The Impact of Pentraxin 3 Serum Levels and Angiotensin-Converting Enzyme Polymorphism on Pulmonary Infiltrates and Mortality in COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. COVID-19 and Pulmonary Infiltrates Severity
2.2. ACE Gene Polymorphism and PTX3 Serum Levels
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruhl, L.; Pink, I.; Kühne, J.F.; Beushausen, K.; Keil, J.; Christoph, S.; Sauer, A.; Boblitz, L.; Schmidt, J.; David, S.; et al. Endothelial dysfunction contributes to severe COVID-19 in combination with dysregulated lymphocyte responses and cytokine networks. Signal Transduct. Target. Ther. 2021, 6, 418. [Google Scholar] [CrossRef]
- Xu, S.-W.; Ilyas, I.; Weng, J.-P. Endothelial dysfunction in COVID-19: An overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol. Sin. 2023, 44, 695–709. [Google Scholar] [CrossRef]
- Otifi, H.M.; Adiga, B.K. Endothelial Dysfunction in Covid-19 Infection. Am. J. Med. Sci. 2022, 363, 281–287. [Google Scholar] [CrossRef]
- Bonaventura, A.; Vecchié, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 2021, 21, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, F.; Beretta, L.; Scandroglio, A.M.; Colombo, S.; Landoni, G.; Ruggeri, A.; Peccatori, J.; D’angelo, A.; De Cobelli, F.; Rovere-Querini, P.; et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): An atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc. 2020, 22, 95–97. [Google Scholar] [CrossRef]
- Guney, C.; Akar, F. Epithelial and Endothelial Expressions of ACE2: SARS-CoV-2 Entry Routes. J. Pharm. Pharm. Sci. 2021, 24, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Gaddam, R.R.; Chambers, S.; Bhatia, M. ACE and ACE2 in inflammation: A tale of two enzymes. Inflamm. Allergy-Drug Targets 2014, 13, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Soltani Rezaiezadeh, J.; Lord, J.S.; Yekaninejad, M.S.; Izadi, P. The association of ACE I/D polymorphism with the severity of COVID-19 in Iranian patients: A case-control study. Hum. Gene 2022, 34, 201099. [Google Scholar] [CrossRef] [PubMed]
- Maruhashi, T.; Higashi, Y. Pathophysiological Association of Endothelial Dysfunction with Fatal Outcome in COVID-19. Int. J. Mol. Sci. 2021, 22, 5131. [Google Scholar] [CrossRef]
- El-Sayed Marei, Y.; Abdallah Bayoumy, A.; Mohamed Abulazm Nassar, H.; Mansour, B.; Bakeir Hamady, A. The Relation between ACE Gene Polymorphism and the Severity of COVID-19 Infection. Int. J. Microbiol. 2023, 2023, 4540287. [Google Scholar] [CrossRef]
- Zlibut, A.; Bocsan, I.C.; Agoston-Coldea, L. Pentraxin-3 and endothelial dysfunction. Adv. Clin. Chem. 2019, 91, 163–179. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 26 May 2024).
- Jensen, C.M.; Costa, J.C.; Nørgaard, J.C.; Zucco, A.G.; Neesgaard, B.; Niemann, C.U.; Ostrowski, S.R.; Reekie, J.; Holten, B.; Kalhauge, A.; et al. Chest x-ray imaging score is associated with severity of COVID-19 pneumonia: The MBrixia score. Sci. Rep. 2022, 12, 21019. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.; Song, J.; Deane, A.M.; Plummer, M.P. Global Impact of Coronavirus Disease 2019 Infection Requiring Admission to the ICU: A Systematic Review and Meta-analysis. Chest 2021, 159, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Ginestra, J.C.; Mitchell, O.J.L.; Anesi, G.L.; Christie, J.D. COVID-19 Critical Illness: A Data-Driven Review. Annu. Rev. Med. 2022, 73, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Oboza, P.; Ogarek, N.; Olszanecka-Glinianowicz, M.; Kocelak, P. The main causes of death in patients with COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 2165–2172. [Google Scholar] [CrossRef]
- Valdebenito, S.; Bessis, S.; Annane, D.; Lorin de la Grandmaison, G.; Cramer-Bordé, E.; Prideaux, B.; Eugenin, E.A.; Bomsel, M. COVID-19 Lung Pathogenesis in SARS-CoV-2 Autopsy Cases. Front. Immunol. 2021, 12, 735922. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Hariri, L.P.; North, C.M.; Shih, A.R.; Israel, R.A.; Maley, J.H.; Villalba, J.A.; Vinarsky, V.; Rubin, J.; Okin, D.A.; Sclafani, A.; et al. Lung Histopathology in Coronavirus Disease 2019 as Compared with Severe Acute Respiratory Sydrome and H1N1 Influenza: A Systematic Review. Chest 2021, 159, 73–84. [Google Scholar] [CrossRef]
- Parra-Medina, R.; Herrera, S.; Mejia, J. Systematic Review of Microthrombi in COVID-19 Autopsies. Acta Haematol. 2021, 144, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, P.; Calcaterra, I.L.; Mosella, M.; Formisano, R.; D’Anna, S.E.; Bachetti, T.; Marcuccio, G.; Galloway, B.; Mancini, F.P.; Papa, A.; et al. Endothelial Dysfunction in COVID-19: A Unifying Mechanism and a Potential Therapeutic Target. Biomedicines 2022, 10, 812. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, K.Y.; Huang, Y.; Lui, K.O. Endothelial contribution to COVID-19: An update on mechanisms and therapeutic implications. J. Mol. Cell Cardiol. 2022, 164, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Cusack, R.; Bos, L.D.; Povoa, P.; Martin-Loeches, I. Endothelial dysfunction triggers acute respiratory distress syndrome in patients with sepsis: A narrative review. Front. Med. 2023, 10, 1203827. [Google Scholar] [CrossRef] [PubMed]
- Napoleone, E.; Di Santo, A.; Bastone, A.; Peri, G.; Mantovani, A.; de Gaetano, G.; Donati, M.B.; Lorenz, R. Long pentraxin PTX3 upregulates tissue factor expression in human endothelial cells: A novel link between vascular inflammation and clotting activation. Arter. Thromb. Vasc. Biol. 2002, 22, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Rolph, M.S.; Zimmer, S.; Bottazzi, B.; Garlanda, C.; Mantovani, A.; Hansson, G.K. Production of the long pentraxin PTX3 in advanced atherosclerotic plaques. Arter. Thromb. Vasc. Biol. 2002, 22, e10-4. [Google Scholar] [CrossRef] [PubMed]
- Capra, A.P.; Ardizzone, A.; Pantò, G.; Paterniti, I.; Campolo, M.; Crupi, L.; Squeri, R.; Esposito, E. The Prognostic Value of Pentraxin-3 in COVID-19 Patients: A Systematic Review and Meta-Analysis of Mortality Incidence. Int. J. Mol. Sci. 2023, 24, 3537. [Google Scholar] [CrossRef] [PubMed]
- Lapadula, G.; Leone, R.; Bernasconi, D.P.; Biondi, A.; Rossi, E.; D’angiò, M.; Bottazzi, B.; Bettini, L.R.; Beretta, I.; Garlanda, C.; et al. Long pentraxin 3 (PTX3) levels predict death, intubation and thrombotic events among hospitalized patients with COVID-19. Front. Immunol. 2022, 13, 933960. [Google Scholar] [CrossRef]
- Hansen, C.B.; Sandholdt, H.; Møller, M.E.E.; Pérez-Alós, L.; Pedersen, L.; Israelsen, S.B.; Garred, P.; Benfield, T. Prediction of Respiratory Failure and Mortality in COVID-19 Patients Using Long Pentraxin PTX3. J. Innate Immun. 2022, 14, 493–501. [Google Scholar] [CrossRef]
- Işık, M.E.; Korkusuz, R.; Şahingöz, G.E.; Işık, A.C.; Karagöz, A.; Işıksaçan, N.; Taş, S.K.; Yaşar, K.K. Pentraxin 3 Levels Correlate Well with Disease Severity at Admission In COVID-19 Patients. Acta Clin. Croat. 2022, 61, 303–310. [Google Scholar] [CrossRef]
- Mehrabadi, M.E.; Hemmati, R.; Tashakor, A.; Homaei, A.; Yousefzadeh, M.; Hemati, K.; Hosseinkhani, S. Induced dysregulation of ACE2 by SARS-CoV-2 plays a key role in COVID-19 severity. Biomed. Pharmacother. 2021, 137, 111363. [Google Scholar] [CrossRef]
- Rodrigues Prestes, T.R.; Rocha, N.P.; Miranda, A.S.; Teixeira, A.L.; Simoes, E.S.A.C. The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research. Curr. Drug Targets. 2017, 18, 1301–1313. [Google Scholar] [CrossRef]
- Rahman, A.; Sathi, N.J. Risk factors of the severity of COVID-19: A meta-analysis. Int. J. Clin. Pract. 2021, 75, e13916. [Google Scholar] [CrossRef]
- Ahrenfeldt, L.J.; Nielsen, C.R.; Möller, S.; Christensen, K.; Lindahl-Jacobsen, R. Burden and prevalence of risk factors for severe COVID-19 in the ageing European population—A SHARE-based analysis. Z. Gesundh. Wiss. 2022, 30, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Mehri, A.; Ghorbani, S.S.; Farhadi-Babadi, K.; Rahimi, E.; Barati, Z.; Taherpour, N.; Izadi, N.; Shahbazi, F.; Mokhayeri, Y.; Seifi, A.; et al. Risk Factors Associated with Severity and Death from COVID-19 in Iran: A Systematic Review and Meta-Analysis Study. J. Intensive. Care Med. 2023, 38, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Kumari, N.; Yadav, A.; Ahirwar, R.; Sagar, S.K.; Mondal, P.R. Angiotensin converting enzyme (ACE) insertion/deletion (I/D) polymorphism and its association with cardiovascular adversities—A systematic review. Human. Gene 2022, 34, 201117. [Google Scholar] [CrossRef]
- Rana, G.; Yadav, S.; Joshi, S.; Saraswathy, K.N. Association of DD genotype of angiotensin-converting enzyme gene (I/D) polymorphism with hypertension among a North Indian population. J. Community Genet. 2018, 9, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Mengesha, H.G.; Petrucka, P.; Spence, C.; Tafesse, T.B. Effects of angiotensin converting enzyme gene polymorphism on hypertension in Africa: A meta-analysis and systematic review. PLoS ONE 2019, 14, e0211054. [Google Scholar] [CrossRef]
- Naresh, V.V.; Reddy, A.L.; Sivaramakrishna, G.; Sharma, P.V.; Vardhan, R.V.; Kumar, V.S. Angiotensin converting enzyme gene polymorphism in type II diabetics with nephropathy. Indian J. Nephrol. 2009, 19, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.-L.; Yang, S.-K.; Song, N.; Chu, F.-F. The impact of angiotensin converting enzyme insertion/deletion gene polymorphism on diabetic kidney disease: A debatable issue. Nefrología (Engl. Ed.) 2022, 42, 415–431. [Google Scholar] [CrossRef] [PubMed]
- Sabir, J.S.; El Omri, A.; Khan, I.A.; Banaganapalli, B.; Hajrah, N.H.; Zrelli, H.; Omar, A.M.S.; Alharbi, M.G.; Alhebshi, A.M.; Jansen, R.K.; et al. ACE insertion/deletion genetic polymorphism, serum ACE levels and high dietary salt intake influence the risk of obesity development among the Saudi adult population. J. Renin-Angiotensin-Aldosterone Syst. 2019, 20, 1470320319870945. [Google Scholar] [CrossRef]
- Ma, Y.; Tong, X.; Liu, Y.; Liu, S.; Xiong, H.; Fan, H. ACE gene polymorphism is associated with COPD and COPD with pulmonary hypertension: A meta-analysis. Int. J. Chron. Obstruct Pulmon Dis. 2018, 13, 2435–2446. [Google Scholar] [CrossRef]
- Margaglione, M.; Cappucci, G.; D’addedda, M.; Colaizzo, D.; Giuliani, N.; Vecchione, G.; Mascolo, G.; Grandone, E.; Di Minno, G. PAI-1 plasma levels in a general population without clinical evidence of atherosclerosis: Relation to environmental and genetic determinants. Arter. Thromb. Vasc. Biol. 1998, 18, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, A.J.G.; Carreira, J.M.F.; Rodríguez, J.M.M.; Sánchez, L.M.; Díaz, R.A.; Martinez, M.V.A.; Garcia, E.C. Risk of venous thromboembolism associated with the insertion/deletion polymorphism in the angiotensin-converting enzyme gene. Blood Coagul. Fibrinolysis 2000, 11, 485–490. [Google Scholar] [CrossRef]
- Kim, D.-K.; Kim, J.-W.; Kim, S.; Gwon, H.-C.; Ryu, J.-C.; Huh, J.-E.; Choo, J.-A.; Choi, Y.; Rhee, C.-H.; Lee, W.-R. Polymorphism of angiotensin converting enzyme gene is associated with circulating levels of plasminogen activator inhibitor-1. Arter. Thromb. Vasc. Biol. 1997, 17, 3242–3247. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, C.; Annunziata, A.; Coppola, A.; Pafundi, P.C.; Guarino, S.; Di Spirito, V.; Maddaloni, V.; Pepe, N.; Fiorentino, G. ACE Gene I/D Polymorphism and Acute Pulmonary Embolism in COVID19 Pneumonia: A Potential Predisposing Role. Front. Med. 2020, 7, 631148. [Google Scholar] [CrossRef] [PubMed]
- Celiker, G.; Can, U.; Verdi, H.; Yazici, A.C.; Ozbek, N.; Atac, F.B. Prevalence of thrombophilic mutations and ACE I/D polymorphism in Turkish ischemic stroke patients. Clin. Appl. Thromb. Hemost. 2009, 15, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Oscanoa, T.; Vidal, X.; Coto, E.; Romero-Ortuno, R. ACE gene I/D polymorphism and severity of SARS-CoV-2 infection in hospitalized patients: A meta-analysis. Arter. Hypertens. 2021, 25, 112–118. [Google Scholar] [CrossRef]
- Li, M.; Schifanella, L.; Larsen, P.A. Alu retrotransposons and COVID-19 susceptibility and morbidity. Hum. Genomics. 2021, 15, 2. [Google Scholar] [CrossRef]
COVID-19 Severity [n (%) or Median (IQR)] | p * | |||
---|---|---|---|---|
Mild (n = 29) | Moderate (n = 22) | Severe/Critical (n = 29) | ||
Age (years) | 54 (35–64) | 68 (62–79) | 70 (62–78) | <0.001 |
Sex (male) | 10 (34.5) | 10 (45.5) | 18 (62.1) | 0.10 |
Comorbidity | ||||
Dyslipidemia | 3 (10.3) | 6 (27.3) | 10 (34.5) | 0.09 |
Obesity | 3 (10.3) | 6 (27.3) | 13 (44.8) | 0.01 |
Diabetes | 2 (6.9) | 3 (13.6) | 12 (41.4) | 0.003 |
Hypertension | 8 (27.6) | 15 (68.2) | 27 (93.1) | <0.001 |
MBrixia score | 0 (0–1) | 16.5 (14–18.5) | 30 (26–32.5) | <0.001 |
ACE polymorphism | ||||
I/I | 15 (51.7) | 7 (31.8) | 5 (17.2) | 0.02 |
I/D | 11 (37.9) | 9 (40.9) | 12 (41.4) | 0.96 |
D/D | 3 (10.3) | 6 (27.3) | 12 (41.4) | 0.03 |
Outcome (died) | 1 (3.4) | 3 (13.6) | 23 (79.3) | <0.001 |
AUC (95% CI) | Sensitivity | Specificity | Cut-Off | Youden | p | |
---|---|---|---|---|---|---|
Age | 0.647 (0.526–0.767) | 71.4% | 57.7% | ≥65.5 y | 0.291 | 0.02 |
PTX3 | 0.871 (0.787–0.954) | 85.7% | 78.8% | ≥2.76 ng/mL | 0.645 | <0.001 |
MBrixia Score [n (%)] | OR (95% CI) | p * | |||
---|---|---|---|---|---|
Score < 23.5 (n = 52) | Score ≥ 23.5 (n = 28) | ||||
ACE polymorphism | I/I | 23 (44.2) | 4 (14.2) | 1 | |
I/D | 20 (38.5) | 12 (42.9) | 3.4 (0.9–12.4) | 0.05 | |
D/D | 9 (17.3) | 12 (42.9) | 7.7 (1.9–30.1) | 0.002 |
ß | Wald | p | OR | 95% CI | |
---|---|---|---|---|---|
Univariate regression | |||||
Sex (F) | −0.83 | 2.96 | 0.08 | 0.44 | 0.17–1.12 |
Age | 0.04 | 4.97 | 0.03 | 1.04 | 1.00–1.08 |
Dyslipidemia | 0.97 | 3.29 | 0.07 | 2.65 | 0.92–7.62 |
Obesity | 1.42 | 7.26 | 0.007 | 4.14 | 1.47–11.63 |
Diabetes | 1.95 | 10.39 | 0.001 | 7.05 | 2.15–23.12 |
Hypertension | 2.72 | 12.01 | <0.001 | 15.2 | 3.26–70.62 |
PTX3 | 0.23 | 8.61 | 0.003 | 1.26 | 1.08–1.46 |
ACE D/D polymorphism | 1.28 | 5.81 | 0.02 | 3.58 | 1.27–10.11 |
ACE I/D polymorphism | 0.18 | 0.15 | 0.70 | 1.20 | 0.47–3.05 |
ACE I/I polymorphism | −1.56 | 6.58 | 0.01 | 0.21 | 0.06–0.69 |
Multivariate regression | |||||
Obesity | 1.31 | 2.99 | 0.08 | 3.69 | 0.84–16.21 |
Diabetes | 1.51 | 3.20 | 0.07 | 4.52 | 0.86–23.64 |
Hypertension | 2.01 | 4.62 | 0.03 | 7.71 | 1.20–50.16 |
PTX3 | 0.18 | 6.19 | 0.01 | 1.20 | 1.04–1.38 |
ACE D/D polymorphism | 2.93 | 7.32 | 0.007 | 18.72 | 2.24–156.20 |
ACE I/D polymorphism | 1.65 | 2.61 | 0.11 | 5.19 | 0.70–38.30 |
Constant | −5.56 | 15.52 | <0.001 |
ß | Wald | p | OR | 95% CI | |
---|---|---|---|---|---|
Univariate regression | |||||
Sex (F) | −1.19 | 5.77 | 0.02 | 0.30 | 0.11–0.80 |
Age | 0.06 | 8.48 | 0.004 | 1.06 | 1.02–1.10 |
Dyslipidemia | 0.18 | 0.11 | 0.74 | 1.19 | 0.41–3.05 |
Obesity | 0.69 | 1.83 | 0.18 | 2.01 | 0.73–5.53 |
Diabetes | 1.35 | 5.65 | 0.02 | 3.87 | 1.27–11.78 |
Hypertension | 2.64 | 11.31 | <0.001 | 14.0 | 3.01–65.17 |
PTX3 | 0.45 | 12.90 | <0.001 | 1.57 | 1.23–2.00 |
ACE D/D polymorphism | 1.08 | 4.25 | 0.04 | 2.96 | 1.05–8.28 |
ACE I/D polymorphism | 0.28 | 0.34 | 0.56 | 1.32 | 0.51–3.38 |
ACE I/I polymorphism | −1.48 | 5.94 | 0.01 | 0.23 | 0.07–0.75 |
Multivariate regression | |||||
Hypertension | 1.93 | 4.37 | 0.04 | 6.91 | 1.13–42.37 |
PTX3 | 0.38 | 9.98 | 0.002 | 1.47 | 1.17–1.86 |
ACE I/I polymorphism | −2.37 | 4.84 | 0.03 | 0.09 | 0.01–0.77 |
Constant | −3.28 | 12.31 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krivdić Dupan, Z.; Periša, V.; Suver Stević, M.; Mihalj, M.; Tolušić Levak, M.; Guljaš, S.; Salha, T.; Loinjak, D.; Kos, M.; Šapina, M.; et al. The Impact of Pentraxin 3 Serum Levels and Angiotensin-Converting Enzyme Polymorphism on Pulmonary Infiltrates and Mortality in COVID-19 Patients. Biomedicines 2024, 12, 1618. https://doi.org/10.3390/biomedicines12071618
Krivdić Dupan Z, Periša V, Suver Stević M, Mihalj M, Tolušić Levak M, Guljaš S, Salha T, Loinjak D, Kos M, Šapina M, et al. The Impact of Pentraxin 3 Serum Levels and Angiotensin-Converting Enzyme Polymorphism on Pulmonary Infiltrates and Mortality in COVID-19 Patients. Biomedicines. 2024; 12(7):1618. https://doi.org/10.3390/biomedicines12071618
Chicago/Turabian StyleKrivdić Dupan, Zdravka, Vlatka Periša, Mirjana Suver Stević, Martina Mihalj, Maja Tolušić Levak, Silva Guljaš, Tamer Salha, Domagoj Loinjak, Martina Kos, Matej Šapina, and et al. 2024. "The Impact of Pentraxin 3 Serum Levels and Angiotensin-Converting Enzyme Polymorphism on Pulmonary Infiltrates and Mortality in COVID-19 Patients" Biomedicines 12, no. 7: 1618. https://doi.org/10.3390/biomedicines12071618
APA StyleKrivdić Dupan, Z., Periša, V., Suver Stević, M., Mihalj, M., Tolušić Levak, M., Guljaš, S., Salha, T., Loinjak, D., Kos, M., Šapina, M., Canjko, I., Šambić Penc, M., Štefančić, M., & Nešković, N. (2024). The Impact of Pentraxin 3 Serum Levels and Angiotensin-Converting Enzyme Polymorphism on Pulmonary Infiltrates and Mortality in COVID-19 Patients. Biomedicines, 12(7), 1618. https://doi.org/10.3390/biomedicines12071618