Diabetes Mellitus in Non-Functioning Adrenal Incidentalomas: Analysis of the Mild Autonomous Cortisol Secretion (MACS) Impact on Glucose Profile
Abstract
:1. Introduction
2. Results
2.1. Τ2 DM Prevalence in Patients Diagnosed with MACS versus (Non-MACS) NFAIs
2.2. Prevalence of Τ2DM in Patients with NFAI versus Controls (Patients without the Diagnosis of an Adrenal Adenoma)
2.3. Prevalence of T2DM in Patients Diagnosed with NFAI versus Possible ACS versus ACS
2.4. Analysing the Prevalence of T2DM in CS Sub-Groups Amid the Studies That Included Subjects Confirmed with NFAIs
2.5. Prediabetes (IFG and/or IGT) in Patients with NFAI and MACS
2.6. Longitudinal Data with Respect to the Glucose Profile in Patients with NFAI and MACS
2.7. Adrenalectomy versus Conservative Management in MACS: The Impact on Glucose Profile (T2DM Prevalence)
3. Discussion
3.1. Pathogenic Considerations of Glucose Profile Anomalies in NFAIs/MACS
3.2. Cortisol Excess and Signal Transduction Pathways Amid Glucose Metabolism: Dual Interplay
3.3. Genetic Insights between Cortisol and Glucose Crossroads
3.4. Accuracy of the Endocrine Tests in NFAI/MACS
3.5. Integrating the Glucose Status to the Panel of Complications in NFAI/MACS
3.6. T2DM Management in Subjects with MACS/NFAIs
4. Conclusions
- Most Data Came from Retrospective (n = 14) and Cross-Sectional Studies (n = 13), and Only Three Prospective Studies Were Identified.
- The Analysed Population Showed that the Female Population Was Slightly More Disposed (the Female-to-male ratio of 1.47), but the Results in the Glucose Profile Did Not Show a Specific Gender-Related Burden in These Adults.
- The MACS Prevalence Amid NFAIs Was 10 to 30%. Most Studies Sustained a Higher T2DM Prevalence in MACS (12 to 44%) versus NFAIs.
- However, a Few Studies also Showed a Similar Rate in NFAIs (up to 45%) and MACS or a Higher T2DM Rate than Seen in Healthy Controls.
- Prediabetes (such as IFG or IGT) May Be More Frequent in MACS versus NFAIs or NFAIs versus Controls (No Homogenous Results).
- Four Studies Introduced a CS Sub-Group, and, Paradoxically, Only Half of Them Confirmed a More Severe Glucose Profile versus MACS/NFAIs.
- The Longest Period of Follow-Up with Concern to the Glycaemic Profile Was 10.5 Years, and One Cohort Showed a Significant Increase in the T2DM Rate at 17.9% Compared to the Baseline Value of 0.03%.
- Inconsistent Data Coming from Six Studies Enrolling 1039 Individuals that Underwent Adrenalectomy (N = 674) and Conservative Management (N = 365) Pinpointed the Impact of Adrenalectomy in NFAIs that Improved the Regulation of the Glucose Metabolism after Adrenalectomy versus Baseline versus Conservative Management (n = 3).
- Noting These Data, Awareness of the T2DM and Other Glucose Profile Anomalies in NFAIs/MACS Represents the Key Factor in the Transversal and Longitudinal Approach.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AI | adrenal incidentaloma |
ACTH | Adrenocorticotropic Hormone |
ADA | American Diabetes Association |
aPR | adjusted prevalence ratio |
BMI | body mass index |
BMD | bone mineral density |
CS | Cushing’s syndrome |
CI | confidence interval |
DST | dexamethasone suppression test |
c-1 mg-DST | serum cortisol after 1 mg DST |
ESE | European Society of Endocrinology |
FPG | fasting plasma glucose |
HbA1c | glycated haemoglobin A1c |
HR | hazard ratio |
HOMA-IR | Homeostasis Model Assessment-Insulin Resistance |
11βHSD | 11β-Hydroxysteroid Dehydrogenase |
IGT | impaired glucose tolerance |
IFG | impaired fasting glucose |
IGF-1 | Insulin-like Growth Factor 1 |
IDF | International Diabetes Federation |
IR | insulin receptor |
LDDST | cortisol after low-dose (2 mg/day) DST |
MACS | mild autonomous cortisol secretion |
M6P | mannose-6-phosphate |
MAPK | mitogen-activated protein kinases |
NFAI | non-functioning adrenal incidentaloma |
N | number of patients |
n | number of studies |
NA | not a |
OGTT | oral glucose tolerance test |
OR | odds ratio |
PI3K | phosphoinositide 3-kinases |
ROC | receiver operating characteristics |
ROS | reactive oxygen species |
T2DM | type 2 diabetes mellitus |
UFC | 24 h urinary free cortisol |
References
- Ahmad, E.; Lim, S.; Lamptey, R.; Webb, D.R.; Davies, M.J. Type 2 diabetes. Lancet 2022, 400, 1803–1820. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; Available online: https://www.diabetesatlas.org (accessed on 12 March 2024).
- Khamis, A.M. Pathophysiology, Diagnostic Criteria, and Approaches to Type 2 Diabetes Remission. Cureus 2023, 15, e33908. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Xu, B.T.; Wan, S.R.; Ma, X.M.; Long, Y.; Xu, Y.; Jiang, Z.Z. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc. Diabetol. 2023, 22, 237. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.G.; Gordin, D.; Fu, J.; Park, K.; Li, Q.; King, G.L. Protective Factors and the Pathogenesis of Complications in Diabetes. Endocr. Rev. 2024, 45, 227–252. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, S.; Vassy, J.L.; Ho, Y.L.; Song, R.J.; Gagnon, D.R.; Cho, K.; Wilson, P.W.F.; Phillips, L.S. Diabetes Mellitus-Related All-Cause and Cardiovascular Mortality in a National Cohort of Adults. J. Am. Heart Assoc. 2019, 8, e011295. [Google Scholar] [CrossRef] [PubMed]
- Zenoaga-Barbăroșie, C.; Berca, L.; Vassu-Dimov, T.; Toma, M.; Nica, M.I.; Alexiu-Toma, O.A.; Ciornei, C.; Albu, A.; Nica, S.; Nistor, C.; et al. The Predisposition for Type 2 Diabetes Mellitus and Metabolic Syndrome. Balk. J. Med. Genet. 2023, 26, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, O.P.; Stanciu, S.M.; Ciobîcă, M.L. Atherosclerosis in rheumatoid arthritis—The importance of imaging testing. Rom. J. Mil. Med. 2020, CXXIII, 26–31. [Google Scholar]
- Milazzo, V.; Cosentino, N.; Genovese, S.; Campodonico, J.; Mazza, M.; De Metrio, M.; Marenzi, G. Diabetes Mellitus and Acute Myocardial Infarction: Impact on Short and Long-Term Mortality. Adv. Exp. Med. Biol. 2021, 1307, 153–169. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Morddarvanjoghi, F.; Abdolmaleki, A.; Rasoulpoor, S.; Khaleghi, A.A.; Hezarkhani, L.A.; Shohaimi, S.; Mohammadi, M. The global prevalence of myocardial infarction: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 206. [Google Scholar] [CrossRef]
- Guarnotta, V.; Emanuele, F.; Salzillo, R.; Bonsangue, M.; Amato, C.; Mineo, M.I.; Giordano, C. Practical therapeutic approach in the management of diabetes mellitus secondary to Cushing’s syndrome, acromegaly and neuroendocrine tumours. Front. Endocrinol. 2023, 14, 1248985. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Vella, A. Glucose metabolism in Cushing’s syndrome. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Barbot, M.; Ceccato, F.; Scaroni, C. Diabetes Mellitus Secondary to Cushing’s Disease. Front. Endocrinol. 2018, 9, 284. [Google Scholar] [CrossRef] [PubMed]
- Ciobîcă, M.L.; Ionescu, O.P.; Săndulescu, B.A. Osteoporosis and the fracture risk in systemic lupus erythematosus. Rom. J. Mil. Med. 2020, CXXIII, 341–347. [Google Scholar]
- Anghel, D.; Ciobîcă, L.M.; Stanciu, S.M.; Jurcuț, C.V.; Stoicescu, G.D.; Răduță, I.A.; Coca, A. Ankylosing spondylitis and cardiovascular risk—Case report. Rom. J. Mil. Med. 2016, CXIX, 39–42. [Google Scholar]
- Jinga, M.; Jurcuţ, C.; Vasilescu, F.; Becheanu, G.; Stancu, S.H.; Ciobaca, L.; Mircescu, G.; Jinga, V. A rare case of digestive hemorrhage in an elderly patient: Diagnosis and treatment difficulties. Rom. J. Morphol. Embryol. 2012, 53 (Suppl. S3), 831–834. [Google Scholar] [PubMed]
- Ciobîcă, L.M.; Sârbu, I.; Stanciu, S.M.; Coca, A. Behçet disease—Case presentation. Rom. J. Mil. Med. 2016, CXIX, 43–46. [Google Scholar] [CrossRef]
- Elhassan, Y.S.; Alahdab, F.; Prete, A.; Delivanis, D.A.; Khanna, A.; Prokop, L.; Murad, M.H.; O’Reilly, M.W.; Arlt, W.; Bancos, I. Natural History of Adrenal Incidentalomas with and without Mild Autonomous Cortisol Excess: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2019, 171, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Favero, V.; Cremaschi, A.; Parazzoli, C.; Falchetti, A.; Gaudio, A.; Gennari, L.; Scillitani, A.; Vescini, F.; Morelli, V.; Aresta, C.; et al. Pathophysiology of Mild Hypercortisolism: From the Bench to the Bedside. Int. J. Mol. Sci. 2022, 23, 673. [Google Scholar] [CrossRef] [PubMed]
- Giovanelli, L.; Aresta, C.; Favero, V.; Bonomi, M.; Cangiano, B.; Eller-Vainicher, C.; Grassi, G.; Morelli, V.; Pugliese, F.; Falchetti, A.; et al. Hidden hypercortisolism: A too frequently neglected clinical condition. J. Endocrinol. Investig. 2021, 44, 1581–1596. [Google Scholar] [CrossRef] [PubMed]
- Feeney, T.; Madiedo, A.; Knapp, P.E.; Gupta, A.; McAneny, D.; Drake, F.T. Incidental Adrenal Masses: Adherence to Guidelines and Methods to Improve Initial Follow-Up: A Systematic Review. J. Surg. Res. 2022, 269, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Zavatta, G.; Di Dalmazi, G. Recent Advances on Subclinical Hypercortisolism. Endocrinol. Metab. Clin. N. Am. 2018, 47, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Mete, O.; Erickson, L.A.; Juhlin, C.C.; de Krijger, R.R.; Sasano, H.; Volante, M.; Papotti, M.G. Overview of the 2022 WHO Classification of Adrenal Cortical Tumors. Endocr. Pathol. 2022, 33, 155–196. [Google Scholar] [CrossRef] [PubMed]
- Chiodini, I.; Morelli, V. Subclinical Hypercortisolism: How to Deal with It? Front. Horm. Res. 2016, 46, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Voltan, G.; Boscaro, M.; Armanini, D.; Scaroni, C.; Ceccato, F. A multidisciplinary approach to the management of adrenal incidentaloma. Expert Rev. Endocrinol. Metab. 2021, 16, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Ebbehoj, A.; Li, D.; Kaur, R.J.; Zhang, C.; Singh, S.; Li, T.; Atkinson, E.; Achenbach, S.; Khosla, S.; Arlt, W.; et al. Epidemiology of adrenal tumours in Olmsted County, Minnesota, USA: A population-based cohort study. Lancet Diabetes Endocrinol. 2020, 8, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Paschou, S.A.; Kandaraki, E.; Dimitropoulou, F.; Goulis, D.G.; Vryonidou, A. Subclinical Cushing’s syndrome in patients with bilateral compared to unilateral adrenal incidentalomas: A systematic review and meta-analysis. Endocrine 2016, 51, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Patrova, J.; Jarocka, I.; Wahrenberg, H.; Falhammar, H. Clinical outcomes in adrenal incidentaloma: Experience from one center. Endocr. Pract. 2015, 21, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Delivanis, D.A.; Athimulam, S.; Bancos, I. Modern Management of Mild Autonomous Cortisol Secretion. Clin. Pharmacol. Ther. 2019, 106, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Fassnacht, M.; Tsagarakis, S.; Terzolo, M.; Tabarin, A.; Sahdev, A.; Newell-Price, J.; Pelsma, I.; Marina, L.; Lorenz, K.; Bancos, I.; et al. European Society of Endocrinology clinical practice guidelines on the management of adrenal incidentalomas, in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 2023, 189, G1–G42. [Google Scholar] [CrossRef]
- Tabarin, A. Do the diagnostic criteria for subclinical hypercortisolism exist? Ann. Endocrinol. 2018, 79, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Chiodini, I.; Albani, A.; Ambrogio, A.G.; Campo, M.; De Martino, M.C.; Marcelli, G.; Morelli, V.; Zampetti, B.; Colao, A.; Pivonello, R.; et al. Six controversial issues on subclinical Cushing’s syndrome. Endocrine 2017, 56, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Bancos, I.; Taylor, A.E.; Chortis, V.; Sitch, A.J.; Jenkinson, C.; Davidge-Pitts, C.J.; Lang, K.; Tsagarakis, S.; Macech, M.; Riester, A.; et al. Urine steroid metabolomics for the differential diagnosis of adrenal incidentalomas in the EURINE-ACT study: A prospective test validation study. Lancet Diabetes Endocrinol. 2020, 8, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Berke, K.; Constantinescu, G.; Masjkur, J.; Kimpel, O.; Dischinger, U.; Peitzsch, M.; Kwapiszewska, A.; Dobrowolski, P.; Nölting, S.; Reincke, M.; et al. Plasma Steroid Profiling in Patients with Adrenal Incidentaloma. J. Clin. Endocrinol. Metab. 2022, 107, e1181–e1192. [Google Scholar] [CrossRef]
- Araujo-Castro, M.; Pascual-Corrales, E.; Lamas, C. Possible, probable, and certain hypercortisolism: A continuum in the risk of comorbidity. Ann. Endocrinol. 2023, 84, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Kelsall, A.; Iqbal, A.; Newell-Price, J. Adrenal incidentaloma: Cardiovascular and metabolic effects of mild cortisol excess. Gland Surg. 2020, 9, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Papanastasiou, L.; Alexandraki, K.I.; Androulakis, I.I.; Fountoulakis, S.; Kounadi, T.; Markou, A.; Tsiavos, V.; Samara, C.; Papaioannou, T.G.; Piaditis, G.; et al. Concomitant alterations of metabolic parameters, cardiovascular risk factors and altered cortisol secretion in patients with adrenal incidentalomas during prolonged follow-up. Clin. Endocrinol. 2017, 86, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.S.; Conceição, F.L.; Leite, N.C.; Ferreira, M.T.; Salles, G.F.; Cardoso, C.R. Prevalence of subclinical hypercortisolism in type 2 diabetic patients from the Rio de Janeiro Type 2 Diabetes Cohort Study. J. Diabetes Complicat. 2016, 30, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Cansu, G.B.; Atılgan, S.; Balcı, M.K.; Sarı, R.; Özdem, S.; Altunbaş, H.A. Which type 2 diabetes mellitus patients should be screened for subclinical Cushing’s syndrome? Hormones 2017, 16, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Masserini, B.; Morelli, V.; Palmieri, S.; Eller-Vainicher, C.; Zhukouskaya, V.; Cairoli, E.; Orsi, E.; Beck-Peccoz, P.; Spada, A.; Chiodini, I. Lipid abnormalities in patients with adrenal incidentalomas: Role of subclinical hypercortisolism and impaired glucose metabolism. J. Endocrinol. Investig. 2015, 38, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Debono, M.; Bradburn, M.; Bull, M.; Harrison, B.; Ross, R.J.; Newell-Price, J. Cortisol as a marker for increased mortality in patients with incidental adrenocortical adenomas. J. Clin. Endocrinol. Metab. 2014, 99, 4462–4470. [Google Scholar] [CrossRef] [PubMed]
- Patrova, J.; Kjellman, M.; Wahrenberg, H.; Falhammar, H. Increased mortality in patients with adrenal incidentalomas and autonomous cortisol secretion: A 13-year retrospective study from one center. Endocrine 2017, 58, 267–275. [Google Scholar] [CrossRef]
- Yozamp, N.; Vaidya, A. Assessment of mild autonomous cortisol secretion among incidentally discovered adrenal masses. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101491. [Google Scholar] [CrossRef] [PubMed]
- Cambos, S.; Tabarin, A. Management of adrenal incidentalomas: Working through uncertainty. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101427. [Google Scholar] [CrossRef] [PubMed]
- Bancos, I.; Alahdab, F.; Crowley, R.K.; Chortis, V.; Delivanis, D.A.; Erickson, D.; Natt, N.; Terzolo, M.; Arlt, W.; Young, W.F., Jr.; et al. Therapy of endocrine disease. Improvement of cardiovascular risk factors after adrenalectomy in patients with adrenal tumors and subclinical Cushing’s syndrome: A systematic review and meta-analysis. Eur. J. Endocrinol. 2016, 175, R283–R295. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S20–S42. [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44 (Suppl. S1), S15–S33. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45 (Suppl. S1), S17–S38. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41 (Suppl. S1), S13–S27. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43 (Suppl. S1), S14–S31. [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33 (Suppl. S1), S62–S69. [Google Scholar] [CrossRef] [PubMed]
- Favero, V.; Eller-Vainicher, C.; Morelli, V.; Cairoli, E.; Salcuni, A.S.; Scillitani, A.; Corbetta, S.; Casa, S.D.; Muscogiuri, G.; Persani, L.; et al. Increased Risk of Vertebral Fractures in Patients with Mild Autonomous Cortisol Secretion. J. Clin. Endocrinol. Metab. 2024, 109, e623–e632. [Google Scholar] [CrossRef]
- Rebelo, J.F.D.; Costa, J.M.; Junqueira, F.D.; Fonseca, A.O.; de Almeida, A.B.A.B.S.; Moraes, A.B.; Vieira Neto, L. Adrenal incidentaloma: Do patients with apparently nonfunctioning mass or autonomous cortisol secretion have similar or different clinical and metabolic features? Clin. Endocrinol. 2023, 98, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Brox-Torrecilla, N.; García Cano, A.M.; Valderrábano, P.; Quintero Tobar, A.; Escobar-Morreale, H.F.; Araujo-Castro, M. Prevalence and incidence of type 2 diabetes mellitus in patients with adrenal incidentalomas: A study of 709 cases. Endocrine 2023, 81, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Araujo-Castro, M.; Casals, G.; Hanzu, F.A.; Pascual-Corrales, E.; García Cano, A.M.; Lanza, V.F.; Luis Del Rey Mejías, Á.; Marchan, M.; Escobar-Morreale, H.F.; Valderrabano, P. Characterisation of the urinary steroid profile of patients with nonfunctioning adrenal incidentalomas: A matched controlled cross-sectional study. Clin. Endocrinol. 2023, 98, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Adamska, A.; Ulychnyi, V.; Siewko, K.; Popławska-Kita, A.; Szelachowska, M.; Adamski, M.; Buczyńska, A.; Krętowski, A.J. Cardiovascular risk factors in mild adrenal autonomous cortisol secretion in a Caucasian population. Endocr. Connect. 2022, 11, e220074. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, R.; Yin, Y.; Wang, J.; Su, W.; Zang, L.; Chen, K.; Du, J.; Lyu, Z.; Dou, J.; Mu, Y.; et al. Sex Differences in Hypercortisolism and Glucose-Metabolism Disturbances in Patients with Mild Autonomous Cortisol Secretion: Findings From a Single Center in China. Front. Endocrinol. 2022, 13, 857947. [Google Scholar] [CrossRef] [PubMed]
- Yano, C.; Yokomoto-Umakoshi, M.; Fujita, M.; Umakoshi, H.; Yano, S.; Iwahashi, N.; Katsuhara, S.; Kaneko, H.; Ogata, M.; Fukumoto, T.; et al. Coexistence of bone and vascular disturbances in patients with endogenous glucocorticoid excess. Bone Rep. 2022, 17, 101610. [Google Scholar] [CrossRef] [PubMed]
- Araujo-Castro, M.; Parra Ramírez, P.; Robles Lázaro, C.; García Centeno, R.; Gracia Gimeno, P.; Fernández-Ladreda, M.T.; Sampedro Núñez, M.A.; Marazuela, M.; Escobar-Morreale, H.F.; Valderrabano, P. Predictors of Tumour Growth and Autonomous Cortisol Secretion Development during Follow-Up in Non-Functioning Adrenal Incidentalomas. J. Clin. Med. 2021, 10, 5509. [Google Scholar] [CrossRef] [PubMed]
- Araujo-Castro, M.; Parra Ramírez, P.; Robles Lázaro, C.; García Centeno, R.; Gracia Gimeno, P.; Fernández-Ladreda, M.T.; Sampedro Núñez, M.A.; Marazuela, M.; Escobar-Morreale, H.F.; Valderrabano, P. Accuracy of the dexamethasone suppression test for the prediction of autonomous cortisol secretion-related comorbidities in adrenal incidentalomas. Hormones 2021, 20, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Atkinson, E.J.; Achenbach, S.J.; LeBrasseur, N.; Bancos, I. Frailty in Patients with Mild Autonomous Cortisol Secretion is Higher Than in Patients with Nonfunctioning Adrenal Tumors. J. Clin. Endocrinol. Metab. 2020, 105, e3307–e3315. [Google Scholar] [CrossRef] [PubMed]
- Falcetta, P.; Orsolini, F.; Benelli, E.; Agretti, P.; Vitti, P.; Di Cosmo, C.; Tonacchera, M. Clinical features, risk of mass enlargement, and development of endocrine hyperfunction in patients with adrenal incidentalomas: A long-term follow-up study. Endocrine 2021, 71, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Di Dalmazi, G.; Vicennati, V.; Pizzi, C.; Mosconi, C.; Tucci, L.; Balacchi, C.; Cosentino, E.R.; Paolisso, P.; Fanelli, F.; Gambineri, A.; et al. Prevalence and Incidence of Atrial Fibrillation in a Large Cohort of Adrenal Incidentalomas: A Long-Term Study. J. Clin. Endocrinol. Metab. 2020, 105, dgaa270. [Google Scholar] [CrossRef] [PubMed]
- Podbregar, A.; Janez, A.; Goricar, K.; Jensterle, M. The prevalence and characteristics of non-functioning and autonomous cortisol secreting adrenal incidentaloma after patients’ stratification by body mass index and age. BMC Endocr. Disord. 2020, 20, 118. [Google Scholar] [CrossRef] [PubMed]
- Reimondo, G.; Castellano, E.; Grosso, M.; Priotto, R.; Puglisi, S.; Pia, A.; Pellegrino, M.; Borretta, G.; Terzolo, M. Adrenal Incidentalomas are Tied to Increased Risk of Diabetes: Findings from a Prospective Study. J. Clin. Endocrinol. Metab. 2020, 105, dgz284. [Google Scholar] [CrossRef] [PubMed]
- Ueland, G.Å.; Grinde, T.; Methlie, P.; Kelp, O.; Løvås, K.; Husebye, E.S. Diagnostic testing of autonomous cortisol secretion in adrenal incidentalomas. Endocr. Connect. 2020, 9, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Moraes, A.B.; de Paula, M.P.; de Paula Paranhos-Neto, F.; Cavalari, E.M.R.; de Morais, F.F.C.; Curi, D.S.C.; Lima, L.F.C.; de Mendonça, L.M.C.; Farias, M.L.F.; Madeira, M.; et al. Bone Evaluation by High-Resolution Peripheral Quantitative Computed Tomography in Patients with Adrenal Incidentaloma. J. Clin. Endocrinol. Metab. 2020, 105, dgaa263. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, F.; Sözel, H.; Keleş, M.; Yılmaz, Ü. Frequency of masked hypertension in patients with nonfunctioning adrenal incidentalomas with normal and high normal blood pressure. Ir. J. Med. Sci. 2022, 191, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.D.; Li, D.; Kaur, R.J.; Ebbehoj, A.; Singh, S.; Atkinson, E.J.; Achenbach, S.J.; Young, W.F.; Arlt, W.; Rocca, W.A.; et al. Cardiometabolic Outcomes and Mortality in Patients with Adrenal Adenomas in a Population-based Setting. J. Clin. Endocrinol. Metab. 2021, 106, 3320–3330. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, M.J.; Lee, J.H.; Yoon, J.W.; Shin, C.S. Nonfunctioning Adrenal Incidentalomas are not Clinically Silent: A Longitudinal Cohort Study. Endocr. Pract. 2020, 26, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Paula, M.P.; Moraes, A.B.; de Souza, M.D.G.C.; Cavalari, E.M.R.; Campbell, R.C.; Fernandes, G.D.S.; Farias, M.L.F.; Mendonça, L.M.C.; Madeira, M.; Bouskela, E.; et al. Cortisol level after dexamethasone suppression test in patients with non-functioning adrenal incidentaloma is positively associated with the duration of reactive hyperemia response on microvascular bed. J. Endocrinol. Investig. 2021, 44, 609–619. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Standards of Medical Care in Diabetes-2017 Abridged for Primary Care Providers. Clin. Diabetes 2017, 35, 5–26. [Google Scholar] [CrossRef] [PubMed]
- Fassnacht, M.; Arlt, W.; Bancos, I.; Dralle, H.; Newell-Price, J.; Sahdev, A.; Tabarin, A.; Terzolo, M.; Tsagarakis, S.; Dekkers, O.M. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 2016, 175, G1–G34. [Google Scholar] [CrossRef] [PubMed]
- Deutschbein, T.; Reimondo, G.; Di Dalmazi, G.; Bancos, I.; Patrova, J.; Vassiliadi, D.A.; Nekić, A.B.; Debono, M.; Lardo, P.; Ceccato, F.; et al. Age-dependent and sex-dependent disparity in mortality in patients with adrenal incidentalomas and autonomous cortisol secretion: An international, retrospective, cohort study. Lancet Diabetes Endocrinol. 2022, 10, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Šojat, A.S.; Dunjić-Kostić, B.; Marina, L.V.; Ivović, M.; Radonjić, N.V.; Kendereški, A.; Ćirković, A.; Tančić-Gajić, M.; Arizanović, Z.; Mihajlović, S.; et al. Depression: Another cortisol-related comorbidity in patients with adrenal incidentalomas and (possible) autonomous cortisol secretion. J. Endocrinol. Investig. 2021, 44, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Prete, A.; Subramanian, A.; Bancos, I.; Chortis, V.; Tsagarakis, S.; Lang, K.; Macech, M.; Delivanis, D.A.; Pupovac, I.D.; Reimondo, G.; et al. Cardiometabolic Disease Burden and Steroid Excretion in Benign Adrenal Tumors: A Cross-Sectional Multicenter Study. Ann. Intern. Med. 2022, 175, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Naka, M.; Kadoya, M.; Kosaka-Hamamoto, K.; Morimoto, A.; Miyoshi, A.; Kakutani, M.; Shoji, T.; Koyama, H. Overestimation of glomerular filtration rate calculated from serum creatinine as compared with cystatin C in patients with subclinical hypercortisolism: Hyogo Adrenal Metabolic Registry. Endocr. J. 2020, 67, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, N.; Avsar, E.; Tazegul, G.; Sari, R.; Altunbas, H.; Balci, M.K. Clinical Characteristics and Follow-Up Results of Adrenal Incidentaloma. Exp. Clin. Endocrinol. Diabetes 2021, 129, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Prodana, M.; Nistor, C.E.; Stoian, A.B.; Ionita, D.; Burnei, C. Dual nanofibrous bioactive coarings on TiZr implants. Coatings 2020, 10, 526. [Google Scholar] [CrossRef]
- Tizu, M.; Mărunțelu, I.; Cristea, B.M.; Nistor, C.; Ishkitiev, N.; Mihaylova, Z.; Tsikandelova, R.; Miteva, M.; Caruntu, A.; Sabliov, C.; et al. Constantinescu I.PLGA Nanoparticles Uptake in Stem Cells from Human Exfoliated Deciduous Teeth and Oral Keratinocyte Stem Cells. J. Funct. Biomater. 2022, 13, 109. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004, 27 (Suppl. S1), S5–S10. [Google Scholar] [CrossRef] [PubMed]
- Delivanis, D.A.; Hurtado Andrade, M.D.; Cortes, T.; Athimulam, S.; Khanna, A.; Atkinson, E.; McKenzie, T.; Takahashi, N.; Moynagh, M.R.; Bancos, I. Abnormal body composition in patients with adrenal adenomas. Eur. J. Endocrinol. 2021, 185, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Athimulam, S.; Delivanis, D.; Thomas, M.; Young, W.F.; Khosla, S.; Drake, M.T.; Bancos, I. The Impact of Mild Autonomous Cortisol Secretion on Bone Turnover Markers. J. Clin. Endocrinol. Metab. 2020, 105, 1469–1477. [Google Scholar] [CrossRef] [PubMed]
- Tahapary, D.L.; Pratisthita, L.B.; Fitri, N.A.; Marcella, C.; Wafa, S.; Kurniawan, F.; Rizka, A.; Tarigan, T.J.E.; Harbuwono, D.S.; Purnamasari, D.; et al. Challenges in the diagnosis of insulin resistance: Focusing on the role of HOMA-IR and Tryglyceride/glucose index. Diabetes Metab. Syndr. 2022, 16, 102581. [Google Scholar] [CrossRef] [PubMed]
- Szychlińska, M.; Rzeczkowska, M.; Gontarz-Nowak, K.; Matuszewski, W.; Bandurska-Stankiewicz, E. Do Non-Functional Adrenal Adenomas Affect Metabolic Profile and Carotid Intima-Media Thickness? A Single Centre Study from Poland. J. Clin. Med. 2023, 12, 4612. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Horiuchi, K.; Otsuki, M.; Okamoto, T. Diagnosis and management of adrenal incidentaloma: Use of clinical judgment and evidence in dialog with the patient. Surg. Today 2023. [Google Scholar] [CrossRef] [PubMed]
- Podbregar, A.; Kocjan, T.; Rakuša, M.; Popović, P.; Garbajs, M.; Goricar, K.; Janez, A.; Jensterle, M. Natural history of nonfunctioning adrenal incidentalomas: A 10-year longitudinal follow-up study. Endocr. Connect. 2021, 10, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Candemir, B.; Kisip, K.; Akın, Ş.; Tuba Sanal, H.; Taşar, M.; Altunkaynak, B.; Ersöz Gülçelik, N. Pancreatosteatosis in patients with adrenal incidentaloma: A risk factor for impaired glucose metabolism. Diabetes Res. Clin. Pract. 2024, 208, 111099. [Google Scholar] [CrossRef] [PubMed]
- Morelli, V.; Frigerio, S.; Aresta, C.; Passeri, E.; Pugliese, F.; Copetti, M.; Barbieri, A.M.; Fustinoni, S.; Polledri, E.; Corbetta, S.; et al. Adrenalectomy Improves Blood Pressure and Metabolic Control in Patients with Possible Autonomous Cortisol Secretion: Results of a RCT. Front. Endocrinol. 2022, 13, 898084. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Imamura, Y.; Sakamoto, S.; Sugiura, M.; Arai, T.; Yamamoto, S.; Takeuchi, N.; Sazuka, T.; Nakamura, K.; Nagano, H.; et al. Adrenalectomy in Japanese patients with subclinical Cushing syndrome: 1-mg dexamethasone suppression test to predict the surgical benefit. Int. J. Urol. 2021, 28, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.H.; Ranstam, J.; Almquist, M.; Nordenström, E.; Bergenfelz, A. Impact of Adrenalectomy on Morbidity in Patients with Non-Functioning Adrenal Cortical Tumours, Mild Hypercortisolism and Cushing’s Syndrome as Assessed by National and Quality Registries. World J. Surg. 2021, 45, 3099–3107. [Google Scholar] [CrossRef] [PubMed]
- Remde, H.; Kranz, S.; Morell, S.M.; Altieri, B.; Kroiss, M.; Detomas, M.; Fassnacht, M.; Deutschbein, T. Clinical course of patients with adrenal incidentalomas and cortisol autonomy: A German retrospective single center cohort study. Front. Endocrinol. 2023, 14, 1123132. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, Y.; Wang, Z.; Liu, C.; Liu, S.; Li, X.; Chen, R.; Zhan, Y.; Wang, S.; Zeng, X. Hypertension Resolution after Laparoscopic Adrenal Tumor Resection in Patients of Adrenal Incidentaloma with Normal Hormone Levels. Urol. Int. 2023, 107, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Petramala, L.; Olmati, F.; Concistrè, A.; Russo, R.; Mezzadri, M.; Soldini, M.; De Vincentis, G.; Iannucci, G.; De Toma, G.; Letizia, C. Cardiovascular and metabolic risk factors in patients with subclinical Cushing. Endocrine 2020, 70, 150–163. [Google Scholar] [CrossRef]
- Athanasouli, F.; Georgiopoulos, G.; Asonitis, N.; Petychaki, F.; Savelli, A.; Panou, E.; Angelousi, A. Nonfunctional adrenal adenomas and impaired glucose metabolism: A systematic review and meta-analysis. Endocrine 2021, 74, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Lopez, D.; Luque-Fernandez, M.A.; Steele, A.; Adler, G.K.; Turchin, A.; Vaidya, A. “Nonfunctional” Adrenal Tumors and the Risk for Incident Diabetes and Cardiovascular Outcomes: A Cohort Study. Ann. Intern. Med. 2016, 165, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Gontarz-Nowak, K.; Szklarz, M.; Szychlińska, M.; Matuszewski, W.; Bandurska-Stankiewicz, E. A Brief Look at Hashimoto’s Disease, Adrenal Incidentalomas, Obesity and Insulin Resistance-Could Endocrine Disruptors Be the Other Side of the Same Coin? Medicina 2023, 59, 1234. [Google Scholar] [CrossRef] [PubMed]
- Nistor, C.E.; Pantile, D.; Gavan, C.S.; Ciuche, A. Pneumothorax on COVID-19 patients-retrospective clinical observations. Rom. J. Leg. Med. 2022, 30, 112–116. [Google Scholar] [CrossRef]
- Guclu, M.; Aslan, B.B.; Setayeshi, T.; Kiyici, S. Could the presence of adrenal incidentaloma negatively affect COVID 19 outcomes? Endocrine 2023, 82, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2020, 10, 1607. [Google Scholar] [CrossRef] [PubMed]
- Sydney, G.I.; Ioakim, K.J.; Paschou, S.A. Insulin resistance and adrenal incidentalomas: A bidirectional relationship. Maturitas 2019, 121, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bahadir, C.T.; Ecemis, G.C.; Atmaca, H. Does IGF-1 play a role in the etiopathogenesis of non-functioning adrenocortical adenoma? J. Endocrinol. Investig. 2018, 41, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Werner, H. The IGF1 Signaling Pathway: From Basic Concepts to Therapeutic Opportunities. Int. J. Mol. Sci. 2023, 24, 14882. [Google Scholar] [CrossRef] [PubMed]
- Angelousi, A.; Kyriakopoulos, G.; Nasiri-Ansari, N.; Karageorgou, M.; Kassi, E. The role of epithelial growth factors and insulin growth factors in the adrenal neoplasms. Ann. Transl. Med. 2018, 6, 253. [Google Scholar] [CrossRef] [PubMed]
- Nistor, C.; Ciuche, A.; Constantinescu, I. Emergency surgical tracheal decompression in a huge retrosternal goiter. Acta Endocrinol. 2017, 13, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.C.; Latronico, A.C. Insulin-like growth factor system on adrenocortical tumorigenesis. Mol. Cell. Endocrinol. 2012, 351, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; De Martino, M.C.; Negri, M.; Pivonello, C.; Simeoli, C.; Orio, F.; Pivonello, R.; Colao, A. Adrenal Mass: Insight Into Pathogenesis and a Common Link with Insulin Resistance. Endocrinology 2017, 158, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Sorice, G.P.; Prioletta, A.; Mezza, T.; Cipolla, C.; Salomone, E.; Giaccari, A.; Pontecorvi, A.; Della Casa, S. The size of adrenal incidentalomas correlates with insulin resistance. Is there a cause-effect relationship? Clin. Endocrinol. 2011, 74, 300–305. [Google Scholar] [CrossRef]
- Pearson-Stuttard, J.; Papadimitriou, N.; Markozannes, G.; Cividini, S.; Kakourou, A.; Gill, D.; Rizos, E.C.; Monori, G.; Ward, H.A.; Kyrgiou, M.; et al. Type 2 Diabetes and Cancer: An Umbrella Review of Observational and Mendelian Randomization Studies. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Perseghin, G.; Calori, G.; Lattuada, G.; Ragogna, F.; Dugnani, E.; Garancini, M.P.; Crosignani, P.; Villa, M.; Bosi, E.; Ruotolo, G.; et al. Insulin resistance/hyperinsulinemia and cancer mortality: The Cremona study at the 15th year of follow-up. Acta Diabetol. 2012, 49, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Nistor, C.E.; Ciuche, A.; Cucu, A.P.; Serban, B.; Cursaru, A.; Cretu, B.; Cirstoiu, C. Clavicular Malignancies: A Borderline Surgical Management. Medicina 2022, 58, 910. [Google Scholar] [CrossRef] [PubMed]
- Hiroi, N.; Sue, M.; Yoshihara, A.; Ichijo, T.; Yoshida-Hiroi, M.; Higa, M.; Yoshino, G. Prevalence of adrenal masses in Japanese patients with type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2010, 2, 71. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Shen, X.; Lei, J.; Xu, Q.; Yu, Y.; Li, R.; Wu, E.; Ma, Q. Hyperglycemia, a neglected factor during cancer progression. BioMed Res. Int. 2014, 2014, 461917. [Google Scholar] [CrossRef]
- Campbell, P.T.; Newton, C.C.; Patel, A.V.; Jacobs, E.J.; Gapstur, S.M. Diabetes and cause-specific mortality in a prospective cohort of one million U.S. adults. Diabetes Care 2012, 35, 1835–1844. [Google Scholar] [CrossRef] [PubMed]
- Varewijck, A.J.; Janssen, J.A. Insulin and its analogues and their affinities for the IGF1 receptor. Endocr. Relat. Cancer 2012, 19, F63–F75. [Google Scholar] [CrossRef] [PubMed]
- Androulakis, I.I.; Kaltsas, G.A.; Kollias, G.E.; Markou, A.C.; Gouli, A.K.; Thomas, D.A.; Alexandraki, K.I.; Papamichael, C.M.; Hadjidakis, D.J.; Piaditis, G.P. Patients with apparently nonfunctioning adrenal incidentalomas may be at increased cardiovascular risk due to excessive cortisol secretion. J. Clin. Endocrinol. Metab. 2014, 99, 2754–2762. [Google Scholar] [CrossRef] [PubMed]
- Perogamvros, I.; Vassiliadi, D.A.; Karapanou, O.; Botoula, E.; Tzanela, M.; Tsagarakis, S. Biochemical and clinical benefits of unilateral adrenalectomy in patients with subclinical hypercortisolism and bilateral adrenal incidentalomas. Eur. J. Endocrinol. 2015, 173, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Altieri, B.; Tirabassi, G.; Della Casa, S.; Ronchi, C.L.; Balercia, G.; Orio, F.; Pontecorvi, A.; Colao, A.; Muscogiuri, G. Adrenocortical tumors and insulin resistance: What is the first step? Int. J. Cancer 2016, 138, 2785–2794. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.; McQueen, A.; Chen, T.C.; Wang, J.C. Regulation of Glucose Homeostasis by Glucocorticoids. Adv. Exp. Med. Biol. 2015, 872, 99–126. [Google Scholar] [CrossRef]
- Mehlich, A.; Bolanowski, M.; Mehlich, D.; Witek, P. Medical treatment of Cushing’s disease with concurrent diabetes mellitus. Front. Endocrinol. 2023, 14, 1174119. [Google Scholar] [CrossRef]
- Beaupere, C.; Liboz, A.; Fève, B.; Blondeau, B.; Guillemain, G. Molecular Mechanisms of Glucocorticoid-Induced Insulin Resistance. Int. J. Mol. Sci. 2021, 22, 623. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell. Physiol. 2019, 234, 8152–8161. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes. Molecules 2022, 27, 950. [Google Scholar] [CrossRef] [PubMed]
- Volpe, C.M.O.; Villar-Delfino, P.H.; Dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.J.; Golden, S.H. Cortisol dysregulation: The bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann. N. Y. Acad. Sci. 2017, 1391, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Vassiliou, A.G.; Athanasiou, N.; Vassiliadi, D.A.; Jahaj, E.; Keskinidou, C.; Kotanidou, A.; Dimopoulou, I. Glucocorticoid and mineralocorticoid receptor expression in critical illness: A narrative review. World J. Crit. Care Med. 2021, 10, 102–111. [Google Scholar] [CrossRef]
- Chailurkit, L.O.; Aekplakorn, W.; Paiyabhroma, N.; Ongphiphadhanakul, B. Global 11 Beta-Hydroxysteroid Dehydrogenase Activity Assessed by the Circulating Cortisol to Cortisone Ratio is Associated with Features of Metabolic Syndrome. Metab. Syndr. Relat. Disord. 2020, 18, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Banarer, S.; Fonseca, V.A.; Inzucchi, S.E.; Sun, W.; Yao, W.; Hollis, G.; Flores, R.; Levy, R.; Williams, W.V.; et al. The 11-beta-hydroxysteroid dehydrogenase type 1 inhibitor INCB13739 improves hyperglycemia in patients with type 2 diabetes inadequately controlled by metformin monotherapy. Diabetes Care 2010, 33, 1516–1522. [Google Scholar] [CrossRef] [PubMed]
- Frank, F.; Ortlund, E.A.; Liu, X. Structural insights into glucocorticoid receptor function. Biochem. Soc. Trans. 2021, 49, 2333–2343. [Google Scholar] [CrossRef] [PubMed]
- Vitellius, G.; Trabado, S.; Bouligand, J.; Delemer, B.; Lombès, M. Pathophysiology of Glucocorticoid Signaling. Ann. Endocrinol. 2018, 79, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Motavalli, R.; Majidi, T.; Pourlak, T.; Abediazar, S.; Shoja, M.M.; Zununi Vahed, S.; Etemadi, J. The clinical significance of the glucocorticoid receptors: Genetics and epigenetics. J. Steroid. Biochem. Mol. Biol. 2021, 213, 105952. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, N.C.; Charmandari, E.; Chrousos, G.P.; Kino, T. Recent advances in the molecular mechanisms determining tissue sensitivity to glucocorticoids: Novel mutations, circadian rhythm and ligand-induced repression of the human glucocorticoid receptor. BMC Endocr. Disord. 2014, 14, 71. [Google Scholar] [CrossRef] [PubMed]
- Kolb, K.L.; Mira, A.L.S.; Auer, E.D.; Bucco, I.D.; de Lima ESilva, C.E.; Dos Santos, P.I.; Hoch, V.B.; Oliveira, L.C.; Hauser, A.B.; Hundt, J.E.; et al. Glucocorticoid Receptor Gene (NR3C1) Polymorphisms and Metabolic Syndrome: Insights from the Mennonite Population. Genes 2023, 14, 1805. [Google Scholar] [CrossRef] [PubMed]
- Kokkinopoulou, I.; Diakoumi, A.; Moutsatsou, P. Glucocorticoid Receptor Signaling in Diabetes. Int. J. Mol. Sci. 2021, 22, 11173. [Google Scholar] [CrossRef] [PubMed]
- Bayramcı, N.S.; Açık, L.; Kalkan, Ç.; Yetkin, İ. Investigation of glucocorticoid receptor and calpain-10 gene polymorphisms in Turkish patients with type 2 diabetes mellitus. Turk. J. Med. Sci. 2017, 47, 1568–1575. [Google Scholar] [CrossRef] [PubMed]
- van Raalte, D.H.; van Leeuwen, N.; Simonis-Bik, A.M.; Nijpels, G.; van Haeften, T.W.; Schafer, S.A.; Boomsma, D.I.; Kramer, M.H.; Heine, R.J.; Maassen, J.A.; et al. Glucocorticoid receptor gene polymorphisms are associated with reduced first-phase glucose-stimulated insulin secretion and disposition index in women, but not in men. Diabet. Med. 2012, 29, e211–e216. [Google Scholar] [CrossRef] [PubMed]
- Manenschijn, L.; van den Akker, E.L.; Lamberts, S.W.; van Rossum, E.F. Clinical features associated with glucocorticoid receptor polymorphisms. An overview. Ann. N. Y. Acad. Sci. 2009, 1179, 179–198. [Google Scholar] [CrossRef] [PubMed]
- Damjanovic, S.S.; Antic, J.A.; Ilic, B.B.; Cokic, B.B.; Ivovic, M.; Ognjanovic, S.I.; Isailovic, T.V.; Popovic, B.M.; Bozic, I.B.; Tatic, S.; et al. Glucocorticoid receptor and molecular chaperones in the pathogenesis of adrenal incidentalomas: Potential role of reduced sensitivity to glucocorticoids. Mol. Med. 2013, 18, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Tzanela, M.; Mantzou, E.; Saltiki, K.; Tampourlou, M.; Kalogeris, N.; Hadjidakis, D.; Tsagarakis, S.; Alevizaki, M. Clinical and biochemical impact of BCL1 polymorphic genotype of the glucocorticoid receptor gene in patients with adrenal incidentalomas. J. Endocrinol. Investig. 2012, 35, 395–400. [Google Scholar] [CrossRef]
- Morelli, V.; Donadio, F.; Eller-Vainicher, C.; Cirello, V.; Olgiati, L.; Savoca, C.; Cairoli, E.; Salcuni, A.S.; Beck-Peccoz, P.; Chiodini, I. Role of glucocorticoid receptor polymorphism in adrenal incidentalomas. Eur. J. Clin. Investig. 2010, 40, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Ognjanović, S.; Antić, J.; Pekmezović, T.; Popović, B.; Isailović, T.; Antić, I.B.; Bogavac, T.; Kovačević, V.E.; Ilić, D.; Opalić, M.; et al. The association of glucocorticoid receptor polymorphism with metabolic outcomes in menopausal women with adrenal incidentalomas. Maturitas 2021, 151, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Eller-Vainicher, C.; Morelli, V.; Aresta, C.; Salcuni, A.S.; Falchetti, A.; Carnevale, V.; Persani, L.; Scillitani, A.; Chiodini, I. Defining Nonfunctioning Adrenal Adenomas on the Basis of the Occurrence of Hypocortisolism after Adrenalectomy. J. Endocr. Soc. 2020, 4, bvaa079. [Google Scholar] [CrossRef] [PubMed]
- Morelli, V.; Aresta, C.; Gaudio, A.; Eller-Vainicher, C.; Zhukouskaya, V.V.; Merlotti, D.; Orsi, E.; Maria Barbieri, A.; Fustinoni, S.; Polledri, E.; et al. Prediction of hypertension, diabetes and fractures in eucortisolemic women by measuring parameters of cortisol milieu. Endocrine 2020, 68, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Hepsen, S.; Sencar, E.; Sakiz, D.; Akhanli, P.; Ucan, B.; Unsal, I.; Ozbek, M.; Cakal, E. Serum cortisol level after low dose dexamethasone suppression test may be predictive for diabetes mellitus and hypertension presence in obese patients: A retrospective study. Diabetes Res. Clin. Pract. 2020, 161, 108081. [Google Scholar] [CrossRef]
- Masjkur, J.; Gruber, M.; Peitzsch, M.; Kaden, D.; Di Dalmazi, G.; Bidlingmaier, M.; Zopp, S.; Langton, K.; Fazel, J.; Beuschlein, F.; et al. Plasma Steroid Profiles in Subclinical Compared with Overt Adrenal Cushing Syndrome. J. Clin. Endocrinol. Metab. 2019, 104, 4331–4340. [Google Scholar] [CrossRef] [PubMed]
- Carafone, L.E.; Zhang, C.D.; Li, D.; Lazik, N.; Hamidi, O.; Hurtado, M.D.; Young, W.F., Jr.; Thomas, M.A.; Dy, B.M.; Lyden, M.L.; et al. Diagnostic Accuracy of Dehydroepiandrosterone Sulfate and Corticotropin in Autonomous Cortisol Secretion. Biomedicines 2021, 9, 741. [Google Scholar] [CrossRef] [PubMed]
- Ceccato, F.; Antonelli, G.; Frigo, A.C.; Regazzo, D.; Plebani, M.; Boscaro, M.; Scaroni, C. First-line screening tests for Cushing’s syndrome in patients with adrenal incidentaloma: The role of urinary free cortisol measured by LC-MS/MS. J. Endocrinol. Investig. 2017, 40, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Al-Waeli, D.; Alidrisi, H.; Mansour, A. Utilizing dehydroepiandrosterone sulfate and its ratio for detecting mild autonomous cortisol excess in patients with adrenal incidentaloma. J. Med. Life 2023, 16, 1456–1461. [Google Scholar] [CrossRef] [PubMed]
- Moraes, A.B.; Cavalari, E.M.R.; de Paula, M.P.; Arruda, M.; Curi, D.S.C.; Leitão, R.A.; de Mendonça, L.M.C.; Farias, M.L.F.; Madeira, M.; Vieira Neto, L. Evaluation of body composition using dual-energy X-ray absorptiometry in patients with non-functioning adrenal incidentalomas and an intermediate phenotype: Is there an association with metabolic syndrome? J. Endocrinol. Investig. 2019, 42, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro Cavalari, E.M.; de Paula, M.P.; Arruda, M.; Carraro, N.; Martins, A.; de Souza, K.; Coelho, M.C.; de Oliveira, E.; Silva de Morais, N.A.; Moraes, A.B.; et al. Nonfunctioning adrenal incidentaloma: A novel predictive factor for metabolic syndrome. Clin. Endocrinol. 2018, 89, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Sandru, F.; Carsote, M.; Dumitrascu, M.C.; Albu, S.E.; Valea, A. Glucocorticoids and Trabecular Bone Score. J. Med. Life 2020, 13, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Di Dalmazi, G.; Vicennati, V.; Rinaldi, E.; Morselli-Labate, A.M.; Giampalma, E.; Mosconi, C.; Pagotto, U.; Pasquali, R. Progressively increased patterns of subclinical cortisol hypersecretion in adrenal incidentalomas differently predict major metabolic and cardiovascular outcomes: A large cross-sectional study. Eur. J. Endocrinol. 2012, 166, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Di Dalmazi, G.; Pasquali, R. Adrenal adenomas, subclinical hypercortisolism, and cardiovascular outcomes. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Morelli, V.; Palmieri, S.; Lania, A.; Tresoldi, A.; Corbetta, S.; Cairoli, E.; Eller-Vainicher, C.; Arosio, M.; Copetti, M.; Grossi, E.; et al. Cardiovascular events in patients with mild autonomous cortisol secretion: Analysis with artificial neural networks. Eur. J. Endocrinol. 2017, 177, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Sbardella, E.; Minnetti, M.; D’Aluisio, D.; Rizza, L.; Di Giorgio, M.R.; Vinci, F.; Pofi, R.; Giannetta, E.; Venneri, M.A.; Vestri, A.; et al. Cardiovascular features of possible autonomous cortisol secretion in patients with adrenal incidentalomas. Eur. J. Endocrinol. 2018, 178, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Di Dalmazi, G.; Fanelli, F.; Zavatta, G.; Ricci Bitti, S.; Mezzullo, M.; Repaci, A.; Pelusi, C.; Gambineri, A.; Altieri, P.; Mosconi, C.; et al. The Steroid Profile of Adrenal Incidentalomas: Subtyping Subjects with High Cardiovascular Risk. J. Clin. Endocrinol. Metab. 2019, 104, 5519–5528. [Google Scholar] [CrossRef]
- Emral, R.; Aydoğan, B.İ.; Köse, A.D.; Demir, Ö.; Çorapçıoğlu, D. Could a nonfunctional adrenal incidentaloma be a risk factor for increased carotid intima-media thickness and metabolic syndrome. Endocrinol. Diabetes Nutr. (Engl. Ed.) 2019, 66, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Morelli, V.; Reimondo, G.; Giordano, R.; Della Casa, S.; Policola, C.; Palmieri, S.; Salcuni, A.S.; Dolci, A.; Mendola, M.; Arosio, M.; et al. Long-term follow-up in adrenal incidentalomas: An Italian multicenter study. J. Clin. Endocrinol. Metab. 2014, 99, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Kizilgul, M.; Beysel, S.; Ozcelik, O.; Kan, S.; Apaydin, M.; Caliskan, M.; Ucan, B.; Sencar, E.; Ozdemir, S.; Cakal, E. Pentraxin 3 as a new cardiovascular marker in adrenal adenomas. Endocr. Pract. 2017, 23, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Świątkowska-Stodulska, R.; Skibowska-Bielińska, A.; Wiśniewski, P.; Sworczak, K. Activity of selected coagulation factors in overt and subclinical hypercortisolism. Endocr. J. 2015, 62, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Vinolas, H.; Grouthier, V.; Mehsen-Cetre, N.; Boisson, A.; Winzenrieth, R.; Schaeverbeke, T.; Mesguich, C.; Bordenave, L.; Tabarin, A. Assessment of vertebral microarchitecture in overt and mild Cushing’s syndrome using trabecular bone score. Clin. Endocrinol. 2018, 89, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Kaur, R.J.; Zhang, C.D.; Ebbehoj, A.; Singh, S.; Atkinson, E.J.; Achenbach, S.J.; Rocca, W.; Khosla, S.; Bancos, I. Risk of bone fractures after the diagnosis of adrenal adenomas: A population-based cohort study. Eur. J. Endocrinol. 2021, 184, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Izawa, S.; Matsumoto, K.; Matsuzawa, K.; Katabami, T.; Yoshimoto, T.; Otsuki, M.; Sone, M.; Takeda, Y.; Okamura, S.; Ichijo, T.; et al. Sex Difference in the Association of Osteoporosis and Osteopenia Prevalence in Patients with Adrenal Adenoma and Different Degrees of Cortisol Excess. Int. J. Endocrinol. 2022, 2022, 5009395. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, F.; Salcuni, A.S.; Battista, C.; Carnevale, V.; Guglielmi, G.; Columbu, C.; Velluzzi, F.; Giovanelli, L.; Eller-Vainicher, C.; Scillitani, A.; et al. Prevalence of less severe hypercortisolism in fractured patients admitted in an outpatient clinic for metabolic bone diseases. Endocrine 2021, 73, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Salcuni, A.S.; Morelli, V.; Eller Vainicher, C.; Palmieri, S.; Cairoli, E.; Spada, A.; Scillitani, A.; Chiodini, I. Adrenalectomy reduces the risk of vertebral fractures in patients with monolateral adrenal incidentalomas and subclinical hypercortisolism. Eur. J. Endocrinol. 2016, 174, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Delivanis, D.A.; Iñiguez-Ariza, N.M.; Zeb, M.H.; Moynagh, M.R.; Takahashi, N.; McKenzie, T.J.; Thomas, M.A.; Gogos, C.; Young, W.F.; Bancos, I.; et al. Impact of hypercortisolism on skeletal muscle mass and adipose tissue mass in patients with adrenal adenomas. Clin. Endocrinol. 2018, 88, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kwak, M.K.; Ahn, S.H.; Kim, H.; Cho, Y.Y.; Suh, S.; Kim, B.J.; Song, K.H.; Lee, S.H.; Koh, J.M. Alteration in skeletal muscle mass in women with subclinical hypercortisolism. Endocrine 2018, 61, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Di Dalmazi, G.; Vicennati, V.; Garelli, S.; Casadio, E.; Rinaldi, E.; Giampalma, E.; Mosconi, C.; Golfieri, R.; Paccapelo, A.; Pagotto, U.; et al. Cardiovascular events and mortality in patients with adrenal incidentalomas that are either non-secreting or associated with intermediate phenotype or subclinical Cushing’s syndrome: A 15-year retrospective study. Lancet Diabetes Endocrinol. 2014, 2, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Nistor, C.E.; Staden, R.S.; Dumitru, A.V.; Stanciu Găvan, C. A Screening Test for Early Diagnosis of Microcellular Bronchopulmonary Cancer-Pilot Study. J. Clin. Med. 2019, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Nistor, C.E.; Stanciu-Găvan, C.; Vasilescu, F.; Dumitru, A.V.; Ciuche, A. Attitude of the surgical approach in hyperparathyroidism: A retrospective study. Exp. Ther. Med. 2021, 22, 959. [Google Scholar] [CrossRef]
- Taya, M.; Paroder, V.; Bellin, E.; Haramati, L.B. The relationship between adrenal incidentalomas and mortality risk. Eur. Radiol. 2019, 29, 6245–6255. [Google Scholar] [CrossRef] [PubMed]
- Nistor, C.E.; Găvan, C.S.; Ciritel, A.A.; Nemes, A.F.; Ciuche, A. The Association of Minimally Invasive Surgical Approaches and Mortality in Patients with Malignant Pleuropericarditis—A 10 Year Retrospective Observational Study. Medicina 2022, 58, 718. [Google Scholar] [CrossRef] [PubMed]
- Iacobone, M.; Citton, M.; Scarpa, M.; Viel, G.; Boscaro, M.; Nitti, D. Systematic review of surgical treatment of subclinical Cushing’s syndrome. Br. J. Surg. 2015, 102, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ji, Z.G.; Li, H.Z.; Zhang, Y.S. Adrenalectomy was recommended for patients with subclinical Cushing’s syndrome due to adrenal incidentaloma. Cancer Biomark. 2018, 21, 367–372. [Google Scholar] [CrossRef]
- Petramala, L.; Cavallaro, G.; Galassi, M.; Marinelli, C.; Tonnarini, G.; Concistrè, A.; Costi, U.; Bufi, M.; Lucia, P.; De Vincentis, G.; et al. Clinical Benefits of Unilateral Adrenalectomy in Patients with Subclinical Hypercortisolism Due to Adrenal Incidentaloma: Results from a Single Center. High Blood Press Cardiovasc. Prev. 2017, 24, 69–75. [Google Scholar] [CrossRef] [PubMed]
- de La Villéon, B.; Bonnet, S.; Gouya, H.; Groussin, L.; Tenenbaum, F.; Gaujoux, S.; Dousset, B. Long-term outcome after adrenalectomy for incidentally diagnosed subclinical cortisol-secreting adenomas. Surgery 2016, 160, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Debono, M.; Harrison, R.F.; Chadarevian, R.; Gueroult, C.; Abitbol, J.L.; Newell-Price, J. Resetting the Abnormal Circadian Cortisol Rhythm in Adrenal Incidentaloma Patients with Mild Autonomous Cortisol Secretion. J. Clin. Endocrinol. Metab. 2017, 102, 3461–3469. [Google Scholar] [CrossRef] [PubMed]
- Scaroni, C.; Zilio, M.; Foti, M.; Boscaro, M. Glucose Metabolism Abnormalities in Cushing Syndrome: From Molecular Basis to Clinical Management. Endocr. Rev. 2017, 38, 189–219. [Google Scholar] [CrossRef] [PubMed]
- Mazziotti, G.; Gazzaruso, C.; Giustina, A. Diabetes in Cushing syndrome: Basic and clinical aspects. Trends Endocrinol. Metab. 2011, 22, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Poli, G.; Cantini, G.; Armignacco, R.; Fucci, R.; Santi, R.; Canu, L.; Nesi, G.; Mannelli, M.; Luconi, M. Metformin as a new anti-cancer drug in adrenocortical carcinoma. Oncotarget 2016, 7, 49636–49648. [Google Scholar] [CrossRef] [PubMed]
First Author Year of Publication Reference Study Design | Studied Population Number of Patients Age (Years) Gender (F/M) | Criteria for the Diagnosis of T2DM | The Prevalence of T2DM | Glucose Parameters [(Mean ± SD or Median (IQR)] |
---|---|---|---|---|
Favero 2024 [52] Cross-sectional study | N = 444 AI F/M = 271/173 Mean age = 61.8 ± 11.5 y (range: 21–89) y MACS = 230 (c-1 mg-DST > 1.8 µg/dL) F/M = 137/93 Mean age = 63.6 ± 9.5 y (range: 24–83) y NFAI = 214 (c-1 mg-DST ≤ 1.8 µg/dL µg/dL) F/M = 134/80 Mean age = 59.9 ± 13.0 y (range: 21–89) y | FPG ≥ 126 mg/dL 2 h-plasma glucose ≥ 200 mg/dL during OGTT Symptoms of diabetes plus casual plasma glucose concentration plasma glucose ≥ 200 mg/dL (ADA 2003) | AI: T2DM = 16.4% MACS: T2DM = 17.8% NFAI: T2DM = 15% T2DM: MACS vs. NFAI, p = 0.246 | NA |
Rebelo 2023 [53] Cross-sectional study | N = 211 patients with or without adrenal adenomas AI = 147 (ACS + NFAI) F/M = 122/25 Mean age = 63.3 ± 9.9 y ACS = 58 (c-1 mg-DST > 1.8 µg/dL) F/M = 50/8 Mean age = 64.3 ± 9.8 y NFAI = 89 (c-1 mg-DST < 1.8 µg/dL) F/M = 72/17 Mean age = 62.7 ± 9.9 y Controls = 64 without adrenal tumours F/M = 46/18 Mean age = 60.5 ± 10.8 y | FPG ≥ 126 mg/dL 2 h-plasma glucose ≥ 200 mg/dL during OGTT HbA1c ≥ 6.5% in a patient with classic symptoms of hyperglycaemia or hyperglycaemic crisis, a random plasma glucose ≥ 200 mg/dL (ADA 2021) Dysglycemia included: T2DM, impaired fasting glucose, and impaired glucose tolerance. | AI: T2DM = 36.3% Dysglycemia = 82.1% ACS: T2DM = 35.1% Dysglycemia = 80.4% NFAI: T2DM = 37.1% Dysglycemia = 83.1% Controls T2DM = 28.6% Dysglycemia = 67.7% T2DM: AI vs. controls, p = 0.28 ACS vs. controls, p = 0.54 Dysglycemia: AI vs. controls, p = 0.02 ACS vs. controls, p = 0.07 | AI: FPG = 5.93 (3.82–12.65) mmol/L HbA1c = 5.9 (4.3–10.5)% ACS: FPG = 5.93 (3.8–12.6) mmol/L HbA1c = 5.8 (4.4–8.9)% NFAI: FPG = 5.93 (3.9–12.2) mmol/L HbA1c = 6 (4.3–10.5)% Controls: FPG = 5.49 (3.60–8.99) mmol/L HbA1c = 5.9 (4.9–8.8)% FPG: AI vs. controls, p = 0.04 ACS vs. controls, p = 0.12 HbA1c: AI vs. controls, p = 0.55 ACS vs. controls, p = 0.72 |
Brox-Torrecilla 2023 [54] Retrospective study | N = 709 AI F/M = 397/312 Mean age = 63.4 ± 10.8 y ACS = 231 (c-1 mg-DST ≥ 1.8 µg/dL) F/M = 131/100 Mean age = 65.0 ± 10.60 y NFAI = 478 (c-1 mg-DST < 1.8 µg/dL) F/M = 267/211 Mean age = 62.7 ± 10.77 y | FPG ≥ 126 mg/dL 2 h-plasma glucose ≥ 200 mg/dL during OGTT HbA1c ≥ 6.5% In a patient with classic symptoms of hyperglycaemia or hyperglycaemic crisis, a random plasma glucose ≥ 200 mg/dL (ADA 2022) | ACS: T2DM = 27.7% T2DM and HbA1c > 7% = 35.4% T2DM and HbA1c > 8% = 14.6% NFAI: T2DM = 22.6% T2DM and HbA1c > 7% = 37.8% T2DM and HbA1c > 8% = 9.5% T2DM: ACS vs. NFAI, p = 0.137 T2DM and HbA1c > 7%: ACS vs. NFAI, p = 0.787 T2DM and HbA1c > 8%: ACS vs. NFAI, p = 0.386 | ACS: FPG = 112.3 ± 35.56 mg/dL HbA1c = 6.5 ± 1.36% NFAI: FPG = 105.0 ± 29.05 mg/dL HbA1c = 6.1 ± 0.89% FPG: ACS vs. NFAI, p = 0.004 HbA1c: ACS vs. NFAI, p = 0.005 |
Araujo-Castro 2023 [55] Cross-sectional study | N = 73 patients with or without adrenal adenomas ACS = 25 (c-1 mg-DST > 1.8 µg/dL) F/M = 16/9 Mean age = 70.2 ± 7.83 y NFAI = 24 (c-1 mg-DST ≤ 1.8 µg/dL) F/M = 17/7 Mean age = 67.4 ± 9.68 y Controls = 24 (without adrenal tumours) F/M = 18/6 Mean age = 65.5 ± 9.63 y | FPG ≥ 126 mg/dL 2 h-plasma glucose ≥ 200 mg/dL during OGTT HbA1c ≥ 6.5% In a patient with classic symptoms of hyperglycaemia or hyperglycaemic crisis, a random plasma glucose ≥ 200 mg/dL (ADA 2018) | ACS: T2DM = 44% NFAI: T2DM = 4.22% Controls: T2DM = 20.8% T2DM: ACS vs. NFAI vs. controls, p = 0.003 | ACS: FPG = 104.8 ± 22.74 mg/dL HbA1c = 6.0 ± 0.81% NFAI: FPG = 109.3 ± 60.05 mg/dL HbA1c = 5.8 ± 0.49% Controls: FPG = 101.7 ± 22.30 mg/dL HbA1c = 6.1 ± 0.80% FPG: ACS vs. NFAI vs. controls, p = 0.768 HbA1c: ACS vs. NFAI vs. controls, p = 0.305 |
Adamska 2022 [56] Retrospective study | N = 295 AI MACS = 56 (c-1 mg-DST 1.8–5 µg/dL) F/M = 38/18 Median age = 64 y (range: 58–71) y NFAI = 239 (c-1 mg-DST ≤ 1.8 µg/dL) F/M = 158/81 Median age = 62 y (range: 54–68) y | Patients using antidiabetic medication were thought to have T2DM. | MACS: T2DM = 41% NFAI: T2DM = 23% T2DM: MACS vs. NFAI, p < 0.01 | MACS: FPG = 97 (range: 92–114) mg/dL NFAI: FPG = 95 (range: 89–105) mg/dL FPG: MACS vs. NFAI, p = 0.7 |
Ouyang 2022 [57] Retrospective study | N = 98 MACS F/M = 65/33 Mean age = 51.1 ± 10.3 y Females with MACS = 65 Mean age = 50.5 ± 9.8 y Males with MACS = 33 Mean age = 52.2 ± 11.4 y MACS:
| T2DM diagnosis: a confirmed diagnosis of the disease and at least one glucose-lowering medication. | MACS (F + M): T2DM = 24.5% Females with MACS: T2DM = 20% Males with MACS: T2DM = 33.3% T2DM: Females with MACS vs. Males with MACS, p = 0.147 | Females with MACS: FPG = 5.2 ± 1.5 mmol/L FCP = 2.4 (1.9–3.0) mU/L HbA1c = 6.0 ± 1.5% Males with MACS: FPG = 5.5 ± 1.4 mmol/L FCP = 3.2 (2.1–3.7) mU/L HbA1c = 6.1 ± 1.0% FPG: Females with MACS vs. Males with MACS, p = 0.320 FPG: Females with MACS vs. Males with MACS, p = 0.114 HbA1c: Females with MACS vs. Males with MACS, p = 0.610 |
Yano, 2022 [58] Retrospective cross-sectional study | N = 194 with adrenal tumours ACS = 97 (c-1 mg-DST ≥ 1.8 µg/dL) ACS was further divided into overt CS (N = 17) and subclinical CS (N = 80) F/M = 60/37 Median age = 62.0 y (range: 45–69) y NFAI = 97 (c-1 mg-DST < 1.8 µg/dL) F/M = 52/45 Median age = 58.0 y (range: 51–67) y | FPG ≥ 126 mg/dL HbA1c ≥ 6.5% Previous therapy for diabetes | ACS: T2DM = 44% NFAI: T2DM = 22% T2DM: ACS vs. NFAI, p = 0.002 | NA |
Araujo-Castro 2021 [59] Retrospective observational study | N = 642 AI ACS = 337 (c-1 mg-DST > 1.8 µg/dL) F/M = 194/143 Mean age = 65.0 ± 10.6 y NFAI = 305 (c-1 mg-DST ≤ 1.8 µg/dL F/M = 169/136 Mean age = 61.5 ± 10.2 y | NA | ACS: T2DM = 32.1% NFAI: T2DM = 24.3% T2DM: ACS vs. NFAI, p = 0.031 | ACS: FPG = 112.3 ± 35.6 mg/dL HbA1c = 6.5 ± 1.4% NFAI: FPG = 105.9 ± 5.87 mg/dL HbA1c = 6.6 ± 5.87% HbA1c: ACS vs. NFAI, p = 0.832 FPG: ACS vs. NFAI, p = 0.007 |
Araujo-Castro 2021 [60] Retrospective multi-centre study | N = 823 AI F/M = 472/351 Mean age = 63.1 ± 11.0 y ACS1 = 276 (c-1 mg-DST ≥ 1.8 µg/dL) ACS2 = 113 (c-1 mg-DST ≥ 3 µg/dL) ACS3 = 46 (c-1 mg-DST ≥ 5 µg/dL) NFAI = 710 | FPG ≥ 126 mg/dL 2 h-plasma glucose ≥ 200 mg/dL during OGTT HbA1c ≥ 6.5% In a patient with classic symptoms of hyperglycaemia or hyperglycaemic crisis, a random plasma glucose ≥ 200 mg/dL (ADA 2018) | Prevalence of T2DM among AI was 26.0% Prevalence of T2DM ACS 1 vs. NFAI OR = 1.6, 95% CI: 1.2–2.2, p = 0.005 ACS 2 vs. NFAI OR = 1.7, 95% CI: 1.1–2.6, p = 0.014 ACS 3 vs. NFAI OR = 1.2, 95% CI: 0.6–2.3, p = 0.654 | ACS 1 vs. NFAI FPG: 111.7 ± 36.2 vs. 104.9 ± 2 8.7 mg/dL, p = 0.004 HbA1c: 6.5 ± 1.2 vs. 6.3 ± 4.4%, p = 0.738 ACS 2 vs. NFAI FPG: 112.5 ± 40.8 vs. 106.3 ± 29.8 mg/dL, p = 0.055 HbA1c: 6.5 ± 1.2 vs. 6.4 ± 3.9%, p = 0.861 ACS 3 vs. NFAI FPG: 99.1 ± 28.3 vs. 107.6 ± 31.7 mg/dL, p = 0.081 HbA1c: 6.2 ± 0.8 vs. 6.4 ± 3.7%, p = 0.860 |
Singh 2020 [61] Retrospective study | N = 443 adrenal adenoma MACS = 168 (c-1 mg-DST 1.9–5 µg/dL) F/M = 113/55 Median age = 66.1 y (range: 29.9–91.2) y NFAI = 275 (c-1 mg-DST < 1.9 µg/dL) F/M = 167/108 Median age = 59.5 y (range: 20.8–83.9) y | NA | MACS: T2DM = 41.9% NFAI: T2DM = 40.1% T2DM: MACS vs. NFAI, p = 0.801 | NA |
Falcetta 2020 [62] Retrospective study | N = 310 AI F/M = 200/110 Mean age = 58.3 ± 12.9 y ACS = 81 (c-1 mg-DST > 5 µg/dL or >1.8 and ≤5 μg/dL and at least one of the following: low ACTH, increased 24-h UFC, absence of cortisol rhythm, and post-LDDST cortisol level > 1.8 μg/dL) F/M = 57/24 Mean age = 62.0 ± 12.8 y NFAI = 209 (c-1 mg DST < 1.8 µg/dL) F/M = 132/77 Mean age = 57.3 ± 12.1 y (20 patients with overt adrenal hyperfunction were excluded) | FPG ≥ 126 mg/dL 2 h-plasma glucose ≥ 200 mg/dL during OGTT HbA1c ≥ 6.5% In a patient with classic symptoms of hyperglycaemia or hyperglycaemic crisis, a random plasma glucose ≥ 200 mg/dL (ADA 2020) | AI: T2DM = 19.4% ACS: T2DM = 17.3% NFAI: T2DM = 18.7% T2DM: ACS vs. NFAI, p = 0.786 | AI: IFG = 9% IGT = 3.9% ACS: IFG = 13.6% IGT = 4.9% NFAI: IFG = 8.1% IGT = 2.9% IFG: ACS vs. NFAI, p = 0.159 IGT: ACS vs. NFAI, p = 0.473 |
Di Dalmazi 2020 [63] Retrospective study | N = 632 AI ACS = 212 (c-1 mg-DST 1.9–5 µg/dL) F/M = 135/77 Median age = 65.8 y (range: 58.1–72.4) y NFAI = 420 (c-1 mg-DST < 1.8 µg/dL) F/M = 249/171 Median age = 60.9 y (range: 52.1–68.7) y | FPG ≥ 126 mg/dL 2 h-plasma glucose ≥ 200 mg/dL during OGTT HbA1c ≥ 6.5% In a patient with classic symptoms of hyperglycaemia or hyperglycaemic crisis, a random plasma glucose ≥ 200 mg/dL (ADA 2010) | ACS: T2DM = 28.3% NFAI: T2DM = 16.0% T2DM: NFAI vs. ACS, p < 0.001 | ACS: HbA1c = 49.2 (40.7–58.7) mmol/moL NFAI: HbA1c = 49.7 (43.2–61.8) mmol/moL HbA1c: ACS vs. NFAI, p = 0.815 |
Podbregar 2020 [64] Retrospective cross-sectional study | N = 432 AI F/M = 253/179 Median age = 63.4 y (range: 54.0–71.6) y ACS = 142 (c-1 mg-DST ≥ 1.8 µg/dL 128 out of 142 patients had serum cortisol after 1 mg DST between 1.8–5 µg/dL and 14 patients had cortisol levels > 5 µg/dL Mean age = 64.90 ± 12.08 y NFAI = 290 (c-1 mg-DST < 1.8 µg/dL) Mean age = 61.76 ± 11.13 y | NA | AI: T2DM = 12% T2DM: ACS vs. NFAI, p > 0.05 | ACS: FPG = 5.78 ± 1.71 mmol/L NFAI: FPG = 5.75 ± 1.40 mmol/L FPG: ACS vs. NFAI, p = 0.876 |
Reimondo 2020 [65] Prospective cohort study | N = 601 individuals who have had computed tomography scans F/M = 270/331 Mean age = 63.5 ± 14.4 y AI = 44 F/M = 12/32 Mean age = 65.6 ± 10.3 y ACS = 20 patients with c-1 mg-DST ≥ 1.8 µg/dL F/M = 6/14 Mean age = 67.5 ± 9.5 y NFAI = 20 patients with c-1 mg-DST < 1.8 µg/dL F/M = 4/16 Mean age = 62.6 ± 8.2 y Controls = 557 (patients without AI) F/M = 258/299 Mean age = 63.3 ± 14.7 y | T2DM was defined when the patient reported: FPG ≥ 126 mg/dL 2 h-OGTT ≥ 200 mg/dL HbA1c ≥ 6.5% Previous diagnosis of diabetes, or use of antidiabetic medications | AI: T2DM = 31.8% ACS: T2DM = 35% NFAI: T2DM = 30% Controls: T2DM = 14.2% T2DM: AI vs. controls, p = 0.004 ACS vs. NFAI, p = 0.74 | AI: HbA1c = 7.8 ± 2.9% ACS: HbA1c = 8.9 ± 3.8% NFAI: HbA1c = 7.1 ± 1% Controls: HbA1c = 7.2 ± 2.6% HbA1c: AI vs. controls, p = 0.14 ACS vs. NFAI, p = 0.11 |
Ueland 2020 [66] Retrospective study | N = 165 AI ACS = 83 (c-1 mg-DST > 1.8 µg/dL) F/M = 58/25 Median age = 65 y (range: 29–86) y NFAI = 82 F/M = 48/34 Median age = 68.5 y (range: 33–82) y | NA | ACS: T2DM = 16.7% NFAI: T2DM = 8.5% | ACS: HbA1c = 5.8 (range: 5–9)% NFAI: HbA1c = 5.7 (range: 5–9)% |
Moraes 2020 [67] Cross-sectional study | N = 75 AI ACS = 30 (c-1 mg-DST 1.9–5 µg/dL) F/M = 26/4 Median age = 60 y (range: 42–77) y NFAI = 45 (c-1 mg-DST ≤ 1.8 µg/dL) F/M = 32/13 Median age = 59 y (range: 32–76) y | NA | ACS: T2DM = 40% NFAI: T2DM = 31.1% T2DM: ACS vs. NFAI, p = 0.43 | ACS: HbA1c = 6.1 (range: 4.6–11.1)% NFAI: HbA1c = 6.0 (range: 4.9–7.7)% HbA1c: ACS vs. NFAI, p = 0.57 |
First Author Year of Publication Reference Study Design | Studied Population Number of Patients Age (Years) Gender (F/M) | Criteria for the Diagnosis of T2DM | The Prevalence of T2DM | Glucose Parameters [(Mean ± SD or Median (IQR)] |
---|---|---|---|---|
Yilmaz 2022 [68] Retrospective study | N = 85 patients with or without adrenal adenomas NFAI = 43 (c-1 mg-DST < 1.8 µg/dL) F/M = 24/19 Mean age = 64.6 ± 11.5 y Controls = 42 (healthy individuals matched to the NFAI group in terms of age, gender, BMI, diabetes) F/M = 23/19 Mean age = 64.1 ± 11.8 y | NA | NFAI: T2DM = 27.9% Controls: T2DM = 26.1% T2DM: NFAI vs. controls, p = 0.209 T2DM was significantly correlated with masked hypertension, OR = 2.07, p = 0.044 | FPG NFAI: 106.8 ± 15.3 mg/dL Controls: 107.3 ± 14.9 mg/dL FPG: NFAI vs. controls, p = 0.128 |
Zhang 2021 [69] Cohort study | N = 2008 patients with or without adrenal adenomas N1 = 1004 with non-secreting adrenal tumours F/M = 582/422 Median age = 63 y (range: 21–96) y NFAI = 141 (c-1 mg-DST ≤ 1.8 µg/dL MACS = 81 (c-1 mg-DST > 1.8 µg/d) [No DST performed = 782 (unknown cortisol secretion)] Controls = 1004 (age- and sex-matched referent subjects without adrenal tumour) F/M = 582/422 Median age = 63 y (range: 21–96) y | T2DM was determined by HbA1c ≥ 6.5% Dysglycemia: composite of prediabetes or diabetes mellitus. | NFAI: T2DM = 27.5% Dysglycemia = 43.1% Controls: T2DM = 17.4% Dysglycemia = 28% T2DM: NFAI vs. controls, p < 0.001 Dysglycemia: NFAI vs. controls, p < 0.001 | NA |
Kim 2020 [70] Cross-sectional study | N = 616 patients with or without adrenal adenomas NFAI = 154 (c-1 mg-DST ≤ 1.8 µg/dL) F/M = 40/114 Mean age = 55.7 ± 8.6 y Controls = 462 (age and sex-matched control group without adrenal tumours) F/M = 126/336 Mean age = 55.7 ± 8.9 y | HbA1c ≥ 6.5% Previous therapy for diabetes | NFAI: T2DM = 25.3% Controls: T2DM = 14.5% T2DM: NFAI vs. controls, p = 0.003 OR = 1.89, 95% CI: 1.17–3.06 | NFAI: FPG = 108.0 ± 26.5 mg/dL HbA1c = 6.1 ± 0.9% Controls: FPG = 99.5 ± 17.7 mg/dL HbA1c = 5.9 ± 0.6% FPG: NFAI vs. controls, p < 0.001 HbA1c: NFAI vs. controls p = 0.009 |
Paula 2020 [71] Cross-sectional study | N = 82 patients with or without adrenal adenomas NFAI# = 42 (c-1 mg-DST < 1.8 µg/dL) F/M = 8/34 Mean age = 58.4 ± 8.57 y Controls # = 40 (without adrenal tumours) F/M = 9/31 Mean age = 58.1 ± 10.65 y | FPG ≥ 126 mg/dL 2 h-plasma glucose ≥ 200 mg/dL during OGTT HbA1c ≥ 6.5% In a patient with classic symptoms of hyperglycaemia or hyperglycaemic crisis, a random plasma glucose ≥ 200 mg/dL (ADA 2017) | NFAI: T2DM = 45.2% Controls: T2DM = 35% T2DM: NFAI vs. controls, p = 0.38 | NFAI: FPG = 105 (range: 71–217) mg/dL HbA1c = 5.9 (range: 4.3–10.8)% Controls: FPG = 97.5 (range: 71–152) mg/dL HbA1c = 5.7 (range: 4.1–8.1)% FPG: NFAI vs. controls, p = 0.18 HbA1c: NFAI vs. controls, p = 0.94 |
First Author Year of Publication Reference Study Design | Studied Population Number of Patients Age (Years) Gender (F/M) | Criteria for the Diagnosis of T2DM | The Prevalence of T2DM | Glucose Parameters [(Mean ± SD or Median (IQR)] |
---|---|---|---|---|
Deutschbein, 2022 [74] Retrospective multicentre cohort study | N = 3656 patients with AI ACS = 247 (c-1 mgDST > 5 µg/dL) F/M = 169/78 Median age = 63 y (range: 55–70) y possible ACS = 1320 (c-1 mg-DST 1.8–5 µg/dL) F/M = 860/460 Median age = 63 y (range: 56–70) y NFAI = 2089 NFAI (c-1 mg-DST < 1.8 µg/dL) F/M = 1321/768 Median age = 60 y (range: 52–67) y | NA | AI: T2DM = 20.5% ACS: T2DM = 26.7% Possible ACS: T2DM = 23% NFAI: T2DM = 18.2% T2DM: ASC vs. possible ACS vs. NFAI, p < 0.001 | NA |
Prete 2022 [76] Cross-sectional study | N = 1305 patients with benign adrenocortical adenomas F/M = 878/427 Median age = 60 y (interquartile range: 52–67) y Adrenal CS = 65 F/M = 56/9 Median age = 48 y (interquartile range: 38–60) y MACS = 140 (c-1 mgDST > 5 µg/dL) F/M = 103/37 Median age = 63 y (interquartile range: 54–69) y possible MACS = 451 (c-1 mg-DST 1.8–5 µg/dL) F/M = 303/148 Median age = 64 y (interquartile range: 56–71) y NFAI = 649 (c-1 mg-DST < 1.8 µg/dL) F/M = 416/233 Median age = 58 y (interquartile range: 51–65) y | FPG ≥ 126 mg/dL 2 h-plasma glucose ≥ 200 mg/dL during OGTT HbA1c ≥ 6.5% In a patient with classic symptoms of hyperglycaemia or hyperglycaemic crisis, a random plasma glucose ≥ 200 mg/dL Prediabetes: HbA1c of 5.7% to 6.4% (ADA 2021) | Adrenal CS: T2DM = 31.5% MACS: T2DM = 33.7% Possible MACS: T2DM = 32.2% NFAI: T2DM = 26.4% | NA |
Sojat 2021 [75] Case-control study | N = 92 patients with or without adrenal adenomas Possible ACS = 34 (c-1 mg-DST 1.8–5 µg/dL) F/M = 29/5 Mean age = 56.65 ± 5.61 y NFAI = 26 (c-1 mg-DST < 1.8 µg/dL) F/M = 18/8 Mean age = 58.54 ± 8.81 y Healthy controls = 32 (without adrenal tumours) F/M = 25/7 Mean age = 57.59 ± 9.36 y | FPG ≥ 126 mg/dL 2 h-plasma glucose ≥ 200 mg/dL during OGTT HbA1c ≥ 6.5% In a patient with classic symptoms of hyperglycaemia or hyperglycaemic crisis, a random plasma glucose ≥ 200 mg/dL (ADA 2010) | Possible ACS: T2DM = 20.6% NFAI: T2DM = 15.4% Healthy controls: T2DM = NA T2DM: NFAI vs. possible ACS, p = 0.606 | Possible ACS: HbA1c = 5.82 ± 0.57% FPG = 5.55 ± 0.67 mmol/L NFAI: HbA1c = 5.76 ± 0.83% FPG = 5.50 ± 0.75 mmol/L Healthy controls: HbA1c = NA FPG = 4.93 ± 0.39 mmol/L HbA1c: NFAI vs. possible ACS, p = 0.802 FPG: NFAI vs. possible ACS, p = 0.003 |
Yilmaz 2021 [78] Retrospective study | N = 755 patients with AI F/M = 497/258 Median age = 56 y (range: 18–86) y ACS = 37 (c-1 mg DST > 5 µg/dL) possible ACS = 82 (c-1 mg-DST 1.9–5 µg/dL) NFAI = 542 (c-1 mg-DST ≤ 1.8 µg/dL) functional adenomas (CS, Pheochromocytoma, hyperaldosteronism) = 94 | NA | AI: T2DM = 28.3% | NA |
Naka 2020 [77] Cross-sectional study | N = 339 patients with adrenal tumours CS = 23 (c-1 mg-DST > 5 µg/dL) F/M = 19/4 Mean age = 49.8 ± 3.2 y possible ACS = 84 (c-1 mg-DST 1.8–5 µg/dL) F/M = 42/42 Mean age = 64.1 ± 1.2 y NFAI = 232 (c-1 mg-DST < 1.8 µg/dL) F/M = 122/110 Mean age = 58.9 ± 0.8 y | FPG ≥ 126 mg/dL Casual plasma glucose ≥ 200 mg/dL 2 h-plasma glucose ≥ 200 mg/dL during OGTT Previous therapy for diabetes (ADA 2004) | CS: T2DM = 13% Possible ACS: T2DM = 33.3% NFAI: T2DM = 24.2% T2DM: CS vs. possible ACS vs. NFAI, p = 0.09 | NA |
First Author Year of Publication Reference Study Design | Studied Population Number of Patients Age (Years) Gender (F/M) | Criteria for the Diagnosis of T2DM | The Prevalence of T2DM | Glucose Parameters |
---|---|---|---|---|
Delivanis 2022 [82] Cross-sectional study | N = 227 patients with adrenal adenomas CS = 20 F/M = 18/2 Median age = 46 y (range: 18–69) y MACS = 76 (c-1 mg or 8 mg-DST of >1.8 µg/dL in a patient without features of overt CS) F/M = 42/34 Median age = 58 y (range: 28–87) y NFAI = 131 (c-1 mg DST ≤ 1.8 µg/dL) F/M = 91/40 Median age = 57 y (range: 18–89) y | T2DM or prediabetes diagnosis: treatment included at least one glucose-lowering drug. | CS: T2DM or IFG = 35% MACS: T2DM or IFG = 45% NFAI: T2DM or IFG = 34% T2DM or IFG: CS vs. MACS vs. NFAI, p = 0.271 | NA |
Athimulam 2020 [83] Cross-sectional study | N = 213 patients with AI CS = 22 F/M = 18/4 Median age = 41.5 y (range: 18–61) y MACS = 92 (c-1 mg-DST > 1.8 µg/dL) F/M = 57/35 Median age = 59.5 y (range: 28–82) y NFAI = 99 (c-1 mg-DST ≤ 1.8 µg/dL) F/M = 67/32 Median age = 59 y (range: 28–93) y | HbA1c ≥ 6.4% Previous therapy for diabetes | CS: T2DM = 41% MACS: T2DM = 41% NFAI: T2DM = 41% T2DM: CS vs. MACS vs. NFAI, p = 0.99 MACS vs. NFAI, p = 0.98 | NA |
First Author Reference Year of Publication Study Design | Studied Population Number of Patients Age (Years) Gender (F/M) | Criteria for the Diagnosis of Prediabetes | The Prevalence of Prediabetes Additional Glucose Profile Data (Mean ± Standard Deviation or Median (Range) |
---|---|---|---|
Szychlinska 2023 [85] Case-control study | N = 92 patients with or without adrenal adenomas NFAI = 48 (c-1 mg-DST < 1.8 µg/dL) F/M = 32/16 Mean age = 58.6 ± 9 y Controls = 44 (matched for age, gender and BMI) F/M = 29/15 Mean age = 57 ± 7 y (patients with T2DM were excluded) | IFG was defined as FPG levels between 100 and 125 mg/dL IGT was defined as 2-h plasma glucose during 75-g OGTT levels between 140 and 199 mg/dL (ADA 2020) | NFAI: FPG = 96.1 ± 12 mg/dL IFG = 20.8% Fasting insulin = 11.4 ± 4.9 uU/mL IGT = 27% 2 h-OGTT = 127.7 ± 38.2 mg/dL HOMA-IR = 2.72 ± 1.23 Controls FPG = 100.4 ± 11 mg/dL Fasting insulin = 8.9 ± 5.8 uU/mL IFG = 47.7% IGT = 0.9% 2 h-OGTT = 105.1 ± 27.9 mg/dL HOMA-IR = 2.26 ± 1.64 FPG: NFAI vs. controls, p = 0.7 Fasting insulin: NFAI vs. controls, p = 0.03 IFG: NFAI vs. controls, p < 0.01 IGT: NFAI vs. controls, p = 0.026 2 h-OGTT: NFAI vs. controls, p = 0.04 HOMA-IR: NFAI vs. controls p = 0.13 |
Adamska 2022 [56] Retrospective study | N = 295 patients with AI MACS = 56 (c-1 mg-DST 1.8–5 µg/dL) F/M = 38/18 Median age = 64 y (range: 58–71) y NFAI = 239 (c-1 mg-DST ≤ 1.8 µg/dL) F/M = 158/81 Median age = 62 y (range: 54–68) y | Prediabetes state was defined as impaired FPG = 100–125 mg/dL and/or IGT (serum glucose level of 140–199 mg/dL in the 2 h-OGTT | MACS: Prediabetes = 26.8% NFAI: Prediabetes = 34.3% Prediabetes: MACS vs. NFAI, p = 0.35 MACS: FPG = 97 (range: 92–114) mg/dL NFAI FPG = 95 (range: 89–105) mg/dL FPG: MACS vs. NFAI, p = 0.7 |
Zhang 2021 [69] Cohort study | N = 2008 patients with or without adrenal adenomas N = 1004 with non-secreting adrenal tumours F/M = 582/422 Median age = 63 y (range: 21–96) y NFAI = 141 (c-1 mg-DST ≤ 1.8 µg/dL MACS = 81 (c-1 mg-DST > 1.8 µg/dL) Controls = 1004 (age- and sex-matched referent subjects without adrenal tumour) F/M = 582/422 Median age = 63 y (range: 21–96) y | Prediabetes was defined by HbA1c between 5.7% and 6.4%. | NFAI: Prediabetes = 15.4% Controls: Prediabetes = 10.5% Prediabetes: NFAI vs. controls, p < 0.001 |
Kim 2020 [70] Cross-sectional study | N = 616 patients with or without adrenal adenomas NFAI = 154 (c-1 mg-DST ≤ 1.8 µg/dL) F/M = 40/114 Mean age = 55.7 ± 8.6 y Controls = 462 (age and sex-matched control group without adrenal tumours) F/M = 126/336 Mean age = 55.7 ± 8.9 y | NA | NFAI: HOMA-IR = 2.80 ± 2.17 Controls: HOMA-IR = 2.00 ± 1.10 HOMA-IR: NFAI vs. controls, p = 0.022 |
First Author Year of Publication Reference Study Design Follow-Up Period of Time | Study Population Number of Patients Age (Years) Gender (F/M) | Glucose Profile at Baseline | Glucose Profile According to the Follow-Up |
---|---|---|---|
Candemir 2024 [88] Retrospective study follow-up: 2 y | N = 207 patients with AI NFAI = 80 (c-1 mg-DST ≤ 1.8 µg/dL) F/M = 53/27 Mean age = 60 ± 12 y Controls = 127 (without any adrenal pathology, matched for age, sex, and BMI, FPG, HbA1c) F/M = 91/36 Mean age = 59 ± 13 y | NFAI: FPG = 93.07 ± 9.7 8 mg/dL HbA1c = 4.86 ± 0.35% Controls: FPG = 90.81 ± 6.83 mg/dL HbA1c = 4.79 ± 0.23% FPG: NFAI vs. controls, p = 0.073 HbA1c: NFAI vs. controls, p = 0.079 | After 2 years, FPG levels increased in both groups (p < 0.001). Prediabetes was developed by 17.5% (N = 14) of the patients in the adenoma group compared to 1.6% (N = 2) of the individuals in the control group (p < 0.001). |
Favero 2024 [52] Cross-sectional study Follow-up: 24.9 ± 5.3 months | N = 126 patients with AI (longitudinal arm) Mean age = 63.5 ± 9.5 y (range: 27–83) y F/M = 80/46 MACS = 66 (c-1 mg-DST > 1.8 µg/dL) F/M = 45/21 Mean age = 65.5 ± 8.0 y (range: 40–83) y NFAI = 60 (c-1 mg-DST ≤ 1.8 µg/dL µg/dL) F/M = 35/25 Mean age = 61.5 ± 10.6 y (range: 27–80) y | AI: T2DM = 16.4% MACS: T2DM = 17.8% NFAI: T2DM = 15% T2DM: MACS vs. NFAI, p = 0.246 | AI: T2DM = 25.4% MACS: T2DM = 15.9% NFAI: T2DM = 20% T2DM: MACS vs. NFAI, p = 0.221 |
Brox-Torrecilla 2023 [54] Retrospective study Follow-up: 28 months | N = 709 patients with AI F/M = 397/312 Mean age = 63.4 ± 10.8 y ACS = 231 (c-1 mg-DST ≥ 1.8 µg/dL) F/M = 131/100 Mean age = 65.0 ± 10.60 y NFAI = 478 (c-1 mg-DST < 1.8 µg/dL) F/M = 267/211 Mean age = 62.7 ± 10.77 y | ACS: T2DM = 27.7% T2DM and HbA1c > 7% = 35.4% T2DM and HbA1c > 8% = 14.6% NFAI: T2DM = 22.6% T2DM and HbA1c > 7% = 37.8% T2DM and HbA1c > 8% = 9.5% T2DM: ACS vs. NFAI, p = 0.137 T2DM and HbA1c > 7%: ACS vs. NFAI, p = 0.787 T2DM and HbA1c > 8%: ACS vs. NFAI, p = 0.386 | A new diagnosis of T2DM had been identified for 24 individuals; there were no group differences in the incidence of T2DM (HR = 1.17, 95% CI: 0.52–2.64) |
Araujo-Castro 2021 [59] Retrospective observational study Follow-up: mean 41.3 months | N = 642 patients with AI ACS = 337 (c-1 mg-DST > 1.8 µg/dL) F/M = 194/143 Mean age = 65.0 ± 10.6 y NFAI = 305 (c-1 mg DST ≤ 1.8 µg/dL) F/M = 169/136 Mean age = 61.5 ± 10.2 y | ACS: T2DM = 32.1% NFAI: T2DM = 24.3% T2DM: ACS vs. NFAI, p = 0.031 | NFAI (N = 273), development of T2DM during follow-up = 5.2% NFAI progressing to ACS (N = 32), development of T2DM during follow-up = 9.5% HR = 1.65, 95% CI: 0.36–7.66, p = 0.543 Incident T2DM in 5.7% during follow-up |
Zhang 2021 [69] Cohort study Follow-up: 7.2 y (NFAI) and 6.8 y (controls) | N = 2008 patients with or without adrenal adenomas N = 1004 with non-secreting adrenal tumours F/M = 582/422 Median age = 63 y (range: 21–96) y NFAI = 141 (c-1 mg-DST ≤ 1.8 µg/dL MACS = 81 (c-1 mg-DST > 1.8 µg/dL) Controls = 1004 (age- and sex-matched referent subjects without adrenal tumour) F/M = 582/422 Median age = 63 y (range: 21–96) y | NFAI: Prediabetes = 15.4% T2DM = 27.5% Dysglycemia = 43.1% Controls: Prediabetes = 10.5% T2DM = 17.4% Dysglycemia = 28% Prediabetes: NFAI vs. controls, p < 0.001 T2DM: NFAI vs. controls, p < 0.001 Dysglycemia: NFAI vs. controls, p < 0.001 | Patients with adrenal adenomas had a higher unadjusted 10-year cumulative incidence of dysglycemia than the control group (18% vs. 14%) During the follow-up period, patients with MACS compared to NFAT had higher unadjusted overall mortality (3% vs. 2% at 5 years, 20% vs. 9% at 10 years, and 37% vs. 19% at 15 years) |
Podbregar, 2021 [87] Prospective study Follow-up: 10.5 y | N = 67 patients with NFAI (c-1 mg-DST ≤ 1.8 µg/dL) F/M = 47/20 Mean age = 57.9 y | T2DM = 0.03% | T2DM = 17.9% T2DM was 0.03% at baseline and 17.9% at the follow-up (p = 0.002) |
Falcetta 2020 [62] Retrospective study Follow-up: 31.4 months | N = 310 patients with AI F/M = 200/110 Mean age = 58.3 ± 12.9 y ACS = 81 (c-1 mg-DST > 5 µg/dL or >1.8 and ≤5 μg/dL and at least one of the following: low ACTH, increased 24-h UFC, absence of cortisol rhythm, and post-LDDST cortisol level > 1.8 μg/dL) F/M = 57/24 Mean age = 62.0 ± 12.8 y NFAI = 209 (c-1 mg DST < 1.8 µg/dL) F/M = 132/77 Mean age = 57.3 ± 12.1 y (20 patients with overt adrenal hyper function were excluded) | AI: T2DM = 19.4% IFG = 9% IGT = 3.9% ACS: T2DM = 17.3% IFG = 13.6% IGT = 4.9% NFAI T2DM = 18.7% IFG = 8.1% IGT = 2.9% T2DM: ACS vs. NFAI, p = 0.786 IFG: ACS vs. NFAI, p = 0.159 IGT: ACS vs. NFAI, p = 0.473 | AI without enlargement (N = 257): T2DM = 20.2% IFG = 8.2% IGT = 3.5% AI with enlargement (N = 53): T2DM = 15.1%, p = 0.389 IFG = 13.2%, p = 0.289 IGT = 5.7%, p = 0.438 Not developing ACS during follow-up (N = 202) T2DM = 19.3% IFG = 6.9% IGT = 2.5% Developing ACS during follow-up (N = 7) T2DM = 0%, p = 0.205 IFG = 42.9%, p = 0.001 IGT = 14.3%, p = 0.071: |
Kim 2020 [70] Cross-sectional study Follow-up: mean 7.5 y | N = 616 patients with or without adrenal adenomas NFAI = 154 (c-1 mg-DST ≤ 1.8 µg/dL) F/M = 40/114 Mean age = 55.7 ± 8.6 y Controls = 462 (age and sex-matched control group without adrenal tumours) F/M = 126/336 Mean age = 55.7 ± 8.9 y | NFAI: HbA1c = 6.1 ± 0.9% T2DM = 25.3% Controls: HbA1c = 5.9 ± 0.6% T2DM = 14.5% HbA1c: NFAI vs. controls p = 0.009 T2DM: NFAI vs. controls, p = 0.003 OR = 1.89, 95% CI; 1.17–3.06 | There was no difference in the incidence of T2DM between the NFAI and control groups Adrenal lesions were greater in NFAI participants with diabetes than in those without (p = 0.048) at follow-up |
First Author Publication Year Reference Number Study Design | Studied Population Number of Patients Age (Years) Gender (F/M) | Evolution of Gluco-Metabolic Profile after Adrenalectomy or Conservative Treatment |
---|---|---|
Remde 2023 [92] Cohort study | N = 260 patients with AI F/M = 147/113 Median age = 59.5 y ACS = 41 (c-1 mg-DST > 5 µg/dL) F/M = 25/16 Median age = 56 y possible ACS = 96 (c-1 mg-DST 1.9–5 µg/dL) F/M = 53/43 Median age = 63 y NFAI = 123 (c-1 mg-DST ≤ 1.8 µg/dL) F/M = 69/54 Median age = 57 y Conservative vs. Adrenalectomy ACS: 82.1% vs. 17.9% Possible ACS: 76.0% vs. 24.0% NFAI: 61.0% vs. 39.0% Median follow-up 8.8 years | Adrenalectomy group: before vs. after adrenalectomy T2DM: 18% vs. 26.2%, p = NS Conservative group: baseline vs. follow-up T2DM: 21.1% vs. 30.2%, p = NS Conservative vs. adrenalectomy baseline, p = NS follow-up, p = NS T2DM was considerably less common in non-operated patients with NFAI as compared to possible ACS and ACS at the last follow-up (23.8% vs. 35.6% and 40.0%, p < 0.01) |
Morelli 2022 [89] Prospective randomized study | N = 55 patients with AI (c-1 mg-DST 1.8–5 µg/dL) Adrenalectomy group = 25 F/M = 17/8 Mean age = 62.5 ± 10.4 y (range: 41–75) y Conservative group = 30 F/M = 24/6 Mean age = 66.1 ± 9.1 y (range: 41–75) y | Adrenalectomy vs. conservative treatmentImproved in glucometabolic control: 28% vs. 3.3%, p = 0.02 Worsened in glucometabolic control: 8% vs. 20%, p = 0.12 Baseline vs. 6-month follow-up: Adrenalectomy group T2DM: 20% vs. 20% IGT/IFG: 28% vs. 20% HbA1c: 40.8 ± 6.6 mmol/moL vs. 39.6 ± 5.4 mmol/moL Conservative group: T2DM: 20% vs. 20% IGT/IFG: 30% vs. 33.3% HbA1c: 39.5 ± 7.1 mmol/moL vs. 39.8 ± 6.6 mmol/moL |
Wang 2022 [93] Retrospective cohort study | N = 171 patients with AI + surgical approach F/M = 84/87 Mean age = 50.6 ± 11.4 y (range: 14–78) y N1 = 41 persistent hypertension N2 = 130 hypertension resolution AIs with normal hormone levels were enrolled in the study. | The prevalence of T2DM among AI patients was 10.5% N1 vs. N2 T2DM: 17.1% vs. 8.5%, p = 0.202 |
Thompson 2021 [91] Retrospective study | N = 271 patients with adrenal tumours undergoing adrenalectomy CS = 127 F/M = 104/23 Mean age = 56.9 ± 12.6 y ACS = 45 F/M = 31/14 Mean age = 65.0 ± 10.4 y NFAI = 99 F/M = 59/40 Mean age = 60.5 ± 12.1 y CS and ACS were diagnosed based on applicable criteria at the time of diagnosis c-1-mg DST for initial evaluation | At the time of surgery T2DM CS vs. ACS vs. NFAI: 18.9% vs. 13.3% vs. 14.1% During follow-up, after adrenalectomy patients with ACS showed a slight decrease over time (p = NS) in their medication levels with antidiabetics. |
Petramala 2020 [94] Cross-sectional study | N = 628 patients with AI SH = 157 (c-1 mg-DST > 1.8 µg/dL plus one abnormal: UFC level > 100 µg/24 h, morning plasma ACTH levels < 10 pg/mL) F/M = 64/93 Mean age = 62.9 ± 11 y NFAI = 471 (c-1 mg-DST < 1.8 µg/dL) F/M = 189/282 Mean age = 59.6 ± 12.5 y SH with adrenalectomy = 29 SH with conservative treatment = 118 | Baseline SH vs. NFAI: T2DM: 19% vs.7%, p < 0.05 FPG: 98.9 ± 26.3 mg/dL vs. 99.2 ± 22.3 mg/dL, p = NS Adrenalectomy group before adrenalectomy vs. after adrenalectomy T2DM 20.7% vs. 7.4%, p < 0.05 Conservative group baseline vs. follow-up T2DM 26.7% vs. 23.5%, p = NS |
Sato 2020 [90] Retrospective study | N = 135 patients with subclinical CS Adrenalectomy = 117 F/M = 76/41 Mean age = 57.6 ± 10.4 y Conservative group = 18 F/M = 13/5 Mean age = 65.7 ± 6.8 y | Conservative vs. Adrenalectomy T2DM: 55.6% vs. 27%, p = 0.0255 Before vs. after adrenalectomy Patients with T2DM: HbA1c = 6.83 ± 0.94% vs. HbA1c = 6.09 ± 0.72%, p = 0.0019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trandafir, A.-I.; Ghemigian, A.; Ciobica, M.-L.; Nistor, C.; Gurzun, M.-M.; Nistor, T.V.I.; Petrova, E.; Carsote, M. Diabetes Mellitus in Non-Functioning Adrenal Incidentalomas: Analysis of the Mild Autonomous Cortisol Secretion (MACS) Impact on Glucose Profile. Biomedicines 2024, 12, 1606. https://doi.org/10.3390/biomedicines12071606
Trandafir A-I, Ghemigian A, Ciobica M-L, Nistor C, Gurzun M-M, Nistor TVI, Petrova E, Carsote M. Diabetes Mellitus in Non-Functioning Adrenal Incidentalomas: Analysis of the Mild Autonomous Cortisol Secretion (MACS) Impact on Glucose Profile. Biomedicines. 2024; 12(7):1606. https://doi.org/10.3390/biomedicines12071606
Chicago/Turabian StyleTrandafir, Alexandra-Ioana, Adina Ghemigian, Mihai-Lucian Ciobica, Claudiu Nistor, Maria-Magdalena Gurzun, Tiberiu Vasile Ioan Nistor, Eugenia Petrova, and Mara Carsote. 2024. "Diabetes Mellitus in Non-Functioning Adrenal Incidentalomas: Analysis of the Mild Autonomous Cortisol Secretion (MACS) Impact on Glucose Profile" Biomedicines 12, no. 7: 1606. https://doi.org/10.3390/biomedicines12071606
APA StyleTrandafir, A. -I., Ghemigian, A., Ciobica, M. -L., Nistor, C., Gurzun, M. -M., Nistor, T. V. I., Petrova, E., & Carsote, M. (2024). Diabetes Mellitus in Non-Functioning Adrenal Incidentalomas: Analysis of the Mild Autonomous Cortisol Secretion (MACS) Impact on Glucose Profile. Biomedicines, 12(7), 1606. https://doi.org/10.3390/biomedicines12071606