The Impact of Cytokines on Coagulation Profile in COVID-19 Patients: Controlled for Socio-Demographic, Clinical, and Laboratory Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
- Form 1 (uncomplicated disease): Patients were either asymptomatic or displayed very mild symptoms. These were individuals without any underlying health conditions and with mild infection. Hospitalized patients had oxygen levels (pO2) above 94% and no signs of pneumonia on radiographic imaging.
- Form 2 (moderate disease): Patients exhibited a mild clinical presentation. They did not have any comorbidities and showed mild infection symptoms. Hospitalized patients had oxygen levels (pO2) above 94% but displayed signs of pneumonia on radiographic imaging, with or without hypoxia.
- Form 3 (severe disease): Patients presented with a moderately severe clinical picture. They experienced severe hypoxia requiring oxygen therapy (SpO2 < 90%), fever, multiple opacifications on radiographic imaging, and/or specific lung changes detected on CT scans.
2.2. Data Collection
2.3. Laboratory and Cytokine Analyses
2.4. Statistical Analysis
3. Results
3.1. Socio-Demographic Characteristics and Their Correlation with Coagulation Status in Patients with COVID-19 Infection
3.2. Differences in the Concentration of Cytokines in Patients with COVID-19 Infection in Relation to the Severity of the Clinical Manifestations
3.3. Cytokine Profile as a Predictor of Coagulation Status in a Model Controlled for Socio-Demographic Characteristics in Patients with COVID-19 Infection
3.4. Cytokine Profile as a Predictor of Coagulation Status in a Model Controlled for Clinical Characteristics in Patients with COVID-19 Infection
3.5. Cytokine Profile as a Predictor of Coagulation Status in a Model Controlled for Laboratory Parameters in Patients with COVID-19 Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE2 | angiotensin-converting enzyme 2 |
ARDS | acute respiratory distress syndrome |
IL | interleukin |
TNF-α | tumor necrosis factor α |
IFN-γ | interferon-gamma |
CAC | COVID-19 associated coagulopathy |
PT | prothrombin time |
aPTT | activated partial thromboplastin time |
INR | international normalized ratio |
BMI | body mass index |
CT | computed tomography |
ECG | electrocardiogram |
HDL | high-density lipoprotein |
LDL | low-density lipoprotein |
AST | aspartate aminotransferase |
ALT | alanine transaminase |
GGT | gamma-glutamyl transpeptidase |
CRP | C-reactive protein |
SD | standard deviation |
Th2 | CD4+ T helper cells |
Th1 | CD8+ T cytotoxic cells |
Treg | regulatory T cells |
References
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554776/ (accessed on 18 August 2023).
- COVID-19 Deaths|Who COVID-19 Dashboard World Health Organization. Available online: https://data.who.int/dashboards/covid19/deaths (accessed on 18 March 2024).
- Sarkar, M.; Madabhavi, I.V.; Quy, P.N.; Govindagoudar, M.B. COVID-19 and coagulopathy. Clin. Respir. J. 2021, 15, 1259–1274. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 2020, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. Hlh across Speciality Collaboration, U.K. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef] [PubMed]
- Jose, R.J.; Manuel, A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir. Med. 2020, 8, E46–E47. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, D.; Akhtar, T.; Hajra, A.; Gupta, M.; Das, A.; Chakraborty, S.; Pal, I.; Patel, N.; Amgai, B.; Ghosh, R.K. COVID-19 pandemic: Cardiovascular complications and future implications. Am. J. Cardiovasc. Drugs 2020, 20, 311–324. [Google Scholar] [CrossRef]
- D’Elia, R.V.; Harrison, K.; Oyston, P.C.; Lukaszewski, R.A.; Clark, G.C. Targeting the “cytokine storm” for therapeutic benefit. Clin. Vaccine Immunol. 2013, 20, 319–327. [Google Scholar] [CrossRef]
- Henderson, L.A.; Canna, S.W.; Schulert, G.S.; Volpi, S.; Lee, P.Y.; Kernan, K.F.; Caricchio, R.; Mahmud, S.; Hazen, M.M.; Halyabar, O. On the alert for cytokine storm: Immunopathology in COVID-19. Arthritis Rheumatol. 2020, 72, 1059–1063. [Google Scholar] [CrossRef]
- Sharma, S.; Mishra, A.; Ashraf, Z. COVID-19 Induced Coagulopathy (CIC): Thrombotic Manifestations of Viral Infection. TH Open 2022, 6, e70–e79. [Google Scholar] [CrossRef]
- Stefanini, G.G.; Montorfano, M.; Trabattoni, D.; Andreini, D.; Ferrante, G.; Ancona, M.; Metra, M.; Curello, S.; Maffeo, D.; Pero, G.; et al. ST-Elevation Myocardial Infarction in Patients with COVID-19: Clinical and Angiographic Outcomes. Circulation 2020, 141, 2113–2116. [Google Scholar] [CrossRef] [PubMed]
- Oxley, T.J.; Mocco, J.; Majidi, S.; Kellner, C.P.; Shoirah, H.; Singh, I.P.; De Leacy, R.A.; Shigematsu, T.; Ladner, T.R.; Yaeger, K.A.; et al. Large-Vessel Stroke as a Presenting Feature of COVID-19 in the Young. N. Engl. J. Med. 2020, 382, e60. [Google Scholar] [CrossRef] [PubMed]
- Thachil, J.; Tang, N.; Gando, S.; Falanga, A.; Cattaneo, M.; Levi, M.; Clark, C.; Iba, T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020, 18, 1023–1026. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, X.; Yan, S.; Tian, R.; Su, L.; Ding, X.; Zhang, S. Correlation between cytokines and coagulation-related parameters in patients with coronavirus disease 2019 admitted to ICU. Clin. Chim. Acta 2020, 510, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.H.; Conway, E.M. Cross talk pathways between coagulation and inflammation. Circ. Res. 2016, 118, 1392–1408. [Google Scholar] [CrossRef]
- Rad, F.; Dabbagh, A.; Dorgalaleh, A.; Biswas, A. The Relationship between Inflammatory Cytokines and Coagulopathy in Patients with COVID-19. J. Clin. Med. 2021, 10, 2020. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, X.; Li, X.; Meng, Y. Measurement of reference value range of serum inflammatory cytokines in normal population in Baoding area. Soc. Med. Health Manag. 2023, 4, 49–53. [Google Scholar]
- Dantas, A.T.; Marques, C.D.L.; da Rocha Junior, L.F.; Cavalcanti, M.B.; Gonçalves, S.M.C.; Cardoso, P.R.G.; Mariz, H.D.A.; Rego, M.J.B.D.M.; Duarte, A.L.B.P.; Pitta, I.D.R.; et al. Increased serum interleukin-9 levels in rheumatoid arthritis and systemic lupus erythematosus: Pathogenic role or just an epiphenomenon? Dis. Markers 2015, 2015, 519638. [Google Scholar] [CrossRef]
- Martínez-Reyes, C.P.; Gómez-Arauz, A.Y.; Torres-Castro, I.; Manjarrez-Reyna, A.N.; Palomera, L.F.; Olivos-García, A.; Mendoza-Tenorio, E.; Sánchez-Medina, G.A.; Islas-Andrade, S.; Melendez-Mier, G.; et al. Serum levels of interleukin-13 increase in subjects with insulin resistance but do not correlate with markers of low-grade systemic inflammation. J. Diabetes Res. 2018, 2018, 7209872. [Google Scholar] [CrossRef]
- Soderstrom, C.; Berstein, G.; Zhang, W.; Valdez, H.; Fitz, L.; Kuhn, M.; Fraser, S. Ultra-sensitive measurement of IL-17A and IL-17F in psoriasis patient serum and skin. AAPS J. 2017, 19, 1218–1222. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.S.S.D.; Cardoso, P.R.G.; Lima, E.V.D.A.; Pereira, M.C.; Duarte, A.L.B.P.; Pitta, I.D.R.; Pitta, M.G.D.R. IL-17A, IL-22, IL-6, and IL-21 serum levels in plaque-type psoriasis in Brazilian patients. Mediat. Inflamm. 2015, 2015, 819149. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, D.; Sperhake, J.-P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A.S. Autopsy findings and venous thromboembolism in patients with COVID-19: A prospective cohort study. Ann. Intern. Med. 2020, 173, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Lax, S.F.; Skok, K.; Zechner, P.; Kessler, H.H.; Kaufmann, N.; Koelblinger, C.; Vander, K.; Bargfrieder, U.; Trauner, M. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: Results from a prospective, single-center, clinicopathologic case series. Ann. Intern. Med. 2020, 173, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I.; Fredenburgh, J.C.; Eikelboom, J.W. A Test in Context: D-Dimer. J. Am. Coll. Cardiol. 2017, 70, 2411–2420. [Google Scholar] [CrossRef] [PubMed]
- Hadid, T.; Kafri, Z.; Al-Katib, A. Coagulation and anticoagulation in COVID-19. Blood Rev. 2021, 47, 100761. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.J.; Gattinoni, L.; Calfee, C.S. Acute respiratory distress syndrome. Lancet 2021, 398, 622–637. [Google Scholar] [CrossRef] [PubMed]
- Millar, F.R.; Summers, C.; Griffiths, M.J.; Toshner, M.R.; Proudfoot, A.G. The pulmonary endothelium in acute respiratory distress syndrome: Insights and therapeutic opportunities. Thorax 2016, 71, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Owens, A.P.; Mackman, N. Tissue factor and thrombosis: The clot starts here. Thromb. Haemost. 2010, 4, 432–439. [Google Scholar] [CrossRef]
- Kenawy, H.I.; Boral, I.; Bevington, A. Complement-coagulation cross-talk: A potential mediator of the physiological activation of complement by low pH. Front. Immunol. 2015, 6, 215. [Google Scholar] [CrossRef]
- Savla, S.R.; Prabhavalkar, K.S.; Bhatt, L.K. Cytokine storm associated coagulation complications in COVID-19 patients: Pathogenesis and Management. Expert Rev. Anti-Infect. Ther. 2021, 19, 1397–1413. [Google Scholar] [CrossRef] [PubMed]
- Eljilany, I.; Elzouki, A.N. D-Dimer, Fibrinogen, and IL-6 in COVID-19 Patients with Suspected Venous Thromboembolism: A Narrative Review. Vasc. Health Risk Manag. 2020, 16, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, M.; Ballotta, A.; Di Dedda, U.; Baryshnikova, E.; Dei Poli, M.; Resta, M.; Falco, M.; Albano, G.; Menicanti, L. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J. Thromb. Haemost. 2020, 18, 1747–1751. [Google Scholar] [CrossRef] [PubMed]
- Kerr, R.; Stirling, D.; Ludlam, C.A. Interleukin 6 and haemostasis. Br. J. Haematol. 2001, 115, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Jeong, W.I.; Tian, Z. Liver: An organ with predominant innate immunity. Hepatology 2008, 47, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kishimoto, T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp. Mol. Med. 2021, 53, 1116–1123. [Google Scholar] [CrossRef]
- Bacci, M.R.; Leme, R.C.; Zing, N.P.; Murad, N.; Adami, F.; Hinnig, P.F.; Feder, D.; Chagas, A.C.; Fonseca, F.L. IL-6 and TNF-α serum levels are associated with early death in community-acquired pneumonia patients. Braz. J. Med. Biol. Res. 2015, 48, 427–432. [Google Scholar] [CrossRef]
- Herold, T.; Jurinovic, V.; Arnreich, C.; Hellmuth, J.C.; von Bergwelt-Baildon, M.; Klein, M. Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. medRxiv 2020. [Google Scholar] [CrossRef]
- Ghazavi, A.; Ganji, A.; Keshavarzian, N.; Rabiemajd, S.; Mosayebi, G. Cytokine profile and disease severity in patients with COVID-19. Cytokine 2021, 137, 155323. [Google Scholar] [CrossRef]
- Ju, X.; Son, K.; Jamil, R.; Culgin, S.; Salter, B.; Miyasaki, K.; Fard, N.E.; Xiao, M.; Patel, Z.; Zhang, K.; et al. Eosinophil-independent IL-5 levels are increased in critically ill COVID-19 patients who survive. Allergy Asthma Clin. Immunol. 2023, 19, 58. [Google Scholar] [CrossRef]
- Kouro, T.; Takatsu, K. IL-5- and eosinophil-mediated inflammation: From discovery to therapy. Int. Immunol. 2009, 21, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Pala, D.; Pistis, M. Anti-IL5 Drugs in COVID-19 Patients: Role of Eosinophils in SARS-CoV-2-Induced Immunopathology. Front. Pharmacol. 2021, 12, 622554. [Google Scholar] [CrossRef] [PubMed]
- Kangro, K.; Wolberg, A.S.; Flick, M.J. Fibrinogen, Fibrin, and Fibrin Degradation Products in COVID-19. Curr. Drug Targets 2022, 23, 1593–1602. [Google Scholar] [PubMed]
- Pacha, O.; Sallman, M.A.; Evans, S.E. COVID-19: A case for inhibiting IL-17? Nat. Rev. Immunol. 2020, 20, 345–346. [Google Scholar] [CrossRef] [PubMed]
- Raucci, F.; Mansour, A.A.; Casillo, G.M.; Saviano, A.; Caso, F.; Scarpa, R.; Mascolo, N.; Iqbal, A.J.; Maione, F. Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms. Autoimmun. Rev. 2020, 19, 102572. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Cheng, B.; Ding, Y.; Wang, C.; Chen, J. Correlations of IL-17 and NF-κB gene polymorphisms with susceptibility and prognosis in acute respiratory distress syndrome in a Chinese population. Biosci. Rep. 2019, 39, BSR20181987. [Google Scholar] [CrossRef]
- Rusinova, I.; Forster, S.; Yu, S.; Kannan, A.; Masse, M.; Cumming, H.; Chapman, R.; Hertzog, P.J. Interferome v2.0: An updated database of annotated interferon-regulated genes. Nucleic Acids Res. 2013, 41, D1040–D1046. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, L.; Mescia, F.; Turner, L.; Hanson, A.L.; Kotagiri, P.; Dunmore, B.J.; Ruffieux, H.; De Sa, A.; Huhn, O.; Morgan, M.D.; et al. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity 2021, 54, 1257–1275.e8. [Google Scholar] [CrossRef]
- Cremoni, M.; Allouche, J.; Graça, D.; Zorzi, K.; Fernandez, C.; Teisseyre, M.; Benzaken, S.; Ruetsch-Chelli, C.; Esnault, V.L.M.; Dellamonica, J.; et al. Low baseline IFN-γ response could predict hospitalization in COVID-19 patients. Front. Immunol. 2022, 13, 953502. [Google Scholar] [CrossRef]
- Piscoya, A.; Parra Del Riego, A.; Cerna-Viacava, R.; Rocco, J.; Roman, Y.M.; Escobedo, A.A.; Pasupuleti, V.; White, C.M.; Hernandez, A.V. Efficacy and harms of tocilizumab for the treatment of COVID-19 patients: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0269368. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.; Wong, P.; Klein, J.; Castro, T.B.R.; Silva, J.; Sundaram, M.; Ellingson, M.K.; Mao, T.; Oh, J.E.; Israelow, B.; et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020, 584, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Ilmarinen, P.; Moilanen, E.; Kankaanranta, H. Regulation of spontaneous eosinophil apoptosis-a neglected area of importance. J. Cell Death 2014, 7, 1–9. [Google Scholar] [CrossRef]
- Bonifácio, L.P.; Ramacciotti, E.; Agati, L.B.; Vilar, F.C.; Silva, A.C.T.D.; Louzada Júnior, P.; Fonseca, B.A.L.D.; Souza, H.C.C.; Oliveira, C.C.C.; Aguiar, V.C.R.; et al. Efficacy and safety of Ixekizumab vs. low-dose IL-2 vs. Colchicine vs. standard of care in the treatment of patients hospitalized with moderate-to-critical COVID-19: A pilot randomized clinical trial (STRUCK: Survival Trial Using Cytokine Inhibitors). Rev. Soc. Bras. Med. Trop. 2023, 56, e0565. [Google Scholar] [CrossRef] [PubMed]
- Avdeev, S.N.; Trushenko, N.V.; Tsareva, N.A.; Yaroshetskiy, A.I.; Merzhoeva, Z.M.; Nuralieva, G.S.; Nekludova, G.V.; Chikina, S.Y.; Gneusheva, T.Y.; Suvorova, O.A.; et al. Anti-IL-17 monoclonal antibodies in hospitalized patients with severe COVID-19: A pilot study. Cytokine 2021, 146, 155627. [Google Scholar] [CrossRef] [PubMed]
- Resende, G.G.; da Cruz Lage, R.; Lobe, S.Q.; Medeiros, A.F.; Costa, E.S.A.D.; Nogueira Sa, A.T.; Oliveira, A.J.D.A.; Sousa, D.; Guimarães, H.C.; Gomes, I.C.; et al. Blockade of interleukin seventeen (IL-17A) with secukinumab in hospitalized COVID-19 patients—The BISHOP study. Infect. Dis. 2022, 54, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Hilligan, K.L.; Namasivayam, S.; Clancy, C.S.; Baker, P.J.; Old, S.I.; Peluf, V.; Amaral, E.P.; Oland, S.D.; O’Mard, D.; Laux, J.; et al. Bacterial-induced or passively administered interferon gamma conditions the lung for early control of SARS-CoV-2. Nat. Commun. 2023, 14, 8229. [Google Scholar] [CrossRef]
- Martono; Fatmawati, F.; Mulyanti, S. Risk Factors Associated with the Severity of COVID-19. Malays. J. Med. Sci. 2023, 30, 84–92. [Google Scholar]
- Dadras, O.; Afsahi, A.M.; Pashaei, Z.; Mojdeganlou, H.; Karimi, A.; Habibi, P.; Barzegary, A.; Fakhfouri, A.; Mirzapour, P.; Janfaza, N.; et al. The relationship between COVID-19 viral load and disease severity: A systematic review. Immun. Inflamm. Dis. 2022, 10, e580. [Google Scholar] [CrossRef]
- Teimury, A.; Khameneh, M.T.; Khaledi, E.M. Major coagulation disorders and parameters in COVID-19 patients. Eur. J. Med. Res. 2022, 27, 25. [Google Scholar] [CrossRef]
- Kell, D.B.; Laubscher, G.J.; Pretorius, E. A central role for amyloid fibrin microclots in long COVID/PASC: Origins and therapeutic implications. Biochem. J. 2022, 479, 537–559. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, E.; Vlok, M.; Venter, C.; Bezuidenhout, J.A.; Laubscher, G.J.; Steenkamp, J.; Kell, D.B. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc. Diabetol. 2021, 20, 172. [Google Scholar] [CrossRef] [PubMed]
- Meisinger, C.; Kirchberger, I.; Warm, T.D.; Hyhlik-Dürr, A.; Goßlau, Y.; Linseisen, J. Elevated Plasma D-Dimer Concentrations in Adults after an Outpatient-Treated COVID-19 Infection. Viruses 2022, 14, 2441. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wen, Y.; Wan, W.; Lei, J.; Jiang, X. Clinical characteristics and antibiotics treatment in suspected bacterial infection patients with COVID-19. Int. Immunopharmacol. 2021, 90, 107157. [Google Scholar] [CrossRef] [PubMed]
- Soni, M.; Gopalakrishnan, R.; Vaishya, R.; Prabu, P. D-dimer level is a useful predictor for mortality in patients with COVID-19: Analysis of 483 cases. Diabetes Metab. Syndr. 2020, 14, 2245–2249. [Google Scholar] [CrossRef] [PubMed]
- Rauch, A.; Labreuche, J.; Lassalle, F.; Goutay, J.; Caplan, M.; Charbonnier, L.; Rohn, A.; Jeanpierre, E.; Dupont, A.; Duhamel, A.; et al. Coagulation biomarkers are independent predictors of increased oxygen requirements in COVID-19. J. Thromb. Haemost. 2020, 18, 2942–2953. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Gabarre, P.; Urbina, T.; Cunat, S.; Merdji, H.; Bonny, V.; Lavillegrand, J.R.; Raia, L.; Bige, N.; Baudel, J.L.; Maury, E.; et al. Impact of corticosteroids on the procoagulant profile of critically ill COVID-19 patients: A before-after study. Minerva Anestesiol. 2023, 89, 48–55. [Google Scholar] [CrossRef]
- Hazlewood, K.A.; Fugate, S.E.; Harrison, D.L. Effect of oral corticosteroids on chronic warfarin therapy. Ann. Pharmacother. 2006, 40, 2101–2106. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, J.; Chen, X.; Liu, M.; Zhao, H.; Jin, L.; Zhang, Z.; Luan, N.; Meng, P.; Wang, J.; et al. Role of LL-37 in thrombotic complications in patients with COVID-19. Cell. Mol. Life Sci. 2022, 79, 309. [Google Scholar] [CrossRef]
Socio-Demographic Variables | D-Dimer (<500 ng/mL) | INR | Prothrombin Time (s) | aPTT (s) | Fibrinogen (2.0–5.0 g/L) | Platelets (150–450 × 109/L) |
---|---|---|---|---|---|---|
Age (r) | * 0.240 | 0.125 | 0.276 | 0.242 | 0.067 | −0.049 |
Gender | ||||||
Male | 668.48 ± 1448.36 | 2.25 ± 2.60 | 16.29 ± 9.59 | 28.64 ± 3.84 | ** 6.00 ± 1.49 | 229.86 ± 120.12 |
Female | 489.12 ± 527.88 | 1.26 ± 0.30 | 13.60 ± 3.30 | 30.50 ± 7.53 | ** 4.98 ± 1.58 | 217.47 ± 83.22 |
BMI (r) | 0.024 | 0.263 | 0.202 | −0.297 | 0.143 | −0.095 |
Change in BMI over 6 months | ||||||
Decrease of BMI | 727.39 ± 1068.14 | 1.27 ± 0.43 | 13.97 ± 4.64 | 29.22 ± 3.65 | 5.37 ± 1.43 | 253.43 ± 138.97 |
Same BMI | 595.71 ± 1574.03 | 2.02 ± 2.06 | 18.29 ± 11.61 | 29.28 ± 6.92 | 6.13 ± 1.55 | 212.07 ± 85.58 |
Increase of BMI | 359.31 ± 203.38 | 3.61 ± 4.38 | 12.26 ± 0.73 | 29.03 ± 4.74 | 5.36 ± 1.82 | 188.80 ± 49.17 |
Relationship status | ||||||
Single | 683.05 ± 1579.68 | 2.15 ± 2.04 | * 19.69 ± 11.75 | 30.21 ± 6.82 | 6.09 ± 1.68 | 221.70 ± 92.62 |
In relationship/marriage | 559.48 ± 902.2 | 1.83 ± 2.41 | * 12.48 ± 0.91 | 28.52 ± 3.74 | 5.43 ± 1.46 | 229.28 ± 121.64 |
Level of education | ||||||
<8 years | * 1498.00 ± 2995.62 | ** 1.67 ± 0.48 | 17.75 ± 6.01 | 38.90 ± 13.15 | 5.64 ± 1.54 | 261.31 ± 136.78 |
8–12 years | * 411.00 ± 395.40 | ** 1.22 ± 0.36 | 13.39 ± 3.87 | 28.37 ± 4.11 | 5.78 ± 1.61 | 224.81 ± 118.11 |
>12 years | * 709.57 ± 1245.31 | ** 3.67 ± 3.70 | 19.72 ± 13.61 | 28.86 ± 3.12 | 5.59 ± 1.61 | 210.15 ± 66.50 |
Employment | ||||||
Unemployed | 364.40 ± 206.09 | 1.45 ± 0.49 | 15.87 ± 5.31 | 37.30 ± 15.41 | 5.13 ± 2.04 | 265.18 ± 116.72 |
Employed | 524.85 ± 834.70 | 2.24 ± 2.83 | 14.34 ± 7.22 | 28.37 ± 4.01 | 5.51 ± 1.56 | 215.36 ± 106.57 |
Pensioner | 819.75 ± 1796.45 | 1.61 ± 1.00 | 17.50 ± 10.83 | 29.12 ± 3.54 | 6.24 ± 1.34 | 227.04 ± 111.86 |
Smoking status | ||||||
Non-smoker | * 487.00 ± 717.97 | * 2.31 ± 2.58 | * 16.81 ± 9.58 | 29.36 ± 5.78 | 5.77 ± 1.67 | 212.86 ± 83.39 |
Ex-smoker | * 1108.90 ± 2245.89 | * 1.16 ± 0.05 | * 12.73 ± 0.55 | 28.44 ± 3.55 | 5.78 ± 1.25 | 255.06 ± 137.20 |
Smoker | * 268.17 ± 102.14 | * 1.04 ± 0.07 | * 11.47 ± 0.75 | 29.60 ± 0.85 | 5.16 ± 1.55 | 282.10 ± 216.05 |
Smoking history in years (r) | −0.352 | −0.556 | −0.556 | 0.116 | 0.006 | 0.118 |
Number of cigarettes per day (r) | 0.287 | −0.707 | −0.707 | 0.530 | 0.032 | 0.119 |
Alcohol consumption | ||||||
Never | 415.56 ± 328.87 | 1.76 ± 1.98 | 15.55 ± 8.77 | 30.42 ± 6.58 | 5.37 ± 1.31 | 230.25 ± 94.10 |
Monthly and less often | 609.00 ± 974.27 | 2.35 ± 3.06 | 15.77 ± 9.50 | 26.99 ± 3.45 | 5.72 ± 1.89 | 213.61 ± 96.68 |
Weekly | 1017.07 ± 2492.03 | 1.72 ± 0.99 | 15.01 ± 6.24 | 30.34 ± 4.02 | 6.18 ± 1.10 | 252.48 ± 158.76 |
Time to go to sleep (r) | −0.140 | −0.340 | −0.340 | −0.046 | −0.106 | −0.140 |
Sleep length during the night in hours (r) | 0.140 | 0.084 | 0.019 | −0.227 | 0.091 | −0.112 |
Length of sleep during vs. before COVID-19 disease | ||||||
Less | 482.00 ± 701.18 | 1.36 ± 0.47 | 14.92 ± 5.06 | 29.37 ± 6.39 | 5.51 ± 1.65 | 231.26 ± 117.01 |
No change | 747.50 ± 1891.90 | 2.41 ± 2.59 | 20.20 ± 14.52 | 28.33 ± 4.45 | 6.17 ± 1.58 | 203.53 ± 74.86 |
More | 684.49 ± 1055.38 | 2.38 ± 3.19 | 12.52 ± 1.02 | 29.55 ± 4.22 | 5.50 ± 1.41 | 243.84 ± 130.03 |
Quality of sleep before COVID-19 disease | ||||||
Bad/very bad | 502.43 ± 216.92 | 2.04 ± 0.89 | 22.30 ± 9.62 | 30.75 ± 5.73 | 5.90 ± 1.19 | 256.36 ± 102.79 |
Average | 559.33 ± 756.67 | 2.32 ± 2.84 | 16.57 ± 10.15 | 29.66 ± 6.21 | 5.75 ± 1.63 | 237.43 ± 113.98 |
Good/very good | 673.04 ± 1590.89 | 1.37 ± 0.74 | 12.53 ± 0.98 | 28.29 ± 3.56 | 5.65 ± 1.63 | 213.03 ± 107.97 |
Quality of sleep during COVID-19 disease | ||||||
Bad/very bad | 375.41 ± 194.65 | * 1.47 ± 0.59 | ** 16.15 ± 6.44 | 28.73 ± 3.81 | 5.42 ± 1.31 | 214.37 ± 91.54 |
Average | 591.45 ± 741.62 | * 2.67 ± 3.15 | ** 17.91 ± 11.21 | 29.99 ± 7.28 | 5.98 ± 1.47 | 234.15 ± 114.97 |
Good/very good | 759.41 ± 1841.08 | * 1.33 ± 0.75 | ** 12.09 ± 0.93 | 28.86 ± 4.07 | 5.65 ± 1.78 | 222.77 ± 114.69 |
Use of supplements to strengthen immunity | ||||||
No | 638.69 ± 1411.03 | 2.15 ± 2.53 | * 16.65 ± 9.40 | 29.63 ± 5.53 | 5.85 ± 1.60 | 217.41 ± 91.79 |
Yes | 573.94 ± 912.59 | 1.42 ± 0.87 | * 12.23 ± 0.39 | 27.91 ± 4.02 | 5.41 ± 1.52 | 243.02 ± 138.69 |
Length of supplement use in the days before infection with COVID-19 (r) | 0.292 | 0.342 | 0.000 | 0.018 | 0.206 | 0.389 * |
Close contact with a confirmed case of COVID-19 | ||||||
No | 445.70 ± 423.59 | 1.94 ± 1.94 | 17.92 ± 11.33 | 28.04 ± 3.74 | ** 6.19 ± 1.54 | 225.61 ± 124.68 |
Unknown | 789.88 ± 1803.26 | 2.12 ± 3.02 | 13.26 ± 3.01 | 30.20 ± 7.13 | ** 5.34 ± 1.64 | 235.45 ± 105.29 |
Yes | 730.69 ± 1381.43 | 1.69 ± 1.06 | 13.20 ± 1.12 | 30.12 ± 3.39 | ** 4.92 ± 1.03 | 202.57 ± 61.47 |
Visit to a COVID-19 facility | ||||||
No | 587.19 ± 1284.16 | 2.18 ± 2.50 | 16.18 ± 9.35 | 28.91 ± 5.62 | * 5.89 ± 1.52 | 226.04 ± 114.05 |
Yes | 707.61 ± 1132.20 | 1.20 ± 0.09 | 13.19 ± 0.95 | 30.40 ± 3.12 | * 4.82 ± 1.59 | 226.31 ± 96.72 |
A family member had COVID-19 | ||||||
No | 582.94 ± 1208.28 | 1.99 ± 2.36 | 15.89 ± 8.82 | 29.11 ± 5.58 | 5.74 ± 1.61 | 222.52 ± 112.31 |
Yes | 860.80 ± 1555.60 | 1.79 ± 1.20 | 12.90 ± 1.86 | 29.90 ± 1.25 | 5.12 ± 0.92 | 255.94 ± 86.57 |
Cytokines (pg/mL) | Reference Range (pg/mL) | Mild/Moderate (n = 70) Mean ± SD | Severe (n = 43) Mean ± SD | p |
---|---|---|---|---|
IL-2 | 0–4.18 [20] | 54.35 ± 5.27 | 74.13 ± 14.68 | 0.001 |
IL-4 | 0–2.13 [20] | 471.95 ± 13.50 | 475.35 ± 15.56 | 0.292 |
IL-5 | 0–2.13 [20] | 142.71 ± 7.79 | 144.26 ± 11.82 | 0.635 |
IL-6 | <7 [17] | 101.67 ± 19.12 | 157.49 ± 56.33 | 0.001 |
IL-9 | 0.52–1.92 [21] | 88.28 ± 6.12 | 87.93 ± 4.19 | 0.909 |
IL-10 | <9.1 [17] | 355.22 ± 16.95 | 356.88 ± 14.50 | 0.526 |
IL-13 | 9.17–22.59 [22] | 10.53 ± 0.35 | 10.71 ± 0.54 | 0.131 |
IL-17A | 0–20.27 [20] | 7.41 ± 1.60 | 9.48 ± 3.24 | 0.001 |
IL-17F | 0.17–5.92 [23] | 763.19 ± 39.59 | 774.33 ± 44.90 | 0.215 |
IL-21 | <4.6 [24] | 289.91 ± 14.45 | 284.82 ± 18.95 | 0.177 |
IL-22 | <7.8 [24] | 6.73 ± 0.17 | 6.72 ± 0.18 | 0.735 |
IFN-γ | 0–2.68 [20] | 108.12 ± 14.38 | 109.75 ± 4.45 | 0.152 |
TNF-α | <8.1 [17] | 30.63 ± 19.45 | 50.00 ± 16.00 | 0.001 |
Socio-Demographic Model | D-Dimer (<500 ng/mL) | INR | Prothrombin Time (s) | aPTT (s) | Fibrinogen (2.0–5.0 g/L) | Platelets (150–450 × 109/L) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | p | B | p | B | p | B | p | B | p | B | p | |
Constant | 2183.100 | 0.560 | 5.878 | 0.568 | 62.349 | 0.130 | 76.022 | 0.003 | −1.069 | 0.816 | 155.872 | 0.513 |
IL-5 (pg/mL) | −9.569 | 0.535 | −0.108 | 0.143 | −0.175 | 0.538 | 0.062 | 0.672 | −0.003 | 0.871 | −1.380 | 0.239 |
IL-6 (pg/mL) | −2.737 | 0.372 | −0.001 | 0.852 | 0.013 | 0.634 | −0.015 | 0.713 | 0.005 | 0.360 | 0.272 | 0.217 |
IL-17F (pg/mL) | 0.139 | 0.971 | 0.024 | 0.050 | −0.004 | 0.938 | −0.027 | 0.273 | 0.006 | 0.233 | 0.292 | 0.275 |
IFN-γ (pg/mL) | 0.413 | 0.988 | −0.056 | 0.320 | −0.187 | 0.397 | −0.306 | 0.017 | 0.018 | 0.619 | 0.069 | 0.972 |
Constant | 1487.863 | 0.762 | −7.035 | 0.614 | 40.040 | 0.439 | 91.942 | 0.011 | 0.588 | 0.559 | 241.476 | 0.427 |
IL-5 (pg/mL) | −4.142 | 0.807 | −0.157 | 0.088 | −0.163 | 0.618 | −0.005 | 0.981 | 0.067 | 0.947 | −1.664 | 0.176 |
IL-6 (pg/mL) | −3.106 | 0.340 | 0.001 | 0.944 | 0.011 | 0.696 | −0.022 | 0.678 | 1.247 | 0.218 | 0.350 | 0.130 |
IL-17F (pg/mL) | 1.081 | 0.812 | 0.035 | 0.030 | 0.017 | 0.763 | −0.016 | 0.585 | 0.935 | 0.354 | 0.288 | 0.334 |
IFN-γ (pg/mL) | −12.020 | 0.678 | −0.054 | 0.340 | −0.226 | 0.281 | −0.347 | 0.017 | −0.051 | 0.960 | 0.224 | 0.912 |
Gender | −279.922 | 0.413 | 0.982 | 0.444 | −1.824 | 0.699 | −2.232 | 0.405 | −2.771 | 0.008 | −3.728 | 0.878 |
Age (r) | 15.510 | 0.294 | 0.070 | 0.136 | 0.212 | 0.218 | 0.013 | 0.885 | 0.402 | 0.690 | −0.588 | 0.553 |
Relationship status | −204.873 | 0.544 | 0.142 | 0.892 | −5.947 | 0.134 | −2.622 | 0.271 | −1.119 | 0.268 | −8.268 | 0.747 |
Level of education | −132.442 | 0.644 | 2.948 | 0.014 | 7.202 | 0.087 | −3.474 | 0.167 | −0.025 | 0.980 | −21.233 | 0.273 |
Smoking status | 187.908 | 0.448 | −0.129 | 0.851 | −1.071 | 0.673 | −0.662 | 0.726 | 0.215 | 0.831 | 31.206 | 0.082 |
Quality of sleep during COVID-19 | 210.542 | 0.303 | −0.902 | 0.203 | −3.027 | 0.245 | 1.713 | 0.281 | 0.260 | 0.796 | 7.149 | 0.617 |
Use of supplements to strengthen immunity | −60.805 | 0.858 | 0.428 | 0.700 | 1.867 | 0.650 | −3.005 | 0.247 | 0.166 | 0.869 | 28.584 | 0.249 |
Close contact with a confirmed case of COVID-19 | 157.137 | 0.456 | 0.848 | 0.252 | −0.080 | 0.976 | 1.634 | 0.344 | −2.417 | 0.019 | −5.934 | 0.704 |
Visit to a COVID-19 facility | 190.285 | 0.634 | −1.791 | 0.151 | −2.234 | 0.618 | 2.491 | 0.382 | −1.326 | 0.190 | −13.589 | 0.630 |
“Clinical” Model | D-Dimer (<500 ng/mL) | INR | Prothrombin Time (s) | aPTT (s) | Fibrinogen (2.0–5.0 g/L) | Platelets (150–450 × 109/L) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | p | B | p | B | p | B | p | B | p | B | p | |
Constant | 2183.100 | 0.560 | 5.878 | 0.568 | 62.349 | 0.130 | 76.022 | 0.003 | −1.069 | 0.816 | 155.872 | 0.513 |
IL-5 (pg/mL) | −9.569 | 0.535 | −0.108 | 0.143 | −0.175 | 0.538 | 0.062 | 0.672 | −0.003 | 0.871 | −1.380 | 0.239 |
IL-6 (pg/mL) | −2.737 | 0.372 | −0.001 | 0.852 | 0.013 | 0.634 | −0.015 | 0.713 | 0.005 | 0.360 | 0.272 | 0.217 |
IL-17F (pg/mL) | 0.139 | 0.971 | 0.024 | 0.054 | −0.004 | 0.938 | −0.027 | 0.273 | 0.006 | 0.233 | 0.292 | 0.275 |
IFN-γ (pg/mL) | 0.413 | 0.988 | −0.056 | 0.320 | −0.187 | 0.397 | −0.306 | 0.017 | 0.018 | 0.619 | 0.069 | 0.972 |
Constant | 3973.542 | 0.287 | −1.398 | 0.913 | 8.276 | 0.832 | 49.924 | 0.055 | −0.636 | 0.900 | 77.286 | 0.763 |
IL-5 (pg/mL) | −17.815 | 0.227 | −0.058 | 0.440 | −0.018 | 0.936 | 0.058 | 0.654 | −0.007 | 0.699 | −1.170 | 0.328 |
IL-6 (pg/mL) | −5.254 | 0.135 | 0.009 | 0.429 | 0.028 | 0.409 | 0.090 | 0.110 | 0.001 | 0.906 | 0.376 | 0.171 |
IL-17F (pg/mL) | −2.450 | 0.516 | 0.031 | 0.086 | 0.046 | 0.383 | −0.007 | 0.813 | 0.002 | 0.646 | 0.247 | 0.371 |
IFN-γ (pg/mL) | 10.003 | 0.695 | −0.113 | 0.125 | −0.267 | 0.227 | −0.296 | 0.035 | 0.040 | 0.247 | 0.398 | 0.845 |
Duration of symptoms before hospitalization | 69.672 | 0.002 | −0.010 | 0.899 | −0.538 | 0.042 | −0.148 | 0.347 | −0.057 | 0.044 | 2.436 | 0.139 |
Oxygen therapy | −380.914 | 0.250 | −3.077 | 0.018 | −6.744 | 0.077 | −6.134 | 0.048 | 0.130 | 0.824 | −40.313 | 0.143 |
Affected lung fields | 27.976 | 0.748 | −0.128 | 0.746 | 0.891 | 0.459 | 0.628 | 0.418 | 0.361 | 0.012 | 6.938 | 0.321 |
ECG-arrhythmia | 12.261 | 0.980 | 2.287 | 0.135 | 18.874 | 0.001 | 10.159 | 0.004 | −0.214 | 0.740 | −19.914 | 0.604 |
Corticosteroids | 58.684 | 0.845 | 2.458 | 0.048 | 7.176 | 0.056 | 1.779 | 0.467 | 0.529 | 0.239 | 11.078 | 0.642 |
Favipiravir | −54.180 | 0.863 | −0.445 | 0.670 | −2.756 | 0.389 | −1.248 | 0.611 | −0.127 | 0.766 | −0.192 | 0.994 |
Vancomycin | −112.112 | 0.854 | 0.121 | 0.958 | 1.562 | 0.823 | 0.190 | 0.961 | 1.090 | 0.157 | 42.330 | 0.358 |
Meropenem | 1237.220 | 0.023 | −0.602 | 0.767 | −1.344 | 0.828 | −3.819 | 0.266 | −0.648 | 0.311 | 7.809 | 0.845 |
“Laboratory” Model | D-Dimer (<500 ng/mL) | INR | Prothrombin Time (s) | aPTT (s) | Fibrinogen (2.0–5.0 g/L) | Platelets (150–450 × 109/L) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | p | B | p | B | p | B | p | B | p | B | p | |
Constant | 3803.486 | 0.439 | 12.360 | 0.238 | 107.240 | 0.001 | 100.710 | 0.001 | −1.552 | 0.754 | 135.329 | 0.655 |
IL-5 (pg/mL) | −6.268 | 0.750 | 0.152 | 0.040 | 0.412 | 0.043 | −0.072 | 0.663 | −0.004 | 0.835 | −1.706 | 0.204 |
IL-6 (pg/mL) | −6.573 | 0.224 | 0.001 | 0.937 | 0.137 | 0.003 | 0.018 | 0.684 | 0.009 | 0.153 | −0.336 | 0.278 |
IL-17F (pg/mL) | −1.603 | 0.767 | 0.018 | 0.119 | −0.064 | 0.051 | −0.046 | 0.092 | 0.005 | 0.418 | 0.443 | 0.190 |
IFN-γ (pg/mL) | −1.688 | 0.962 | −0.027 | 0.604 | −0.001 | 0.995 | −0.251 | 0.050 | 0.030 | 0.432 | 0.330 | 0.891 |
Constant | −4278.772 | 0.706 | 20.820 | 0.297 | 162.756 | 0.101 | 55.273 | 0.437 | 6.713 | 0.504 | 646.970 | 0.230 |
IL-5 (pg/mL) | 17.324 | 0.424 | −0.070 | 0.355 | −0.396 | 0.279 | −0.191 | 0.482 | 0.025 | 0.180 | −0.877 | 0.515 |
IL-6 (pg/mL) | −7.356 | 0.257 | 0.014 | 0.389 | 0.099 | 0.207 | 0.022 | 0.724 | 0.006 | 0.361 | −0.425 | 0.215 |
IL-17F (pg/mL) | −1.453 | 0.820 | 0.016 | 0.260 | −0.025 | 0.706 | −0.081 | 0.187 | −0.002 | 0.732 | 0.369 | 0.278 |
IFN-γ (pg/mL) | −9.320 | 0.792 | −0.002 | 0.959 | 0.062 | 0.758 | −0.249 | 0.134 | 0.003 | 0.915 | 0.130 | 0.954 |
C-reactive protein (<5 mg/L) | −5.641 | 0.125 | −0.015 | 0.067 | 0.017 | 0.647 | 0.049 | 0.295 | 0.006 | 0.063 | −0.220 | 0.299 |
Sedimentation (mm/h) | 9.250 | 0.282 | 0.001 | 0.957 | −0.066 | 0.404 | −0.062 | 0.444 | 0.006 | 0.466 | 0.493 | 0.315 |
WBC (3.71–10.67 × 109/L) | 42.254 | 0.460 | 0.033 | 0.883 | −0.608 | 0.574 | −0.140 | 0.878 | −0.040 | 0.435 | 3.314 | 0.136 |
Lymphocytes (18.94–46.71%) | −23.920 | 0.452 | 0.001 | 0.988 | 0.183 | 0.403 | 0.183 | 0.268 | −0.023 | 0.385 | −2.728 | 0.050 |
Albumins (41–51 g/L) | −69.749 | 0.227 | 0.051 | 0.652 | −0.466 | 0.392 | 0.224 | 0.581 | −0.010 | 0.833 | −6.195 | 0.051 |
Alkaline phosphatase (30–120 U/L) | −1.118 | 0.892 | −0.022 | 0.269 | −0.035 | 0.696 | 0.099 | 0.147 | 0.001 | 0.904 | 0.821 | 0.118 |
Direct bilirubin (<3.4 µmol/L) | 17.086 | 0.884 | −0.387 | 0.297 | −1.289 | 0.460 | −0.038 | 0.979 | 0.278 | 0.013 | −4.738 | 0.472 |
Cholesterol (<5.2 mmol/L) | 334.242 | 0.212 | −0.207 | 0.699 | 1.184 | 0.643 | 1.115 | 0.581 | −0.170 | 0.555 | −0.421 | 0.978 |
AST (35–50 U/L) | 3.206 | 0.610 | 0.034 | 0.006 | 0.025 | 0.609 | 0.013 | 0.782 | 0.011 | 0.070 | −0.293 | 0.420 |
Urea (2.8–7.2 mmol/L) | 31.668 | 0.630 | 0.257 | 0.172 | 1.266 | 0.159 | −0.714 | 0.347 | −0.040 | 0.543 | −2.233 | 0.578 |
Na+ (135–147 mmol/L) | 24.666 | 0.729 | −0.146 | 0.322 | −0.584 | 0.401 | 0.554 | 0.341 | −0.070 | 0.232 | −2.117 | 0.566 |
K+ (4.5–5.4 mmol/L) | 762.492 | 0.091 | −0.884 | 0.274 | 0.331 | 0.929 | −1.943 | 0.491 | 1.234 | 0.007 | −0.518 | 0.984 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milentijević, M.; Katanić, N.; Joksimović, B.; Pavlović, A.; Filimonović, J.; Anđelković, M.; Bojović, K.; Elek, Z.; Ristić, S.; Vasiljević, M.; et al. The Impact of Cytokines on Coagulation Profile in COVID-19 Patients: Controlled for Socio-Demographic, Clinical, and Laboratory Parameters. Biomedicines 2024, 12, 1281. https://doi.org/10.3390/biomedicines12061281
Milentijević M, Katanić N, Joksimović B, Pavlović A, Filimonović J, Anđelković M, Bojović K, Elek Z, Ristić S, Vasiljević M, et al. The Impact of Cytokines on Coagulation Profile in COVID-19 Patients: Controlled for Socio-Demographic, Clinical, and Laboratory Parameters. Biomedicines. 2024; 12(6):1281. https://doi.org/10.3390/biomedicines12061281
Chicago/Turabian StyleMilentijević, Milica, Nataša Katanić, Bojan Joksimović, Aleksandar Pavlović, Jelena Filimonović, Milena Anđelković, Ksenija Bojović, Zlatan Elek, Siniša Ristić, Miloš Vasiljević, and et al. 2024. "The Impact of Cytokines on Coagulation Profile in COVID-19 Patients: Controlled for Socio-Demographic, Clinical, and Laboratory Parameters" Biomedicines 12, no. 6: 1281. https://doi.org/10.3390/biomedicines12061281
APA StyleMilentijević, M., Katanić, N., Joksimović, B., Pavlović, A., Filimonović, J., Anđelković, M., Bojović, K., Elek, Z., Ristić, S., Vasiljević, M., Stevanović, J., Radomirović, D., Elez-Burnjaković, N., Lalović, N., Kulić, M., Kulić, J., & Milić, M. (2024). The Impact of Cytokines on Coagulation Profile in COVID-19 Patients: Controlled for Socio-Demographic, Clinical, and Laboratory Parameters. Biomedicines, 12(6), 1281. https://doi.org/10.3390/biomedicines12061281