of PTEN function, and gain-of-function mutations in AKT, are well-known drivers of treatment resistance and disease progression in cancer. In this review, we discuss the major mutations and dysregulations in the PAM signaling pathway in HNSCC. We highlight the results of clinical trials involving inhibitors targeting the PAM signaling pathway as a strategy for treating HNSCC. Additionally, we examine the primary mechanisms of resistance to drugs targeting the PAM pathway and potential therapeutic strategies. Full article
(This article belongs to the Special Issue mTOR Signaling in Disease and Therapy)
Show Figures

Figure 1

11 pages, 1060 KiB  
Article
Analysis of Ferritin, Hepcidin, Zinc, C-Reactive Protein and IL-6 Levels in COVID-19 in Patients Living at Different Altitudes in Peru
by Wilmer Silva-Caso, Sungmin Kym, Alfredo Merino-Luna, Miguel Angel Aguilar-Luis, Yordi Tarazona-Castro, Hugo Carrillo-Ng, Eliezer Bonifacio-Velez de Villa, Ronald Aquino-Ortega and Juana del Valle-Mendoza
Biomedicines 2024, 12(7), 1609; https://doi.org/10.3390/biomedicines12071609 - 19 Jul 2024
Viewed by 888
Abstract
Background: Despite great scientific efforts, understanding the role of COVID-19 clinical biomarkers remains a challenge. Methods: A cross-sectional descriptive study in two Peruvian cities at different altitudes for comparison: Lima and Huaraz. In each place, three groups were formed, made up of 25 [...] Read more.
Background: Despite great scientific efforts, understanding the role of COVID-19 clinical biomarkers remains a challenge. Methods: A cross-sectional descriptive study in two Peruvian cities at different altitudes for comparison: Lima and Huaraz. In each place, three groups were formed, made up of 25 patients with COVID-19 in the ICU, 25 hospitalized patients with COVID-19 who did not require the ICU, and 25 healthy subjects as a control group. Five biomarkers were measured: IL-6, hepcidin, ferritin, C-reactive protein, and zinc using ELISA assays. Results: Ferritin, C-reactive protein, and IL-6 levels were significantly higher in the ICU and non-ICU groups at both study sites. In the case of hepcidin, the levels were significantly higher in the ICU group at both study sites compared to the non-ICU group. Among the groups within each study site, the highest altitude area presented statistically significant differences between its groups in all the markers evaluated. In the lower altitude area, differences were only observed between the groups for the zinc biomarker. Conclusion: COVID-19 patients residing at high altitudes tend to have higher levels of zinc and IL-6 in all groups studied compared to their lower altitude counterparts. Full article
Show Figures

Figure 1

21 pages, 1414 KiB  
Review
Treating Cardiovascular Disease in the Inflammatory Setting of Rheumatoid Arthritis: An Ongoing Challenge
by Saloni Godbole, Jenny Lue Solomon, Maryann Johnson, Ankita Srivastava, Steven E. Carsons, Elise Belilos, Joshua De Leon and Allison B. Reiss
Biomedicines 2024, 12(7), 1608; https://doi.org/10.3390/biomedicines12071608 - 19 Jul 2024
Viewed by 1573
Abstract
Despite progress in treating rheumatoid arthritis, this autoimmune disorder confers an increased risk of developing cardiovascular disease (CVD). Widely used screening protocols and current clinical guidelines are inadequate for the early detection of CVD in persons with rheumatoid arthritis. Traditional CVD risk factors [...] Read more.
Despite progress in treating rheumatoid arthritis, this autoimmune disorder confers an increased risk of developing cardiovascular disease (CVD). Widely used screening protocols and current clinical guidelines are inadequate for the early detection of CVD in persons with rheumatoid arthritis. Traditional CVD risk factors alone cannot be applied because they underestimate CVD risk in rheumatoid arthritis, missing the window of opportunity for prompt intervention to decrease morbidity and mortality. The lipid profile is insufficient to assess CVD risk. This review delves into the connection between systemic inflammation in rheumatoid arthritis and the premature onset of CVD. The shared inflammatory and immunologic pathways between the two diseases that result in subclinical atherosclerosis and disrupted cholesterol homeostasis are examined. The treatment armamentarium for rheumatoid arthritis is summarized, with a particular focus on each medication’s cardiovascular effect, as well as the mechanism of action, risk–benefit profile, safety, and cost. A clinical approach to CVD screening and treatment for rheumatoid arthritis patients is proposed based on the available evidence. The mortality gap between rheumatoid arthritis and non-rheumatoid arthritis populations due to premature CVD represents an urgent research need in the fields of cardiology and rheumatology. Future research areas, including risk assessment tools and novel immunotherapeutic targets, are highlighted. Full article
(This article belongs to the Special Issue Emerging Trends in Lipoprotein and Cardiovascular Diseases)
Show Figures

Figure 1

13 pages, 2078 KiB  
Article
Flow Cytometry as a New Accessible Method to Evaluate Diagnostic Osmotic Changes in Patients with Red Blood Cell Membrane Defects
by Asunción Beltrán, María Sánchez-Villalobos, Eduardo Salido, Carmen Algueró, Eulalia Campos, Ana Belén Pérez-Oliva, Miguel Blanquer and José M. Moraleda
Biomedicines 2024, 12(7), 1607; https://doi.org/10.3390/biomedicines12071607 - 19 Jul 2024
Viewed by 896
Abstract
Hereditary spherocytosis (HS) is a membranopathy that impacts the vertical junctions between the cytoskeleton and the plasma membrane of erythrocytes. The gold standard method for diagnosing it is osmotic gradient ektacytometry (OGE). However, access to this technique is scarce. We have devised a [...] Read more.
Hereditary spherocytosis (HS) is a membranopathy that impacts the vertical junctions between the cytoskeleton and the plasma membrane of erythrocytes. The gold standard method for diagnosing it is osmotic gradient ektacytometry (OGE). However, access to this technique is scarce. We have devised a straightforward approach utilizing flow cytometry to quantify variations in an osmotic gradient, relying on FSC-H/SSC-H patterns. We studied 14 patients (9 pediatric, 5 adults) and 54 healthy controls (16 pediatric, 38 adults). After assessing the behavior of the samples in several osmolar gradients we selected for the study the 176, 308, and 458 mOsm/kg levels as hypo-osmolar, iso-osmolar, and hyper-osmolar references. We then selected the iso-osmolar point for assessment to determine its efficacy in discriminating between patient and control groups using a receiver operating characteristic curve. In the pediatric group, the area under the curve (AUC) was 1.0, indicating 100% sensitivity and 93.3% specificity. Conversely, in the adult group, the AUC was 0.98, with 80% sensitivity and 90.9% specificity. We introduce a method that is easily replicable and demonstrates high sensitivity and specificity. This technique could prove valuable in the diagnosis of spherocytosis. Full article
(This article belongs to the Special Issue Advanced Research in Spherocytosis)
Show Figures

Figure 1

34 pages, 752 KiB  
Review
Diabetes Mellitus in Non-Functioning Adrenal Incidentalomas: Analysis of the Mild Autonomous Cortisol Secretion (MACS) Impact on Glucose Profile
by Alexandra-Ioana Trandafir, Adina Ghemigian, Mihai-Lucian Ciobica, Claudiu Nistor, Maria-Magdalena Gurzun, Tiberiu Vasile Ioan Nistor, Eugenia Petrova and Mara Carsote
Biomedicines 2024, 12(7), 1606; https://doi.org/10.3390/biomedicines12071606 - 18 Jul 2024
Viewed by 1220
Abstract
Non-functioning adrenal incidentalomas (NFAIs) have been placed in relationship with a higher risk of glucose profile anomalies, while the full-blown typical picture of Cushing’s syndrome (CS) and associated secondary (glucocorticoid-induced) diabetes mellitus is not explicitly confirmed in this instance. Our objective was to [...] Read more.
Non-functioning adrenal incidentalomas (NFAIs) have been placed in relationship with a higher risk of glucose profile anomalies, while the full-blown typical picture of Cushing’s syndrome (CS) and associated secondary (glucocorticoid-induced) diabetes mellitus is not explicitly confirmed in this instance. Our objective was to highlight the most recent data concerning the glucose profile, particularly, type 2 diabetes mellitus (T2DM) in NFAIs with/without mild autonomous cortisol secretion (MACS). This was a comprehensive review of the literature; the search was conducted according to various combinations of key terms. We included English-published, original studies across a 5-year window of publication time (from January 2020 until 1 April 2024) on PubMed. We excluded case reports, reviews, studies on T1DM or secondary diabetes, and experimental data. We identified 37 studies of various designs (14 retrospective studies as well 13 cross-sectional, 4 cohorts, 3 prospective, and 2 case–control studies) that analysed 17,391 individuals, with a female-to-male ratio of 1.47 (aged between 14 and 96 years). T2DM prevalence in MACS (affecting 10 to 30% of NFAIs) ranged from 12% to 44%. The highest T2DM prevalence in NFAI was 45.2% in one study. MACS versus (non-MACS) NFAIs (n = 16) showed an increased risk of T2DM and even of prediabetes or higher fasting plasma glucose or HbA1c (no unanimous results). T2DM prevalence was analysed in NFAI (N = 1243, female-to-male ratio of 1.11, mean age of 60.42) versus (non-tumour) controls (N = 1548, female-to-male ratio of 0.91, average age of 60.22) amid four studies, and two of them were confirmatory with respect to a higher rate in NFAIs. Four studies included a sub-group of CS compared to NFAI/MACS, and two of them did not confirm an increased rate of glucose profile anomalies in CS versus NFAIs/ACS. The longest period of follow-up with concern to the glycaemic profile was 10.5 years, and one cohort showed a significant increase in the T2DM rate at 17.9% compared to the baseline value of 0.03%. Additionally, inconsistent data from six studies enrolling 1039 individuals that underwent adrenalectomy (N = 674) and conservative management (N = 365) pinpointed the impact of the surgery in NFAIs. The regulation of the glucose metabolism after adrenalectomy versus baseline versus conservative management (n = 3) was improved. To our knowledge, this comprehensive review included one of the largest recent analyses in the field of glucose profile amid the confirmation of MACS/NFAI. In light of the rising incidence of NFAI/AIs due to easier access to imagery scans and endocrine evaluation across the spectrum of modern medicine, it is critical to assess if these patients have an increased frequency of cardio-metabolic disorders that worsen their overall comorbidity and mortality profile, including via the confirmation of T2DM. Full article
Show Figures

Figure 1

15 pages, 1915 KiB  
Review
Exploring Synergistic Effects of Bioprinted Extracellular Vesicles for Skin Regeneration
by Manal Hussein Taghdi, Barathan Muttiah, Alvin Man Lung Chan, Mh Busra Fauzi, Jia Xian Law and Yogeswaran Lokanathan
Biomedicines 2024, 12(7), 1605; https://doi.org/10.3390/biomedicines12071605 - 18 Jul 2024
Viewed by 1052
Abstract
Regenerative medicine represents a paradigm shift in healthcare, aiming to restore tissue and organ function through innovative therapeutic strategies. Among these, bioprinting and extracellular vesicles (EVs) have emerged as promising techniques for tissue rejuvenation. EVs are small lipid membrane particles secreted by cells, [...] Read more.
Regenerative medicine represents a paradigm shift in healthcare, aiming to restore tissue and organ function through innovative therapeutic strategies. Among these, bioprinting and extracellular vesicles (EVs) have emerged as promising techniques for tissue rejuvenation. EVs are small lipid membrane particles secreted by cells, known for their role as potent mediators of intercellular communication through the exchange of proteins, genetic material, and other biological components. The integration of 3D bioprinting technology with EVs offers a novel approach to tissue engineering, enabling the precise deposition of EV-loaded bioinks to construct complex three-dimensional (3D) tissue architectures. Unlike traditional cell-based approaches, bioprinted EVs eliminate the need for live cells, thereby mitigating regulatory and financial obstacles associated with cell therapy. By leveraging the synergistic effects of EVs and bioprinting, researchers aim to enhance the therapeutic outcomes of skin regeneration while addressing current limitations in conventional treatments. This review explores the evolving landscape of bioprinted EVs as a transformative approach for skin regeneration. Furthermore, it discusses the challenges and future directions in harnessing this innovative therapy for clinical applications, emphasizing the need for interdisciplinary collaboration and continued scientific inquiry to unlock its full therapeutic potential. Full article
(This article belongs to the Special Issue Skin Tissue Regeneration and Wound Healing)
Show Figures

Figure 1

17 pages, 771 KiB  
Review
Impact of Diabetes Mellitus on Outcomes in Patients with Left Ventricular Assist Devices
by William Crugnola, Andrew Cinquina, Daniel Mattimore, Savannah Bitzas, Jonathon Schwartz, Saleem Zaidi and Sergio D. Bergese
Biomedicines 2024, 12(7), 1604; https://doi.org/10.3390/biomedicines12071604 - 18 Jul 2024
Viewed by 933
Abstract
Heart failure (HF) represents a significant health burden in the United States, resulting in substantial mortality and healthcare costs. Through the array of treatment options available, including lifestyle modifications, medications, and implantable devices, HF management has evolved. Left ventricular assist devices (LVADs) have [...] Read more.
Heart failure (HF) represents a significant health burden in the United States, resulting in substantial mortality and healthcare costs. Through the array of treatment options available, including lifestyle modifications, medications, and implantable devices, HF management has evolved. Left ventricular assist devices (LVADs) have emerged as a crucial intervention, particularly in patients with advanced HF. However, the prevalence of comorbidities such as diabetes mellitus (DM) complicates treatment outcomes. By elucidating the impact of DM on LVAD outcomes, this review aims to inform clinical practice and enhance patient care strategies for individuals undergoing LVAD therapy. Patients with DM have higher rates of hypertension, dyslipidemia, peripheral vascular disease, and renal dysfunction, posing challenges to LVAD management. The macro/microvascular changes that occur in DM can lead to cardiomyopathy and HF. Glycemic control post LVAD implantation is a critical factor affecting patient outcomes. The recent literature has shown significant decreases in hemoglobin A1c following LVAD implantation, representing a possible bidirectional relationship between DM and LVADs; however, the clinical significance of this decrease is unclear. Furthermore, while some studies show increased short- and long-term mortality in patients with DM after LVAD implantation, there still is no literature consensus regarding either mortality or major adverse outcomes in DM patients. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

23 pages, 7098 KiB  
Article
Anti-Microbial Drug Metronidazole Promotes Fracture Healing: Enhancement in the Bone Regenerative Efficacy of the Drug by a Biodegradable Sustained-Release In Situ Gel Formulation
by Shivali Duggal, Shivani Sharma, Nikhil Rai, Divya Chauhan, Vishal Upadhyay, Swati Srivastava, Konica Porwal, Chirag Kulkarni, Arun K. Trivedi, Jiaur R. Gayen, Prabhat R. Mishra, Naibedya Chattopadhyay and Subhashis Pal
Biomedicines 2024, 12(7), 1603; https://doi.org/10.3390/biomedicines12071603 - 18 Jul 2024
Viewed by 1253
Abstract
Nitroimidazoles comprise a class of broad-spectrum anti-microbial drugs with efficacy against parasites, mycobacteria, and anaerobic Gram-positive and Gram-negative bacteria. Among these drugs, metronidazole (MTZ) is commonly used with other antibiotics to prevent infection in open fractures. However, the effect of MTZ on bone [...] Read more.
Nitroimidazoles comprise a class of broad-spectrum anti-microbial drugs with efficacy against parasites, mycobacteria, and anaerobic Gram-positive and Gram-negative bacteria. Among these drugs, metronidazole (MTZ) is commonly used with other antibiotics to prevent infection in open fractures. However, the effect of MTZ on bone remains understudied. In this paper, we evaluated six nitroimidazole drugs for their impact on osteoblast differentiation and identified MTZ as having the highest osteogenic effect. MTZ enhanced bone regeneration at the femur osteotomy site in osteopenic ovariectomized (OVX) rats at the human equivalent dose. Moreover, in OVX rats, MTZ significantly improved bone mass and strength and improved microarchitecture compared to the vehicle-treated rats, which was likely achieved by an osteogenic mechanism attributed to the stimulation of the Wnt pathway in osteoblasts. To mitigate the reported neurological and genotoxic effects of MTZ, we designed an injectable sustained-release in situ gel formulation of the drug that improved fracture healing efficacy by 3.5-fold compared to oral administration. This enhanced potency was achieved through a significant increase in the circulating half-life and bioavailability of MTZ. We conclude that MTZ exhibits osteogenic effects, further accentuated by our sustained-release delivery system, which holds promise for enhancing bone regeneration in open fractures. Full article
Show Figures

Figure 1

18 pages, 1668 KiB  
Review
Cardiomyopathy and Sudden Cardiac Death: Bridging Clinical Practice with Cutting-Edge Research
by Raffaella Mistrulli, Armando Ferrera, Luigi Salerno, Federico Vannini, Leonardo Guida, Sara Corradetti, Lucio Addeo, Stefano Valcher, Giuseppe Di Gioia, Francesco Raffaele Spera, Giuliano Tocci and Emanuele Barbato
Biomedicines 2024, 12(7), 1602; https://doi.org/10.3390/biomedicines12071602 - 18 Jul 2024
Viewed by 1422
Abstract
Sudden cardiac death (SCD) prevention in cardiomyopathies such as hypertrophic (HCM), dilated (DCM), non-dilated left ventricular (NDLCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) remains a crucial but complex clinical challenge, especially among younger populations. Accurate risk stratification is hampered by the variability in [...] Read more.
Sudden cardiac death (SCD) prevention in cardiomyopathies such as hypertrophic (HCM), dilated (DCM), non-dilated left ventricular (NDLCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) remains a crucial but complex clinical challenge, especially among younger populations. Accurate risk stratification is hampered by the variability in phenotypic expression and genetic heterogeneity inherent in these conditions. This article explores the multifaceted strategies for preventing SCD across a spectrum of cardiomyopathies and emphasizes the integration of clinical evaluations, genetic insights, and advanced imaging techniques such as cardiac magnetic resonance (CMR) in assessing SCD risks. Advanced imaging, particularly CMR, not only enhances our understanding of myocardial architecture but also serves as a cornerstone for identifying at-risk patients. The integration of new research findings with current practices is essential for advancing patient care and improving survival rates among those at the highest risk of SCD. This review calls for ongoing research to refine risk stratification models and enhance the predictive accuracy of both clinical and imaging techniques in the management of cardiomyopathies. Full article
Show Figures

Figure 1

16 pages, 6019 KiB  
Article
Diet and the Gut Microbiome as Determinants Modulating Metabolic Outcomes in Young Obese Adults
by Elena N. Livantsova, Georgy E. Leonov, Antonina V. Starodubova, Yurgita R. Varaeva, Aleksey A. Vatlin, Stanislav I. Koshechkin, Tatyana N. Korotkova and Dmitry B. Nikityuk
Biomedicines 2024, 12(7), 1601; https://doi.org/10.3390/biomedicines12071601 - 18 Jul 2024
Cited by 1 | Viewed by 1554
Abstract
Obesity, along with metabolic disorders such as dyslipidemia and insulin resistance, increases the risk of cardiovascular disease, diabetes, various cancers, and other non-communicable diseases, thereby contributing to higher mortality rates. The intestinal microbiome plays a crucial role in maintaining homeostasis and influencing human [...] Read more.
Obesity, along with metabolic disorders such as dyslipidemia and insulin resistance, increases the risk of cardiovascular disease, diabetes, various cancers, and other non-communicable diseases, thereby contributing to higher mortality rates. The intestinal microbiome plays a crucial role in maintaining homeostasis and influencing human metabolism. This study enrolled 82 young obese individuals, who were stratified into groups with or without metabolic disturbances. No significant differences in the alpha or beta diversity of the microbiota were observed among the groups. Insulin resistance was characterized by an increase in the number of Adlercreutzia and Dialister as well as a decrease in Collinsella, Coprococcus and Clostridiales. The dyslipidemia and dyslipidemia+insulin resistance groups had no significant differences in the gut microbiota. Dietary patterns also influenced microbial composition, with high protein intake increasing Leuconostoc and Akkermansia, and high fiber intake boosting Lactobacillus and Streptococcus. The genus Erwinia was associated with increases in visceral fat and serum glucose as well as a decrease in high-density lipoprotein cholesterol. Our findings highlight a significant association between gut microbiota composition and metabolic disturbances in young obese individuals, and they suggest that dietary modifications may promote a healthy microbiome and reduce the risk of developing metabolic disorders. Full article
Show Figures

Figure 1

11 pages, 1715 KiB  
Article
Nocturnal Glucose Profile According to Timing of Dinner Rapid Insulin and Basal and Rapid Insulin Type: An Insulclock® Connected Insulin Cap-Based Real-World Study
by Fernando Gómez-Peralta, Xoan Valledor, Cristina Abreu, Elsa Fernández-Rubio, Laura Cotovad, Pedro Pujante, Sharona Azriel, Jesús Pérez-González, Alba Vallejo, Luis Ruiz-Valdepeñas and Rosa Corcoy
Biomedicines 2024, 12(7), 1600; https://doi.org/10.3390/biomedicines12071600 - 18 Jul 2024
Viewed by 721
Abstract
Background: A study to assess the glucose levels of people with type 1 diabetes (T1D) overnight, based on the insulin type and timing. Methods: A real-world, retrospective study of T1D, using multiple daily insulin injections. Continuous glucose monitoring and insulin injection data were [...] Read more.
Background: A study to assess the glucose levels of people with type 1 diabetes (T1D) overnight, based on the insulin type and timing. Methods: A real-world, retrospective study of T1D, using multiple daily insulin injections. Continuous glucose monitoring and insulin injection data were collected for ten hours after dinner using the Insulclock® connected cap. Meal events were identified using the ROC detection methodology. The timing of the rapid insulin, second injections, and the type of insulin analogs used, were evaluated. Results: The nocturnal profiles (n = 775, 49 subjects) were analyzed. A higher glucose AUC of over 180 mg/dL was observed in subjects with delayed injections (number; %; mg/dL × h): −45–15 min (n = 136; 17.5%, 175.9 ± 271.0); −15–0 min (n = 231; 29.8%, 164.0 ± 2 37.1); 0 + 45 min (n = 408; 52.6%, 203.6 ± 260.9), (p = 0.049). The use of ultrarapid insulin (FiAsp®) (URI) vs. rapid insulin (RI) analogs was associated with less hypoglycemia events (7.1 vs. 13.6%; p = 0.005) and TBR70 (1.7 ± 6.9 vs. 4.6 ± 13.9%; p = 0.003). Users of glargine U300 vs. degludec had a higher TIR (70.7 vs. 58.5%) (adjusted R-squared: 0.22, p < 0.001). The use of a correction injection (n = 144, 18.6%) was associated with a higher number of hypoglycemia events (18.1 vs. 9.5%; p = 0.003), TBR70 (5.5 ± 14.2 vs. 3.0 ± 11.1%; p = 0.003), a glucose AUC of over 180 mg/dL (226.1 ± 257.8 vs. 178.0 ± 255.3 mg/dL × h; p = 0.001), and a lower TIR (56.0 ± 27.4 vs. 62.7 ± 29.6 mg/dL × h; p = 0.004). Conclusion: The dinner rapid insulin timing, insulin type, and the use of correction injections affect the nocturnal glucose profile in T1D. Full article
(This article belongs to the Special Issue New Advances in Insulin—100 Years since Its Discovery)
Show Figures

Graphical abstract

17 pages, 1349 KiB  
Article
Evaluation of Patellar Tendon Structural Changes following Biological Treatments: Secondary Analysis of Double-Blinded Clinical Trial of Bone Marrow Mesenchymal Stromal Cells and Leukocyte-Poor Platelet-Rich Plasma
by Silvia Ortega-Cebrián, Robert Soler-Rich, Lluis Orozco and Gil Rodas
Biomedicines 2024, 12(7), 1599; https://doi.org/10.3390/biomedicines12071599 - 18 Jul 2024
Viewed by 921
Abstract
Objective quantification of tendon structural changes through imaging is only achieved by evaluating tendon structure using ultrasound tissue characterization (UTC) technology. This study compares the effects of bone marrow mesenchymal stromal cells (BM-MSC) and leukocyte-poor platelet-rich plasma (Lp-PRP) on tendon structure and clinical [...] Read more.
Objective quantification of tendon structural changes through imaging is only achieved by evaluating tendon structure using ultrasound tissue characterization (UTC) technology. This study compares the effects of bone marrow mesenchymal stromal cells (BM-MSC) and leukocyte-poor platelet-rich plasma (Lp-PRP) on tendon structure and clinical outcomes in male patients with patellar tendinopathy measured with UTC at 3, 6, and 12 months after treatment. This is a double-blinded clinical trial with a randomized active control study with 20 male patients diagnosed with patellar tendinopathy who underwent BM-MSC and Lp-PRP. Bilateral ultrasound tissue characterization scans of the patellar tendon were carried out after 3, 6, and 12 months, as well as tests for strength and pain. UTC patellar tendon was analyzed at the insertion, proximal, and mid-tendon. BM-MSC showed a greater capacity to promote further positive changes than Lp-PRP. Lp-PRP presented higher disorganized echo-type II in the mid-tendon (p = 0.04; ES = 1.06) and III (p = 0.02; ES = −1.47) after 3 months in the Lp-PRP group. Similar results were seen after 6 and 12 months. Pain and strength data show improvement in the treated tendon. BM-MSC treatment demonstrates a superior capacity to promote tendon regeneration and organization, restore strength, and reduce pain compared to Lp-PRP, after 3, 6, and 12 months in male patients with patellar tendinopathy. Full article
(This article belongs to the Special Issue Recent Advances in Arthritis and Tendinopathy)
Show Figures

Figure 1

12 pages, 2412 KiB  
Article
Diagnoses and Treatment Recommendations—Interrater Reliability of Uroflowmetry in People with Multiple Sclerosis
by Anke K. Jaekel, Julia Rieger, Anna-Lena Butscher, Sandra Möhr, Oliver Schindler, Fabian Queissert, Aybike Hofmann, Paul Schmidt, Ruth Kirschner-Hermanns and Stephanie C. Knüpfer
Biomedicines 2024, 12(7), 1598; https://doi.org/10.3390/biomedicines12071598 - 18 Jul 2024
Viewed by 779
Abstract
Background: Uroflowmetry (UF) is an established procedure in urology and is recommended before further investigations of neurogenic lower urinary tract dysfunction (NLUTD). Some authors even consider using UF instead of urodynamics (UD). Studies on the interrater reliability of UF regarding treatment recommendations are [...] Read more.
Background: Uroflowmetry (UF) is an established procedure in urology and is recommended before further investigations of neurogenic lower urinary tract dysfunction (NLUTD). Some authors even consider using UF instead of urodynamics (UD). Studies on the interrater reliability of UF regarding treatment recommendations are rare, and there are no relevant data on people with multiple sclerosis (PwMS). The aim of this study was to investigate the interrater reliability (IRR) of UF concerning diagnosis and therapy in PwMS prospectively. Methods: UF of 92 PwMS were assessed by 4 raters. The diagnostic criteria were normal findings (NFs), detrusor overactivity (DO), detrusor underactivity (DU), detrusor–sphincter dyssynergia (DSD) and bladder outlet obstruction (BOO). The possible treatment criteria were as follows: no treatment (NO), catheter placement (CAT), alpha-blockers, detrusor-attenuating medication, botulinum toxin (BTX), neuromodulation (NM), and physiotherapy/biofeedback (P/BF). IRR was assessed by kappa (κ). Results: κ of diagnoses were NFs = 0.22; DO = 0.17; DU = 0.07; DSD = 0.14; and BOO = 0.18. For therapies, the highest κ was BTX = 0.71, NO = 0.38 and CAT = 0.44. Conclusions: There is a high influence of the individual rater. UD should be subject to the same analysis and a comparison should be made between UD and UF. This may have implications for the value of UF in the neuro-urological management of PwMS, although at present UD remains the gold standard for the diagnostics of NLUTD in PwMS. Full article
(This article belongs to the Special Issue 10th Anniversary of Biomedicines—Advances in Multiple Sclerosis)
Show Figures

Figure 1

15 pages, 754 KiB  
Review
Anti-B-Cell-Activating Factor (BAFF) Therapy: A Novel Addition to Autoimmune Disease Management and Potential for Immunomodulatory Therapy in Warm Autoimmune Hemolytic Anemia
by Mahija Cheekati and Irina Murakhovskaya
Biomedicines 2024, 12(7), 1597; https://doi.org/10.3390/biomedicines12071597 - 18 Jul 2024
Viewed by 1664
Abstract
Although rituximab is not specifically approved for the treatment of warm autoimmune hemolytic anemia (WAIHA), the First International Consensus Group recommends considering its use as part of the initial therapy for patients with severe disease and as a second-line therapy for primary WAIHA. [...] Read more.
Although rituximab is not specifically approved for the treatment of warm autoimmune hemolytic anemia (WAIHA), the First International Consensus Group recommends considering its use as part of the initial therapy for patients with severe disease and as a second-line therapy for primary WAIHA. Some patients do not respond to rituximab, and relapses are common. These relapses are associated with elevated B-cell-activating factor (BAFF) levels and the presence of quiescent long-lived plasma cells (LLPCs) in the spleen. A new group of immunomodulatory drugs, B-cell-activating factor inhibitors (BAFF-i), demonstrated efficacy in multiple autoimmune diseases and have the potential to improve WAIHA treatment outcomes by targeting B-cells and LLPCs. This article reviews the role of BAFF in autoimmune disorders and the currently available literature on the use of BAFF-directed therapies in various immunologic disorders, including WAIHA. Collectively, the clinical data thus far shows robust potential for targeting BAFF in WAIHA therapy. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop