Candidate Key Proteins in Tinnitus—A Bioinformatic Study of Synaptic Transmission in the Cochlear Nucleus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Approach
2.2. Characterization of the Gene Lists
2.3. Analysis of the Protein–Protein Interaction
2.4. Pathways and Synaptic Proteins
3. Results
3.1. Characterization of the Gene Lists
3.2. PPI Network of the AP, AcouStim, and Tin Processes
3.3. Key Proteins of the PPI Networks of the AcouStim and Tin Lists
3.4. Proteins Interacting with BDNF in the AP, AcouStim, and Tin Processes
3.5. Pathways
4. Discussion
4.1. Key Proteins in the AP and AcouStim Process
4.2. Key Proteins in the Tin Process
4.3. GO Enrichment Analysis of Key Proteins
4.4. Synaptic Transmission in the AcouStim and Tin Processes
4.5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Gene Lists
Gene | Score | Name |
---|---|---|
PoS (n = 10) | ||
BDNF | 13.59 | Brain Derived Neurotrophic Factor |
P2RX2 | 10.99 | Purinergic Receptor P2X 2 |
GRM1 | 7.27 | Glutamate Metabotropic Receptor 1 |
CTNNB1 | 4.63 | Catenin Beta 1 |
MAPK1 | 4.55 | Mitogen-Activated Protein Kinase 1 |
FMR1 | 3.52 | Fragile X Messenger Ribonucleoprotein 1 |
BTD | 3.33 | Biotinidase |
CACNA1D | 3.04 | Calcium Voltage-Gated Channel Subunit Alpha1 D |
ARSA | 1.94 | Arylsulfatase A |
OPA1 | 1.74 | OPA1 Mitochondrial Dynamin Like GTPase |
AP (n = 13) | ||
BDNF-AS | 17.96 | BDNF Antisense RNA |
BDNF | 14.64 | Brain Derived Neurotrophic Factor |
P2RX2 | 9.85 | Purinergic Receptor P2X 2 |
MALAT1 | 7.64 | Metastasis Associated Lung Adenocarcinoma Transcript 1 |
GRM1 | 7.52 | Glutamate Metabotropic Receptor 1 |
NTRK2 | 6.70 | Neurotrophic Receptor Tyrosine Kinase 2 |
PDYN | 5.77 | Prodynorphin |
CALB2 | 5.36 | Calbindin 2 |
GAD1 | 5.34 | Glutamate Decarboxylase 1 |
CALB1 | 4.92 | Calbindin 1 |
GSR | 2.81 | Glutathione-Disulfide Reductase |
OPA1 | 2.01 | OPA1 Mitochondrial Dynamin Like GTPase |
CACNA1D | 1.86 | Calcium Voltage-Gated Channel Subunit Alpha1 D |
NH (n = 13) | ||
BDNF-AS | 17.38 | BDNF Antisense RNA |
BDNF | 14.43 | Brain Derived Neurotrophic Factor |
GRIA3 | 12.44 | Glutamate Ionotropic Receptor AMPA Type Subunit 3 |
P2RX2 | 9.84 | Purinergic Receptor P2X 2 |
EMSLR | 9.44 | E2F1 MRNA Stabilizing LncRNA |
PVALB | 7.61 | Parvalbumin |
NTRK2 | 7.11 | Neurotrophic Receptor Tyrosine Kinase 2 |
GPHN | 5.94 | Gephyrin |
GSK3B | 5.76 | Glycogen Synthase Kinase 3 Beta |
CABP4 | 4.20 | Calcium Binding Protein 4 |
CACNA1D | 1.92 | Calcium Voltage-Gated Channel Subunit Alpha1 D |
OPA1 | 1.63 | OPA1 Mitochondrial Dynamin Like GTPase |
SCN8A | 1.00 | Sodium Voltage-Gated Channel Alpha Subunit 8 |
Gene | AcouStim Score | Name |
---|---|---|
BDNF-AS | 18.2 | BDNF Antisense RNA |
BDNF | 15.56 | Brain Derived Neurotrophic Factor |
GRIN1 | 10.3 | Glutamate Ionotropic Receptor NMDA Type Subunit 1 |
P2RX2 | 9.95 | Purinergic Receptor P2X 2 |
PVALB | 9.67 | Parvalbumin |
GRM5 | 9.23 | Glutamate Metabotropic Receptor 5 |
SYP | 8.94 | Synaptophysin |
EMSLR | 8.49 | E2F1 MRNA Stabilizing LncRNA |
GRM1 | 8.14 | Glutamate Metabotropic Receptor 1 |
DRD1 | 7 | Dopamine Receptor D1 |
MALAT1 | 6.89 | Metastasis Associated Lung Adenocarcinoma Transcript 1 |
ADCY10 | 6.59 | Adenylate Cyclase 10 |
NTRK2 | 6.55 | Neurotrophic Receptor Tyrosine Kinase 2 |
GLRA1 | 6.38 | Glycine Receptor Alpha 1 |
CALB1 | 6.31 | Calbindin 1 |
SLC12A5 | 5.79 | Solute Carrier Family 12 Member 5 |
CALB2 | 5.67 | Calbindin 2 |
SLC17A6 | 5.66 | Solute Carrier Family 17 Member 6 |
GAD1 | 5.48 | Glutamate Decarboxylase 1 |
GLRB | 5.13 | Glycine Receptor Beta |
FOS | 4.95 | Fos Proto-Oncogene, AP-1 Transcription Factor Subunit |
FMR1 | 4.85 | Fragile X Messenger Ribonucleoprotein 1 |
CREB1 | 4.65 | CAMP Responsive Element Binding Protein 1 |
MAPK1 | 4.51 | Mitogen-Activated Protein Kinase 1 |
GSR | 2.74 | Glutathione-Disulfide Reductase |
EGR1 | 2.29 | Early Growth Response 1 |
OPA1 | 2.29 | OPA1 Mitochondrial Dynamin Like GTPase |
BLZF1 | 2.03 | Basic Leucine Zipper Nuclear Factor 1 |
CACNA1D | 2 | Calcium Voltage-Gated Channel Subunit Alpha1 D |
JUN | 1.56 | Jun Proto-Oncogene, AP-1 Transcription Factor Subunit |
Gene | Tinnitus Score | Name |
---|---|---|
BDNF-AS | 21.22 | BDNF Antisense RNA |
BDNF | 18.83 | Brain Derived Neurotrophic Factor |
GRIA2 | 15.41 | Glutamate Ionotropic Receptor AMPA Type Subunit 2 |
P2RX2 | 11.36 | Purinergic Receptor P2X 2 |
NTF3 | 10.85 | Neurotrophin 3 |
GRIN2A | 10.11 | Glutamate Ionotropic Receptor NMDA Type Subunit 2A |
SYP | 9.93 | Synaptophysin |
GRIN1 | 9.49 | Glutamate Ionotropic Receptor NMDA Type Subunit 1 |
MALAT1 | 8.93 | Metastasis Associated Lung Adenocarcinoma Transcript 1 |
GRM5 | 8.91 | Glutamate Metabotropic Receptor 5 |
EMSLR | 8.69 | E2F1 MRNA Stabilizing LncRNA |
GRM1 | 8.31 | Glutamate Metabotropic Receptor 1 |
PDYN | 7.26 | Prodynorphin |
GPHN | 6.55 | Gephyrin |
NGF | 6.21 | Nerve Growth Factor |
CTNNB1 | 5.32 | Catenin Beta 1 |
SLC17A6 | 5.27 | Solute Carrier Family 17 Member 6 |
CALB2 | 5.15 | Calbindin 2 |
GLRA1 | 5.01 | Glycine Receptor Alpha 1 |
GAD1 | 4.94 | Glutamate Decarboxylase 1 |
MAPK1 | 4.69 | Mitogen-Activated Protein Kinase 1 |
GLRB | 4.5 | Glycine Receptor Beta |
CACNA1D | 4.49 | Calcium Voltage-Gated Channel Subunit Alpha1 D |
NTRK3 | 4.32 | Neurotrophic Receptor Tyrosine Kinase 3 |
GSK3B | 4.09 | Glycogen Synthase Kinase 3 Beta |
CREB1 | 4.02 | CAMP Responsive Element Binding Protein 1 |
MAPK3 | 3.18 | Mitogen-Activated Protein Kinase 3 |
FGF2 | 3.06 | Fibroblast Growth Factor 2 |
BTD | 3.05 | Biotinidase |
FOS | 2.79 | Fos Proto-Oncogene, AP-1 Transcription Factor Subunit |
EGR1 | 2.64 | Early Growth Response 1 |
NTRK1 | 2.58 | Neurotrophic Receptor Tyrosine Kinase 1 |
ARSA | 1.81 | Arylsulfatase A |
OPA1 | 1.46 | OPA1 Mitochondrial Dynamin Like GTPase |
JUN | 1.33 | Jun Proto-Oncogene, AP-1 Transcription Factor Subunit |
SCN8A | 1.31 | Sodium Voltage-Gated Channel Alpha Subunit 8 |
PCAT1 | 0.95 | Prostate Cancer Associated Transcript 1 |
References
- Baguley, D.; McFerran, D.; Hall, D. Tinnitus. Lancet Lond. Engl. 2013, 382, 1600–1607. [Google Scholar] [CrossRef] [PubMed]
- Pavlinkova, G. Molecular Aspects of the Development and Function of Auditory Neurons. Int. J. Mol. Sci. 2020, 22, E131. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Wang, M.; Zhang, C. Mechanisms of Age-Related Hearing Loss at the Auditory Nerve Central Synapses and Postsynaptic Neurons in the Cochlear Nucleus. Hear. Res. 2024, 442, 108935. [Google Scholar] [CrossRef] [PubMed]
- Dehmel, S.; Pradhan, S.; Koehler, S.; Bledsoe, S.; Shore, S. Noise Overexposure Alters Long-Term Somatosensory-Auditory Processing in the Dorsal Cochlear Nucleus--Possible Basis for Tinnitus-Related Hyperactivity? J. Neurosci. 2012, 32, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
- Gil-Loyzaga, P.; Carricondo, F.; Bartolomé, M.V.; Iglesias, M.C.; Rodríguez, F.; Poch-Broto, J. Cellular and Molecular Bases of Neuroplasticity: Brainstem Effects after Cochlear Damage. Acta Oto-Laryngol. 2010, 130, 318–325. [Google Scholar] [CrossRef]
- Shore, S.; Zhou, J.; Koehler, S. Neural Mechanisms Underlying Somatic Tinnitus. Prog. Brain Res. 2007, 166, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Manohar, S.; Dahar, K.; Adler, H.J.; Dalian, D.; Salvi, R. Noise-Induced Hearing Loss: Neuropathic Pain via Ntrk1 Signaling. Mol. Cell. Neurosci. 2016, 75, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Knipper, M.; Singer, W.; Schwabe, K.; Hagberg, G.E.; Li Hegner, Y.; Rüttiger, L.; Braun, C.; Land, R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front. Neural Circuits 2021, 15, 785603. [Google Scholar] [CrossRef] [PubMed]
- Caspary, D.M.; Ling, L.; Turner, J.G.; Hughes, L.F. Inhibitory Neurotransmission, Plasticity and Aging in the Mammalian Central Auditory System. J. Exp. Biol. 2008, 211, 1781–1791. [Google Scholar] [CrossRef]
- Zeng, F.-G. Tinnitus and Hyperacusis: Central Noise, Gain and Variance. Curr. Opin. Physiol. 2020, 18, 123–129. [Google Scholar] [CrossRef]
- Searchfield, G.D. Sense and Sensibility: A Review of the Behavioral Neuroscience of Tinnitus Sound Therapy and a New Typology. Curr. Top. Behav. Neurosci. 2021, 51, 213–247. [Google Scholar] [CrossRef] [PubMed]
- Turrigiano, G. Homeostatic Synaptic Plasticity: Local and Global Mechanisms for Stabilizing Neuronal Function. Cold Spring Harb. Perspect. Biol. 2012, 4, a005736. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; O’Donohue, H.; Manis, P. Short-Term Plasticity and Auditory Processing in the Ventral Cochlear Nucleus of Normal and Hearing-Impaired Animals. Hear. Res. 2011, 279, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Kraus, K.S.; Ding, D.; Jiang, H.; Lobarinas, E.; Sun, W.; Salvi, R.J. Relationship between Noise-Induced Hearing-Loss, Persistent Tinnitus and Growth-Associated Protein-43 Expression in the Rat Cochlear Nucleus: Does Synaptic Plasticity in Ventral Cochlear Nucleus Suppress Tinnitus? Neuroscience 2011, 194, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Manohar, S.; Ramchander, P.V.; Salvi, R.; Seigel, G.M. Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure. Neuroscience 2019, 399, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Ashtiani, M.; Salehzadeh-Yazdi, A.; Razaghi-Moghadam, Z.; Hennig, H.; Wolkenhauer, O.; Mirzaie, M.; Jafari, M. A Systematic Survey of Centrality Measures for Protein-Protein Interaction Networks. BMC Syst. Biol. 2018, 12, 80. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
- Knipper, M.; Van Dijk, P.; Nunes, I.; Rüttiger, L.; Zimmermann, U. Advances in the Neurobiology of Hearing Disorders: Recent Developments Regarding the Basis of Tinnitus and Hyperacusis. Prog. Neurobiol. 2013, 111, 17–33. [Google Scholar] [CrossRef]
- Mazurek, B.; Rose, M.; Schulze, H.; Dobel, C. Systems Medicine Approach for Tinnitus with Comorbid Disorders. Nutrients 2022, 14, 4320. [Google Scholar] [CrossRef]
- Zhang, A.M.; Song, H.; Shen, Y.H.; Liu, Y. Construction of a Gene-Gene Interaction Network with a Combined Score across Multiple Approaches. Genet. Mol. Res. GMR 2015, 14, 7018–7030. [Google Scholar] [CrossRef]
- Sherman, B.T.; Huang, D.W.; Tan, Q.; Guo, Y.; Bour, S.; Liu, D.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. DAVID Knowledgebase: A Gene-Centered Database Integrating Heterogeneous Gene Annotation Resources to Facilitate High-Throughput Gene Functional Analysis. BMC Bioinform. 2007, 8, 426. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, B.; Dogan, M.; Boyacioglu, O.; Sahin, M.; Orenay-Boyacioglu, S. Association between Chronic Tinnitus and Brain-Derived Neurotrophic Factor Antisense RNA Polymorphisms Linked to the Val66Met Polymorphism in BDNF. Gene 2023, 875, 147507. [Google Scholar] [CrossRef]
- Yan, D.; Zhu, Y.; Walsh, T.; Xie, D.; Yuan, H.; Sirmaci, A.; Fujikawa, T.; Wong, A.C.Y.; Loh, T.L.; Du, L.; et al. Mutation of the ATP-Gated P2X(2) Receptor Leads to Progressive Hearing Loss and Increased Susceptibility to Noise. Proc. Natl. Acad. Sci. USA 2013, 110, 2228–2233. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.; Knipper, M.; Mazurek, B. Candidate Key Proteins in Tinnitus: A Bioinformatic Study of Synaptic Transmission in Spiral Ganglion Neurons. Cell. Mol. Neurobiol. 2023, 43, 4189–4207. [Google Scholar] [CrossRef]
- Morgan, J.R.; Comstra, H.S.; Cohen, M.; Faundez, V. Presynaptic Membrane Retrieval and Endosome Biology: Defining Molecularly Heterogeneous Synaptic Vesicles. Cold Spring Harb. Perspect. Biol. 2013, 5, a016915. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Long, J.; Liu, J.; Chai, Z.; Kang, X.; Wang, C. Molecular Mechanisms for the Coupling of Endocytosis to Exocytosis in Neurons. Front. Mol. Neurosci. 2017, 10, 47. [Google Scholar] [CrossRef]
- Chmielowska-Bąk, J.; Izbiańska, K.; Deckert, J. The Toxic Doppelganger: On the Ionic and Molecular Mimicry of Cadmium. Acta Biochim. Pol. 2013, 60, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Kim, K.-Y.; Gelernter, J.; Park, I.-H.; Zhang, H. Ethanol Upregulates NMDA Receptor Subunit Gene Expression in Human Embryonic Stem Cell-Derived Cortical Neurons. PLoS ONE 2015, 10, e0134907. [Google Scholar] [CrossRef]
- Green, S.H.; Bailey, E.; Wang, Q.; Davis, R.L. The Trk A, B, C’s of Neurotrophins in the Cochlea. Anat. Rec. 2012, 295, 1877–1895. [Google Scholar] [CrossRef]
- Singer, W.; Panford-Walsh, R.; Knipper, M. The Function of BDNF in the Adult Auditory System. Neuropharmacology 2014, 76 Pt C, 719–728. [Google Scholar] [CrossRef]
- Esvald, E.-E.; Tuvikene, J.; Sirp, A.; Patil, S.; Bramham, C.R.; Timmusk, T. CREB Family Transcription Factors Are Major Mediators of BDNF Transcriptional Autoregulation in Cortical Neurons. J. Neurosci. 2020, 40, 1405–1426. [Google Scholar] [CrossRef] [PubMed]
- Scott-Solomon, E.; Kuruvilla, R. Mechanisms of Neurotrophin Trafficking via Trk Receptors. Mol. Cell. Neurosci. 2018, 91, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Regua, A.T.; Doheny, D.; Arrigo, A.; Lo, H.-W. 284-Trk Receptor Tyrosine Kinases in Metastasis and Cancer Therapy. Discov. Med. 2019, 28, 195–203. [Google Scholar] [PubMed]
- Nicoletti, V.G.; Pajer, K.; Calcagno, D.; Pajenda, G.; Nógrádi, A. The Role of Metals in the Neuroregenerative Action of BDNF, GDNF, NGF and Other Neurotrophic Factors. Biomolecules 2022, 12, 1015. [Google Scholar] [CrossRef] [PubMed]
- Druga, R.; Salaj, M.; Al-Redouan, A. Parvalbumin—Positive Neurons in the Neocortex: A Review. Physiol. Res. 2023, 72, S173–S191. [Google Scholar] [CrossRef] [PubMed]
- Knipper, M.; Mazurek, B.; van Dijk, P.; Schulze, H. Too Blind to See the Elephant? Why Neuroscientists Ought to Be Interested in Tinnitus. J. Assoc. Res. Otolaryngol. JARO 2021, 22, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Shore, S.E.; Wu, C. Mechanisms of Noise-Induced Tinnitus: Insights from Cellular Studies. Neuron 2019, 103, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Selten, M.; van Bokhoven, H.; Nadif Kasri, N. Inhibitory Control of the Excitatory/Inhibitory Balance in Psychiatric Disorders. F1000Research 2018, 7, 23. [Google Scholar] [CrossRef]
- Hanno-Iijima, Y.; Tanaka, M.; Iijima, T. Activity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways. PLoS ONE 2015, 10, e0134296. [Google Scholar] [CrossRef]
- Browne, C.J.; Morley, J.W.; Parsons, C.H. Tracking the Expression of Excitatory and Inhibitory Neurotransmission-Related Proteins and Neuroplasticity Markers after Noise Induced Hearing Loss. PLoS ONE 2012, 7, e33272. [Google Scholar] [CrossRef] [PubMed]
- Eisner, D.; Neher, E.; Taschenberger, H.; Smith, G. Physiology of Intracellular Calcium Buffering. Physiol. Rev. 2023, 103, 2767–2845. [Google Scholar] [CrossRef]
- Förster, C.R.; Illing, R.B. Plasticity of the Auditory Brainstem: Cochleotomy-Induced Changes of Calbindin-D28k Expression in the Rat. J. Comp. Neurol. 2000, 416, 173–187. [Google Scholar] [CrossRef]
- Sharma, S.; Nag, T.C.; Thakar, A.; Bhardwaj, D.N.; Roy, T.S. The Aging Human Cochlear Nucleus: Changes in the Glial Fibrillary Acidic Protein, Intracellular Calcium Regulatory Proteins, GABA Neurotransmitter and Cholinergic Receptor. J. Chem. Neuroanat. 2014, 56, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Korada, S.; Schwartz, I.R. Calcium Binding Proteins and the AMPA Glutamate Receptor Subunits in Gerbil Cochlear Nucleus. Hear. Res. 2000, 140, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Burette, A.; Jalenques, I.; Romand, R. Neurotrophin Receptor Immunostaining in the Rat Ventral Cochlear Nucleus. Brain Res. 1997, 776, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Ateaque, S.; Merkouris, S.; Wyatt, S.; Allen, N.D.; Xie, J.; DiStefano, P.S.; Lindsay, R.M.; Barde, Y.-A. Selective Activation and Down-Regulation of Trk Receptors by Neurotrophins in Human Neurons Co-Expressing TrkB and TrkC. J. Neurochem. 2022, 161, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Vetró, A.; Kiss, E.; Kapornai, K.; Daróczi, G.; Mayer, L.; Tamás, Z.; Baji, I.; Gádoros, J.; King, N.; et al. Association of the Neurotrophic Tyrosine Kinase Receptor 3 (NTRK3) Gene and Childhood-Onset Mood Disorders. Am. J. Psychiatry 2008, 165, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.G.; Wang, T.; Olafsson, P.; Lu, B. Neurotrophin 3 Potentiates Neuronal Activity and Inhibits Gamma-Aminobutyratergic Synaptic Transmission in Cortical Neurons. Proc. Natl. Acad. Sci. USA 1994, 91, 12341–12345. [Google Scholar] [CrossRef]
- Fuentes-Santamaría, V.; Alvarado, J.C.; López-Muñoz, D.F.; Melgar-Rojas, P.; Gabaldón-Ull, M.C.; Juiz, J.M. Glia-Related Mechanisms in the Anteroventral Cochlear Nucleus of the Adult Rat in Response to Unilateral Conductive Hearing Loss. Front. Neurosci. 2014, 8, 319. [Google Scholar] [CrossRef]
- Rak, K.; Völker, J.; Frenz, S.; Scherzad, A.; Schendzielorz, P.; Radeloff, A.; Jablonka, S.; Hagen, R.; Mlynski, R. Effects of the Neurotrophic Factors BDNF, NT-3, and FGF2 on Dissociated Neurons of the Cochlear Nucleus. Neuroreport 2014, 25, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Suneja, S.K.; Yan, L.; Potashner, S.J. Regulation of NT-3 and BDNF Levels in Guinea Pig Auditory Brain Stem Nuclei after Unilateral Cochlear Ablation. J. Neurosci. Res. 2005, 80, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, P.P.; Malgrange, B.; Staecker, H.; Moghadass, M.; Van de Water, T.R.; Moonen, G. Neurotrophins Affect Survival and Neuritogenesis by Adult Injured Auditory Neurons in Vitro. Neuroreport 1994, 5, 865–868. [Google Scholar] [CrossRef]
- Herdegen, T.; Leah, J.D. Inducible and Constitutive Transcription Factors in the Mammalian Nervous System: Control of Gene Expression by Jun, Fos and Krox, and CREB/ATF Proteins. Brain Res. Brain Res. Rev. 1998, 28, 370–490. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.; Olive, M.; Aggarwal, S.; Krylov, D.; Ginty, D.D.; Vinson, C. A Dominant-Negative Inhibitor of CREB Reveals That It Is a General Mediator of Stimulus-Dependent Transcription of c-Fos. Mol. Cell. Biol. 1998, 18, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Okuno, H. Regulation and Function of Immediate-Early Genes in the Brain: Beyond Neuronal Activity Markers. Neurosci. Res. 2011, 69, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Rüttiger, L.; Panford-Walsh, R.; Singer, W.; Schulze, H.; Kilian, S.B.; Hadjab, S.; Zimmermann, U.; Köpschall, I.; Rohbock, K.; et al. Tinnitus Behavior and Hearing Function Correlate with the Reciprocal Expression Patterns of BDNF and Arg3.1/Arc in Auditory Neurons Following Acoustic Trauma. Neuroscience 2007, 145, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Keilmann, A.; Herdegen, T. The C-Fos Transcription Factor in the Auditory Pathway of the Juvenile Rat: Effects of Acoustic Deprivation and Repetitive Stimulation. Brain Res. 1997, 753, 291–298. [Google Scholar] [CrossRef] [PubMed]
- van Zwieten, G.; Jahanshahi, A.; van Erp, M.L.; Temel, Y.; Stokroos, R.J.; Janssen, M.L.F.; Smit, J.V. Alleviation of Tinnitus With High-Frequency Stimulation of the Dorsal Cochlear Nucleus: A Rodent Study. Trends Hear. 2019, 23, 2331216519835080. [Google Scholar] [CrossRef]
- Hong, Z.-Y.; Yu, S.-S.; Wang, Z.-J.; Zhu, Y.-Z. SCM-198 Ameliorates Cognitive Deficits, Promotes Neuronal Survival and Enhances CREB/BDNF/TrkB Signaling without Affecting Aβ Burden in AβPP/PS1 Mice. Int. J. Mol. Sci. 2015, 16, 18544–18563. [Google Scholar] [CrossRef]
- Sun, J.; Nan, G. The Extracellular Signal-Regulated Kinase 1/2 Pathway in Neurological Diseases: A Potential Therapeutic Target (Review). Int. J. Mol. Med. 2017, 39, 1338–1346. [Google Scholar] [CrossRef] [PubMed]
- Plotnikov, A.; Zehorai, E.; Procaccia, S.; Seger, R. The MAPK Cascades: Signaling Components, Nuclear Roles and Mechanisms of Nuclear Translocation. Biochim. Biophys. Acta 2011, 1813, 1619–1633. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Ham, J.; Hetman, M.; Poser, S.; Yan, C.; Xia, Z. Differential Regulation of Mitogen-Activated Protein Kinases ERK1/2 and ERK5 by Neurotrophins, Neuronal Activity, and cAMP in Neurons. J. Neurosci. 2001, 21, 434–443. [Google Scholar] [CrossRef]
- Janz, P.; Illing, R.-B. A Role for Microglial Cells in Reshaping Neuronal Circuitry of the Adult Rat Auditory Brainstem after Its Sensory Deafferentation. J. Neurosci. Res. 2014, 92, 432–445. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, Y.; Yang, J. Selective Inhibition of Extracellular Signal-Regulated Kinases 1/2 Blocks Nerve Growth Factor to Brain-Derived Neurotrophic Factor Signaling and Suppresses the Development of and Reverses Already Established Pain Behavior in Rats. Neuroscience 2012, 206, 224–236. [Google Scholar] [CrossRef]
- Atila, N.E.; Atila, A.; Kaya, Z.; Bulut, Y.E.; Oner, F.; Topal, K.; Bayraktutan, Z.; Bakan, E. The Role of Manganese, Cadmium, Chromium and Selenium on Subjective Tinnitus. Biol. Trace Elem. Res. 2021, 199, 2844–2850. [Google Scholar] [CrossRef] [PubMed]
- Lyons, M.R.; West, A.E. Mechanisms of Specificity in Neuronal Activity-Regulated Gene Transcription. Prog. Neurobiol. 2011, 94, 259–295. [Google Scholar] [CrossRef]
- Saheki, Y.; De Camilli, P. Synaptic Vesicle Endocytosis. Cold Spring Harb. Perspect. Biol. 2012, 4, a005645. [Google Scholar] [CrossRef]
- Kim, T.; Tanaka-Yamamoto, K. Postsynaptic Stability and Variability Described by a Stochastic Model of Endosomal Trafficking. Front. Cell. Neurosci. 2019, 13, 72. [Google Scholar] [CrossRef]
- Bliss, T.V.P.; Cooke, S.F. Long-Term Potentiation and Long-Term Depression: A Clinical Perspective. Clin. Sao Paulo Braz. 2011, 66 (Suppl. S1), 3–17. [Google Scholar] [CrossRef]
- Tagoe, T.; Deeping, D.; Hamann, M. Saturation of Long-Term Potentiation in the Dorsal Cochlear Nucleus and Its Pharmacological Reversal in an Experimental Model of Tinnitus. Exp. Neurol. 2017, 292, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, K.A.; Cho, G.-W.; Maharajan, N.; Jang, C.H. A Review on Peripheral Tinnitus, Causes, and Treatments from the Perspective of Autophagy. Exp. Neurobiol. 2022, 31, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Song, A.; Cho, G.-W.; Vijayakumar, K.A.; Moon, C.; Ang, M.J.; Kim, J.; Park, I.; Jang, C.H. Neuroprotective Effect of Valproic Acid on Salicylate-Induced Tinnitus. Int. J. Mol. Sci. 2021, 23, 23. [Google Scholar] [CrossRef] [PubMed]
- Shore, S.E. Plasticity of Somatosensory Inputs to the Cochlear Nucleus—Implications for Tinnitus. Hear. Res. 2011, 281, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.-S.; Mei, L.; Chen, J.-Y.; Huang, Z.-W.; Wu, H. Expression of Immediate-Early Genes in the Dorsal Cochlear Nucleus in Salicylate-Induced Tinnitus. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, F.; van Nierop, P.; Andres-Alonso, M.; Byrnes, A.; Cijsouw, T.; Coba, M.P.; Cornelisse, L.N.; Farrell, R.J.; Goldschmidt, H.L.; Howrigan, D.P.; et al. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron 2019, 103, 217–234.e4. [Google Scholar] [CrossRef] [PubMed]
- Maguschak, K.A.; Ressler, K.J. Beta-Catenin Is Required for Memory Consolidation. Nat. Neurosci. 2008, 11, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Bamji, S.X.; Shimazu, K.; Kimes, N.; Huelsken, J.; Birchmeier, W.; Lu, B.; Reichardt, L.F. Role of Beta-Catenin in Synaptic Vesicle Localization and Presynaptic Assembly. Neuron 2003, 40, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Sweatt, J.D. The Neuronal MAP Kinase Cascade: A Biochemical Signal Integration System Subserving Synaptic Plasticity and Memory. J. Neurochem. 2001, 76, 1–10. [Google Scholar] [CrossRef]
- Santos, P.; da Silva, L.E.C.M.; Leão, R.M. Specific Immediate Early Gene Expression Induced by High Doses of Salicylate in the Cochlear Nucleus and Inferior Colliculus of the Rat. Braz. J. Otorhinolaryngol. 2017, 83, 155–161. [Google Scholar] [CrossRef]
- Igelhorst, B.A.; Niederkinkhaus, V.; Karus, C.; Lange, M.D.; Dietzel, I.D. Regulation of Neuronal Excitability by Release of Proteins from Glial Cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140194. [Google Scholar] [CrossRef] [PubMed]
- Numakawa, T.; Yokomaku, D.; Kiyosue, K.; Adachi, N.; Matsumoto, T.; Numakawa, Y.; Taguchi, T.; Hatanaka, H.; Yamada, M. Basic Fibroblast Growth Factor Evokes a Rapid Glutamate Release through Activation of the MAPK Pathway in Cultured Cortical Neurons. J. Biol. Chem. 2002, 277, 28861–28869. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.H.; Hyson, R.L. Intrinsic Physiological Properties Underlie Auditory Response Diversity in the Avian Cochlear Nucleus. J. Neurophysiol. 2019, 121, 908–927. [Google Scholar] [CrossRef] [PubMed]
- Romero, G.E.; Trussell, L.O. Central Circuitry and Function of the Cochlear Efferent Systems. Hear. Res. 2022, 425, 108516. [Google Scholar] [CrossRef] [PubMed]
- Leitch, B. Parvalbumin Interneuron Dysfunction in Neurological Disorders: Focus on Epilepsy and Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 5549. [Google Scholar] [CrossRef]
- Knipper, M.; van Dijk, P.; Schulze, H.; Mazurek, B.; Krauss, P.; Scheper, V.; Warnecke, A.; Schlee, W.; Schwabe, K.; Singer, W.; et al. The Neural Bases of Tinnitus: Lessons from Deafness and Cochlear Implants. J. Neurosci. 2020, 40, 7190–7202. [Google Scholar] [CrossRef]
Process | Number | Genes |
---|---|---|
AP/AcouStim/Tin | 11 | GAD1 MALAT1 BDNF CALB2 BDNF-AS* MAPK1 GRM1 CACNA1D EMSLR P2RX2* OPA1* |
AP/AcouStim | 5 | NTRK2 PVALB GSR CALB1 FMR1 |
AP/Tin | 7 | CTNNB1 GPHN GSK3B PDYN ARSA* SCN8A BTD* |
AcouStim/Tin | 10 | SLC17A6 GLRB GLRA1 EGR1 GRIN1 FOS JUN GRM5 SYP CREB1 |
AP | 2 | CABP4 GRIA3 |
AcouStim | 4 | BLZF1 SLC12A5 ADCY10* DRD1 |
Tin | 9 | GRIA2 NTF3 GRIN2A PCAT1 NGF NTRK3 MAPK3 NTRK1 FGF2 |
AP (42 Chart Records) | AcouStim (100 Chart Records) | Tin (218 Chart Records) |
---|---|---|
Cellular components: p = 3.5E-10 to 3.7E-5; fold enrichment 14–80 | Cellular components: p = 1.3E-10 to 1.7E-6; fold enrichment 18–80 | Cellular components: p = 7.8E-14 to 2.0E-5; fold enrichment 13–74 |
-dendrite (10) -synapse (8) -axon (7) -terminal bouton (4) -axon terminus (4) | -dendrite (11) -neuron projection (10) -synapse (10) -terminal bouton (5) -dendritic spine (6) | -dendrite (14) -postsynaptic membrane (8) -neuron projection (8) -synaptic vesicle (6) -excitatory synapse (4) |
Biological processes: p = 1.1E-4 to 5.7E-3; fold enrichment 18–335 | Biological processes: p = 4.4E-8 to 4.1E-4; fold enrichment 22–189 | Biological processes: p = 9.1E-12 to 5.8E-6; fold enrichment 25–190 |
-regulation of long-term synaptic potentiation (3) -chemical synaptic transmission (5) -brain-derived neurotrophic factor receptor signaling pathway (2) | -chemical synaptic transmission (8) -excitatory postsynaptic potential (4) -regulation of postsynaptic cytosolic calcium ion concentration (3) -response to xenobiotic stimulus (5) -chloride transmembrane transport (4) | -chemical synaptic transmission (11) -excitatory postsynaptic potential (6) -nerve growth factor signaling pathway (4) -nervous system development (8) -negative regulation of neuron apoptotic process (6) |
HDP | Degree | Close | Betw | HSIP 1 | Coexp | Exp | Text | CS | EB |
---|---|---|---|---|---|---|---|---|---|
AP | |||||||||
BDNF | 14 | 0.81 | 0.20 | NTRK2 | 60 | 691 | 999 | 999 | 3.07 |
PVALB | 12 | 0.77 | 0.21 | GAD1 | 133 | 91 | 962 | 968 | 6.92 |
CALB2 | 84 | 0 | 965 | 967 | 9.29 | ||||
CALB1 | 82 | 0 | 962 | 964 | 3.29 | ||||
AcouStim | |||||||||
BDNF | 19 | 0.82 | 0.11 | NTRK2 | 60 | 691 | 999 | 999 | 3.24 |
PVALB | 17 | 0.77 | 0.07 | GAD1 | 133 | 91 | 962 | 968 | 3.47 |
CALB2 | 84 | 0 | 965 | 967 | 6.71 | ||||
(CALB1) 2 | (82) | (0) | (962) | (964) | (4.46) | ||||
Tinnitus | |||||||||
BDNF | 24 | 0.85 | 0.11 | NTRK3 | 65 | 65 | 999 | 999 | 17.5 |
NTRK1 | 60 | 65 | 999 | 999 | 8.81 | ||||
NTF3 | 82 | 958 | 774 | 991 | 14.01 | ||||
FOS | 20 | 0.76 | 0.05 | JUN | 690 | 999 | 999 | 999 | 6.39 |
CREB1 | 52 | 0 | 996 | 998 | 2.91 | ||||
EGR1 | 825 | 66 | 951 | 995 | 10.27 | ||||
MAPK3 | 55 | 450 | 907 | 994 | 4.79 | ||||
MAPK1 | 55 | 450 | 864 | 992 | 7.29 |
AP/AcouStim (6 Proteins, 16 Charts) | Tin (10 Proteins, 170 Charts) |
---|---|
Cellular components (proteins, fold enrichment); p = 4.7E-5 to 5.8E-3. | Cellular components (proteins, fold enrichment); p = 4.5E-4 to 4.4E-3. |
-terminal bouton (CALB1, CALB2, NTRK2; 282) -axon (BDNF, CALB1, NTRK2, PVALB; 39) -dendrite (BDNF, CALB1, CALB2, NTRK2; 31) -synapse (CALB1, CALB2, PVALB; 20) | -axon (BDNF, NTRK1, NTRK3, NTF3; 22) -RNA polymerase II transcription factor complex (3-FOS, JUN, CREB1; 50) -late endosome (MAPK1, MAPK3, NTRK1; 40) -transcription factor complex (FOS, JUN, CREB1; 26) -endoplasmic reticulum lumen (BDNF, MAPK1, MAPK3; 20) |
Biological processes (proteins, fold enrichment): p = 1.3E-3 to 3.9E-3. | Biological processes (proteins, fold enrichment): p = 4.8E-7 to 2.8E-5. |
-brain-derived neurotrophic factor receptor signaling pathway (BDNF, NTRK2; 1284) -regulation of long-term synaptic potentiation (CALB1, CALB2; 459) -regulation of presynaptic cytosolic calcium ion concentration (CALB1, CALB2; 428) | -cellular response to cadmium ion (FOS, JUN, MAPK1, MAPK3; 216) -cellular response to reactive oxygen species (FOS, JUN, MAPK1, MAPK3; 147) -nerve growth factor signaling pathway (BDNF, NTRK1, NTF3; 449) -nervous system development (FOS, BDNF, NTRK1, NTRK3, NTF3; 23) -transmembrane receptor protein tyrosine kinase signaling pathway (BDNF, NTRK1, NTRK3, NTF3; 57) |
Processes | Pathway | Members of the Pathway (HDP, HSIP) |
---|---|---|
AP | -Neurotrophin signaling | BDNF, NTRK2 |
pathway (4.1E-2) | ||
AcouStim | -Alcoholism (1.9E-4) | BDNF, CREB1, GRIN1, NTRK2 |
-cAMP signaling | BDNF, CREB1, FOS, GRIN1 | |
pathway (3.3E-4) | ||
-Ras signaling pathway | BDNF, GRIN1, NTRK2 | |
(7.0E-4) | ||
Tin | -Neurotrophin signaling | BDNF, NGF, NTF3, NTRK1, NTRK3, MAPK3 |
pathway (9.2E-9) | ||
-Ras signaling pathway | BDNF, NGF, NTF3, FGF2, NTRK1, MAPK3 | |
(7.0E-4) | ||
-MAPK signaling | BDNF, NGF, NTF3, FGF2, NTRK1, MAPK3 | |
pathway (9.7E-4) | ||
-PI3K-Akt signaling | BDNF, NGF, NTF3, FGF2, NTRK1, MAPK3 | |
pathway (1.2E-3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gross, J.; Knipper, M.; Mazurek, B. Candidate Key Proteins in Tinnitus—A Bioinformatic Study of Synaptic Transmission in the Cochlear Nucleus. Biomedicines 2024, 12, 1615. https://doi.org/10.3390/biomedicines12071615
Gross J, Knipper M, Mazurek B. Candidate Key Proteins in Tinnitus—A Bioinformatic Study of Synaptic Transmission in the Cochlear Nucleus. Biomedicines. 2024; 12(7):1615. https://doi.org/10.3390/biomedicines12071615
Chicago/Turabian StyleGross, Johann, Marlies Knipper, and Birgit Mazurek. 2024. "Candidate Key Proteins in Tinnitus—A Bioinformatic Study of Synaptic Transmission in the Cochlear Nucleus" Biomedicines 12, no. 7: 1615. https://doi.org/10.3390/biomedicines12071615
APA StyleGross, J., Knipper, M., & Mazurek, B. (2024). Candidate Key Proteins in Tinnitus—A Bioinformatic Study of Synaptic Transmission in the Cochlear Nucleus. Biomedicines, 12(7), 1615. https://doi.org/10.3390/biomedicines12071615