Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) for Patients—3-Year Follow-Up of Patients with Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACEi | Angiotensin-converting enzyme inhibitors |
ACOVA | Analysis of covariance AKI—acute kidney injury |
ARB | Angiotensin receptor blockers |
CKD | Chronic kidney disease |
CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration |
CV | Cardiovascular |
GLM | Generalized Linear Models |
eGFR | Estimated glomerular filtration rate |
GFR | Glomerular filtration rate |
KDIGO | Kidney Disease Improving Global Outcomes |
PASC | Post-acute sequelae of SARS-CoV-2 infection |
RAAS | Renin–angiotensin–aldosterone blockers |
RRT | Renal replacement therapy |
uACR | Urine albumin/creatinine ratio |
References
- Bashir, A.M.; Mukhtar, M.S.; Mohamed, Y.G.; Cetinkaya, O.; Fiidow, O.A. Prevalence of Acute Kidney Injury in COVID-19 Patients-Retrospective Single-Center Study. Infect. Drug Resist. 2022, 15, 1555–1560. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.S.; Ng, J.H.; Ross, D.W.; Sharma, P.; Shah, H.H.; Barnett, R.L.; Hazzan, A.D.; Fishbane, S.; Jhaveri, K.D.; on behalf of the Northwell COVID-19 Research Consortium and the Northwell Nephrology COVID-19 Research Consortium. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020, 98, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Schiffrin, E.L.; Flack, J.M.; Ito, S.; Muntner, P.; Webb, R.C. Hypertension and COVID-19. Am. J. Hypertens. 2020, 33, 373–374. [Google Scholar] [CrossRef] [PubMed]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Filev, R.; Rostaing, L.; Lyubomirova, M.; Bogov, B.; Kalinov, K.; Svinarov, D. COVID-19 Infection in Chronic Kidney Disease Patients in Bulgaria: Risk Factors for Death and Acute Kidney Injury. J. Pers. Med. 2022, 12, 1676. [Google Scholar] [CrossRef]
- Chang, R.; Elhusseiny, K.M.; Yeh, Y.C.; Sun, W.Z. COVID-19 ICU and mechanical ventilation patient characteristics and outcomes-A systematic review and meta-analysis. PLoS ONE 2021, 16, e0246318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chan, L.; Chaudhary, K.; Saha, A.; Chauhan, K.; Vaid, A.; Zhao, S.; Paranjpe, I.; Somani, S.; Richter, F.; Miotto, R.; et al. AKI in Hospitalized Patients with COVID-19. J. Am. Soc. Nephrol. 2020, 32, 151–160. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carvalho-Schneider, C.; Laurent, E.; Lemaignen, A.; Beaufils, E.; Bourbao-Tournois, C.; Laribi, S.; Flament, T.; Ferreira-Maldent, N.; Bruyère, F.; Stefic, K.; et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin. Microbiol. Infect. 2020, 27, 258–263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bliddal, S.; Banasik, K.; Pedersen, O.B.; Nissen, J.; Cantwell, L.; Schwinn, M.; Tulstrup, M.; Westergaard, D.; Ullum, H.; Brunak, S.; et al. Acute and persistent symptoms in non-hospitalized PCR-confirmed COVID-19 patients. Sci. Rep. 2021, 11, 13153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tenforde, M.W.; Kim, S.S.; Lindsell, C.J.; Billig Rose, E.; Shapiro, N.I.; Files, D.C.; Gibbs, K.W.; Erickson, H.L.; Steingrub, J.S.; Smithline, H.A.; et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network—United States, March-June 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 993–998. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goodall, B.L.; LeBlanc, J.J.; Hatchette, T.F.; Barrett, L.; Patriquin, G. Investigating the Sensitivity of Nasal or Throat Swabs: Combination of Both Swabs Increases the Sensitivity of SARS-CoV-2 Rapid Antigen Tests. Microbiol. Spectr. 2022, 10, e0021722. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Filev, R.; Rostaing, L.; Lyubomirova, M.; Bogov, B.; Kalinov, K.; Svinarov, D. Renin-angiotensin-aldosterone system blockers in Bulgarian COVID-19 patients with or without chronic kidney disease. Medicine 2022, 101, e31988. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bowe, B.; Xie, Y.; Xu, E.; Al-Aly, Z. Kidney Outcomes in Long COVID. J. Am. Soc. Nephrol. 2021, 32, 2851–2862. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kemec, Z.; Akgul, F. Are patients with COVID-19 at risk of long-term chronic kidney disease? Niger. J. Clin. Pract. 2023, 26, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Paidas, M.J.; Cosio, D.S.; Ali, S.; Kenyon, N.S.; Jayakumar, A.R. Long-Term Sequelae of COVID-19 in Experimental Mice. Mol. Neurobiol. 2022, 59, 5970–5986. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teixeira, J.P.; Barone, S.; Zahedi, K.; Soleimani, M. Kidney Injury in COVID-19: Epidemiology, Molecular Mechanisms and Potential Therapeutic Targets. Int. J. Mol. Sci. 2022, 23, 2242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cabrera Martimbianco, A.L.; Pacheco, R.L.; Bagattini, Â.M.; Riera, R. Frequency, signs and symptoms, and criteria adopted for long COVID-19: A systematic review. Int. J. Clin. Pract. 2021, 75, e14357. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lampl, B.M.J.; Buczovsky, M.; Martin, G.; Schmied, H.; Leitzmann, M.; Salzberger, B. Clinical and epidemiological data of COVID-19 from Regensburg, Germany: A retrospective analysis of 1084 consecutive cases. Infection 2021, 49, 661–669. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ziauddeen, N.; Gurdasani, D.; O’Hara, M.E.; Hastie, C.; Roderick, P.; Yao, G.; Alwan, N.A. Characteristics and impact of Long Covid: Findings from an online survey. PLoS ONE 2022, 17, e0264331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146, Erratum in Nat. Rev. Microbiol. 2023, 21, 408. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alkodaymi, M.S.; Omrani, O.A.; Fawzy, N.A.; Shaar, B.A.; Almamlouk, R.; Riaz, M.; Obeidat, M.; Obeidat, Y.; Gerberi, D.; Taha, R.M.; et al. Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 657–666. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tabacof, L.; Tosto-Mancuso, J.; Wood, J.; Cortes, M.; Kontorovich, A.; McCarthy, D.; Rizk, D.; Rozanski, G.; Breyman, E.; Nasr, L.; et al. Post-acute COVID-19 Syndrome Negatively Impacts Physical Function, Cognitive Function, Health-Related Quality of Life, and Participation. Am. J. Phys. Med. Rehabil. 2021, 101, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Pumar, M.I.; Gray, C.R.; Walsh, J.R.; Yang, I.A.; Rolls, T.A.; Ward, D.L. Anxiety and depression-Important psychological comorbidities of COPD. J. Thorac. Dis. 2014, 6, 1615–1631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giustino, G.; Croft, L.B.; Stefanini, G.G.; Bragato, R.; Silbiger, J.J.; Vicenzi, M.; Danilov, T.; Kukar, N.; Shaban, N.; Kini, A.; et al. Characterization of Myocardial Injury in Patients With COVID-19. J. Am. Coll. Cardiol. 2020, 76, 2043–2055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bois, M.C.; Boire, N.A.; Layman, A.J.; Aubry, M.-C.; Alexander, M.P.; Roden, A.C.; Hagen, C.E.; Quinton, R.A.; Larsen, C.; Erben, Y.; et al. COVID-19-Associated Nonocclusive Fibrin Microthrombi in the Heart. Circulation 2021, 143, 230–243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sechi, L.A.; Colussi, G.; Bulfone, L.; Brosolo, G.; Da Porto, A.; Peghin, M.; Patruno, V.; Tascini, C.; Catena, C. Short-term cardiac outcome in survivors of COVID-19: A systematic study after hospital discharge. Clin. Res. Cardiol. 2021, 110, 1063–1072. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Catena, C.; Colussi, G.; Bulfone, L.; Da Porto, A.; Tascini, C.; Sechi, L.A. Echocardiographic Comparison of COVID-19 Patients with or without Prior Biochemical Evidence of Cardiac Injury after Recovery. J. Am. Soc. Echocardiogr. 2021, 34, 193–195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Graaf, M.; Antoni, M.; ter Kuile, M.; Arbous, M.; Duinisveld, A.; Feltkamp, M.; Groeneveld, G.; Hinnen, S.; Janssen, V.; Lijfering, W.; et al. Short-term outpatient follow-up of COVID-19 patients: A multidisciplinary approach. EClinicalMedicine 2021, 32, 100731. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265–1273, Erratum in JAMA Cardiol. 2020, 5, 1308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dennis, A.; Wamil, M.; Alberts, J.; Oben, J.; Cuthbertson, D.J.; Wootton, D.; Crooks, M.; Gabbay, M.; Brady, M.; Hishmeh, L.; et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: A prospective, community-based study. BMJ Open 2021, 11, e048391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Z.; Wu, S.; Wang, Z.; Wang, Y.; Chen, H.; Wu, C.; Xiong, L. Long-term oral ACEI/ARB therapy is associated with disease severity in elderly COVID-19 omicron BA.2 patients with hypertension. BMC Infect. Dis. 2023, 23, 882. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Watanabe, A.; Iwagami, M.; Yasuhara, J.; Takagi, H.; Kuno, T. Protective effect of COVID-19 vaccination against long COVID syndrome: A systematic review and meta-analysis. Vaccine 2023, 41, 1783–1790. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, P.; Liu, J.; Liu, M. Effect of COVID-19 Vaccines on Reducing the Risk of Long COVID in the Real World: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 12422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- National Statistical Institute of Republic of Bulgaria. COVID 19 Statistical Data. Available online: https://www.nsi.bg/en/content/18120/basic-page/covid-19 (accessed on 10 April 2024).
- Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global Prevalence of Post-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and Systematic Review. J. Infect. Dis. 2022, 226, 1593–1607. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernández-de-Las-Peñas, C.; Palacios-Ceña, D.; Gómez-Mayordomo, V.; Florencio, L.L.; Cuadrado, M.L.; Plaza-Manzano, G.; Navarro-Santana, M. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: A systematic review and meta-analysis. Eur. J. Intern. Med. 2021, 92, 55–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martyniak, A.; Tomasik, P.J. A New Perspective on the Renin-Angiotensin System. Diagnostics 2022, 13, 16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Group | N | Gender | Middle Age Mean (SD) | Race (n%) | Arterial Hypertension | Diabetes | CVD |
---|---|---|---|---|---|---|---|
CKD + COVID-19 | 70 | Female: 21 (42.0%) | 56.8 (16.0) | Caucasians 100% | Yes 67 (95.7%) | Yes 40 (57.1%) | Yes 36 (51.4%) |
Male: 29 (58.0%) | No 3 (4.3%) | No 30 (42.9%) | No 34 (47.6%) | ||||
Non-CKD + COVID-19 | 50 | Female: 39 (55.7%) | 65.9 (12.6) | Caucasians 100% | Yes 12 (24%) | Yes 1 (2%) | Yes 9 (82%) |
Male: 31 (44.3%) | No 38 (76%) | No 49 (98%) | No 41 (18%) | ||||
CKD without COVID-19 | 20 | Female: 11 (55%) | 66.1 (11.8) | Caucasians 100% | Yes 18 (90%) | Yes 14 (70%) | Yes 9 (45%) |
Male: 9 (45%) | No 2 (10%) | No 6 (30%) | No 11 (55%) | ||||
Absolutely healthy | 20 | Female: 10 (50%) | 36.8 (7.8) | Caucasians 100% | None of the patients | None of the patients | None of the patients |
Male: 10 (50%) | |||||||
p-values | 0.49 | <0.0001 | NA | <0.0001 | <0.0001 | <0.0001 |
Parameter | Statistical Analysis | CKD Patients + COVID-19 | Non-CKD Patients + COVID-19 | CKD Patients without COVID-19 | Healthy Controls | p-Value |
---|---|---|---|---|---|---|
Number of patients | n | 70 | 50 | 20 | 20 | |
Creatinine (mcmol/L) | Median (Ranges) | 119 (57.0–930.0) | 79 (50.0–1295.0) | 139.1 (86.0–206.0) | 60 (49.0–83.0) | 0.0000 |
eGFR (mL/min) | Mean (SD) | 47.9 (23.0) | 80.4 (28.9) | 62.3 (22.6) | 111.1 (13.0) | <0.0001 |
Urea (mmol/L) | Median (Ranges) | 9.2 (2.7–75.2) | 5.5 (3.0–82.3) | 8.0 (5.0–23.0) | 3.0 (2.8–5.0) | 0.0000 |
D-Dimer (mg/L FEU) | Median (Ranges) | 0.9 (0.3–10.7) | 0.5 (0.3–8.1) | 0.7 (0.6–4.7) | 0.2 (0.1–0.4) | 0.0000 |
Leucocytes (109 cpl) | Mean (SD) | 14.8 (11.2) | 12.1 (10.5) | 8.2 (6.8) | 4.5 (2.5) | <0.0001 |
CRP (mg/L) | Median (Ranges) | 50.8 (0.5–320.6) | 29.8 (0.1–217.6) | 17.0 (1.1–30.0) | 1.5 (0.1–5.0) | 0.0003 |
Source | DF | Type III SS | MS | F Value | p-Value |
---|---|---|---|---|---|
CKD (Yes/No) | 1 | 17,817.1 | 17,817.1 | 12.10 | 0.0008 |
Gender | 1 | 11,804.1 | 11,804.1 | 8.01 | 0.0057 |
Age | 1 | 4622.4 | 4622.4 | 3.14 | 0.0798 |
Source | DF | SS | MS | F Value | p-Value |
---|---|---|---|---|---|
Model | 4 | 252,699.1 | 63,174.7 | 79.72 | <0.0001 |
Error | 92 | 72,904.1 | 792.4 | ||
Corrected Total | 96 | 325,603.3 |
Source | DF | Type III SS | MS | F Value | p-Value |
---|---|---|---|---|---|
CKD (Yes/No) | 1 | 6266.8 | 6266.8 | 7.91 | 0.0060 |
Gender | 1 | 5358.2 | 5358.2 | 6.76 | 0.0109 |
Age | 1 | 148.7 | 148.7 | 0.19 | 0.6658 |
Parameter | Medical Examination | Calculations |
---|---|---|
Fatigue (Up to 12 months) | Yes | 57 (58.76%) |
No | 40 (41.24%) | |
Cognitive disfunction (Up to 18 months) | Yes | 67 (69.07%) |
No | 30 (30.93%) | |
Chest pain (Up to 6 months) | Yes | 35 (36.08%) |
No | 62 (63.92%) | |
Sleep disturbances (Up to 12 months) | Yes | 60 (61.86%) |
No | 37 (38.14%) |
Laboratory Results and Symptoms | Creatinine (p-Values) | eGFR (p-Values) | ACR (p-Values) |
---|---|---|---|
Fatigue | 0.4040 | 0.1506 | 0.2740 |
Cognitive disfunction | 0.1870 | 0.0600 | 0.5398 |
Chest pain | 0.6632 | 0.1335 | 0.3814 |
Sleep disturbances | 0.7011 | 0.2278 | 0.4360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filev, R.; Lyubomirova, M.; Bogov, B.; Kalinov, K.; Hristova, J.; Svinarov, D.; Garev, A.; Rostaing, L. Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) for Patients—3-Year Follow-Up of Patients with Chronic Kidney Disease. Biomedicines 2024, 12, 1259. https://doi.org/10.3390/biomedicines12061259
Filev R, Lyubomirova M, Bogov B, Kalinov K, Hristova J, Svinarov D, Garev A, Rostaing L. Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) for Patients—3-Year Follow-Up of Patients with Chronic Kidney Disease. Biomedicines. 2024; 12(6):1259. https://doi.org/10.3390/biomedicines12061259
Chicago/Turabian StyleFilev, Rumen, Mila Lyubomirova, Boris Bogov, Krassimir Kalinov, Julieta Hristova, Dobrin Svinarov, Alexander Garev, and Lionel Rostaing. 2024. "Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) for Patients—3-Year Follow-Up of Patients with Chronic Kidney Disease" Biomedicines 12, no. 6: 1259. https://doi.org/10.3390/biomedicines12061259
APA StyleFilev, R., Lyubomirova, M., Bogov, B., Kalinov, K., Hristova, J., Svinarov, D., Garev, A., & Rostaing, L. (2024). Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) for Patients—3-Year Follow-Up of Patients with Chronic Kidney Disease. Biomedicines, 12(6), 1259. https://doi.org/10.3390/biomedicines12061259