MCP-1 rs1024611 Polymorphism, MCP-1 Concentrations, and Premature Coronary Artery Disease: Results of the Genetics of Atherosclerotic Disease (GEA) Mexican Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. MCP-1 Concentrations
2.3. MCP-1 rs1024611 Genotypes Determination
2.4. In Silico Analysis
2.5. Statistical Analysis
3. Results
3.1. Demographic, Clinical, and Biochemical Characteristics
3.2. MCP-1 Concentrations in the Study Groups
3.3. Association of MCP-1 Concentrations with pCAD in Individuals with the rs1024611 AA Genotype
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Burden of Coronary Heart Disease; World Health Organization: Geneva, Switzerland. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 6 March 2024).
- Libby, P.; Buring, J.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Prim. 2019, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Gencer, S.; Evans, B.; van der Vorst, E.; Döring, Y.; Weber, C. Inflammatory Chemokines in Atherosclerosis. Cells 2021, 10, 226. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, C.; Seybold, K.; Petzi, S.; Wasmeier, G.; Raaz, D.; Yilmaz, A.; Anger, T.; Daniel, W.G.; Garlichs, C.D. Interleukin-10 improves left ventricular function in rats with heart failure subsequent to myocardial infarction. Eur. J. Heart Fall 2008, 10, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Arakelyan, A.; Petrkova, J.; Hermanova, Z.; Boyajyan, A.; Lukl, J.; Petrek, M. Serum Levels of the MCP-1 Chemokine in Patients With Ischemic Stroke and Myocardial Infarction. Mediat. Inflamm. 2005, 2005, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Kurosaki, K.; Matsui, K.; Shimada, K.; Ikeda, U. Serum MCP-1 and VEGF Levels are not Affected by Inhibition of the Renin-Angiotensin System in Patients with Acute Myocardial Infarction. Cardiovasc. Drugs Ther. 2003, 17, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Matsumori, A.; Furukawa, Y.; Hashimoto, T.; Yoshida, A.; Ono, K.; Shioi, T.; Okada, M.; Iwasaki, A.; Nishio, R.; Matsushima, K.; et al. Plasma levels of the monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 are elevated in patients with acute myocardial infarction. J. Mol. Cell. Cardiol. 1997, 29, 419–423. [Google Scholar] [CrossRef] [PubMed]
- De Lemos, J.A.; Morrow, D.A.; Sabatine, M.S.; Murphy, S.A.; Gibson, C.M.; Antman, E.M.; McCabe, C.H.; Cannon, C.P.; Braunwald, E. Association Between Plasma Levels of Monocyte Chemoattractant Protein-1 and Long-Term Clinical Outcomes in Patients With Acute Coronary Syndromes. Circulation 2003, 107, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Cosselman, K.E.; Navas-Acien, A.; Kaufman, J.D. Environmental factors in cardiovascular disease. Nat. Rev. Cardiol. 2015, 12, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.R.; Lip, G.Y. Novel Risk Markers and Risk Assessments For Cardiovascular Disease. Circ. Res. 2017, 120, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Vinkhuyzen, A.A.; Wray, N.R.; Yang, J.; Goddard, M.E.; Visscher, P.M. Estimation and partition of heritability in human populations using whole-genome analysis methods. Annu. Rev. Genet. 2013, 47, 75–95. [Google Scholar] [CrossRef]
- Schunkert, H.; König, I.R.; Kathiresan, S.; Reilly, M.P.; Assimes, T.L.; Holm, H.; Preuss, M.; Stewart, A.F.; Barbalic, M.; Gieger, C.; et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 2011, 43, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Nikpay, M.; Goel, A.; Won, H.H.; Hall, L.M.; Willenborg, C.; Kanoni, S.; Saleheen, D.; Kyriakou, T.; Nelson, C.P.; Hopewell, J.C.; et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 2015, 47, 1121–1130. [Google Scholar]
- Erdmann, J.; Kessler, T.; Munoz-Venegas, L.; Schunkert, H. A decade of genome-wide association studies for coronary artery disease: The challenges ahead. Cardiovasc. Res. 2018, 114, 1241–1257. [Google Scholar] [CrossRef]
- Chen, Z.; Schunkert, H. Genetics of coronary artery disease in the post-GWAS era. J. Intern. Med. 2021, 290, 980–992. [Google Scholar] [CrossRef]
- Posadas-Sánchez, R.; Pérez-Hernández, N.; Rodríguez-Pérez, J.M.; Coral-Vázquez, R.M.; Roque-Ramírez, B.; Llorente, L.; Lima, G.; Flores-Dominguez, C.; Villarreal-Molina, T.; Posadas-Romero, C.; et al. Interleukin-27 polymorphisms are associated with premature coronary artery disease and metabolic parameters in the Mexican population: The genetics of atherosclerotic disease (GEA) Mexican study. Oncotarget 2017, 8, 64459–64470. [Google Scholar] [CrossRef]
- Pérez-Hernández, N.; Posadas-Sánchez, R.; Vargas-Alarcón, G.; Cazarín-Santos, B.G.; Miranda-Duarte, A.; Rodríguez-Pérez, J.M. Genetic Variants and Haplotypes in OPG Gene Are Associated with Premature Coronary Artery Disease and Traditional Cardiovascular Risk Factors in Mexican Population: The GEA Study. DNA Cell Biol. 2020, 39, 2085–2094. [Google Scholar] [CrossRef] [PubMed]
- Rovin, B.H.; Lu, L.; Saxen, R. A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem. Biophys. Res. Commun. 1999, 259, 344–348. [Google Scholar] [CrossRef]
- Szalai, C.; Kozma, G.T.; Nagy, A.; Bojszkó, A.; Krikovszky, D.; Szabó, T.; Falus, A. Polymorphism in the gene regulatory region of MCP-1 is associated with asthma susceptibility and severity. J. Allergy Clin. Immunol. 2001, 108, 375–381. [Google Scholar] [CrossRef]
- Van Wijk, D.F.; van Leuven, S.I.; Sandhu, M.S.; Tanck, M.W.; Hutten, B.A.; Wareham, N.J.; Kastelein, J.J.; Stroes, E.S.; Khaw, K.T.; Boekholdt, S.M. Chemokine ligand 2 genetic variants, serum monocyte chemoattractant protein-1 levels, and the risk of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.L.; Ueng, K.C.; Hsieh, Y.S.; Chiang, W.L.; Yang, S.F.; Chu, S.C. Impact of MCP-1 and CCR-2 gene polymorphisms on coronary artery disease susceptibility. Mol. Biol. Rep. 2012, 39, 9023–9030. [Google Scholar] [CrossRef]
- Mautner, G.C.; Mautner, S.L.; Froehlich, J.; Feuerstein, I.M.; Proschan, M.A.; Roberts, W.C.; Doppman, J.L. Coronary artery calcification: Assessment with electron beam CT and histomorphometric correlation. Radiology 1994, 192, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Posadas-Sánchez, R.; Pérez-Hernández, N.; Angeles-Martínez, J.; López-Bautista, F.; Villarreal-Molina, T.; Rodríguez-Pérez, J.M.; Fragoso, J.M.; Posadas-Romero, C.; Vargas-Alarcón, G. Interleukin 35 polymorphisms are associated with decreased risk of premature coronary artery disease, metabolic parameters, and IL-35 levels: The Genetics of Atherosclerotic Disease (GEA) Study. Mediat. Inflamm. 2017, 2017, 6012795. [Google Scholar] [CrossRef] [PubMed]
- Posadas-Sánchez, R.; López-Uribe, A.R.; Posadas-Romero, C.; Pérez-Hernández, N.; Rodríguez-Pérez, J.M.; Ocampo-Arcos, W.A.; Fragoso, J.M.; Cardoso-Saldaña, G.; Vargas-Alarcón, G. Association of the I148M/PNPLA3 (rs738409) polymorphism with premature coronary artery disease, fatty liver, and insulin resistance in type 2 diabetic patients and healthy controls. The GEA study. Immunobiol. 2017, 222, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Medina-Urrutia, A.; Posadas-Romero, C.; Posadas-Sánchez, R.; Jorge-Galarza, E.; Villarreal-Molina, T.; González-Salazar, M.C.; Cardoso-Saldaña, G.; Vargas-Alarcón, G.; Torres-Tamayo, M.; Juárez-Rojas, J.R. Role of adiponectin and free fatty acids on the association between abdominal visceral fat and insulin resistance. Cardiovasc. Diabetol. 2015, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Changing concepts of atherogenesis. J. Intern. Med. 2000, 247, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.; Schober, A.; Zernecke, A. Chemokines: Key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1997–2008. [Google Scholar] [CrossRef] [PubMed]
- Moreno, P.R.; Falk, E.; Palacios, I.F.; Newell, J.B.; Fuster, V.; Fallon, J.T. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994, 90, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Molecular bases of the acute coronary syndromes. Circulation 1995, 91, 2844–2850. [Google Scholar] [CrossRef] [PubMed]
- Krishnaswamy, G.; Kelley, J.; Yerra, L.; Smith, J.K.; Chi, D.S. Human endothelium as a source of multifunctional cytokines: Molecular regulation and possible role in human disease. J. Interferon Cytokine Res. 1999, 19, 91–104. [Google Scholar] [CrossRef]
- Georgakis, M.K.; van der Laan, S.W.; Asare, Y.; Mekke, J.M.; Haitjema, S.; Schoneveld, A.H.; de Jager, S.C.A.; Nurmohamed, N.S.; Kroon, J.; Stroes, E.S.G.; et al. Monocyte-Chemoattractant Protein-1 Levels in Human Atherosclerotic Lesions Associate With Plaque Vulnerability. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2038–2048. [Google Scholar] [CrossRef]
- Zhong, C.; Luzhan, Z.; Genshan, M.; Jiahong, W.; Xiaoli, Z.; Qi, Q. Monocyte chemoattractant protein-1-2518 G/A polymorphism, plasma levels, and premature stable coronary artery disease. Mol. Biol. Rep. 2010, 37, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Su, D.; Li, X.; Li, Z.; Wang, Y.; Qiu, J.; Lin, P.; Zhang, Y.; Guo, P.; Xia, M.; et al. Serum levels of monocyte chemoattractant protein-1 and all-cause and cardiovascular mortality among patients with coronary artery disease. PLoS ONE 2015, 10, e0120633. [Google Scholar] [CrossRef] [PubMed]
- Tabara, Y.; Kohara, K.; Yamamoto, Y.; Igase, M.; Nakura, J.; Kondo, I.; Miki, T. Polymorphism of the monocyte chemoattractant protein (MCP-1) gene is associated with the plasma level of MCP-1 but not with carotid intima-media thickness. Hypertens. Res. 2003, 26, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Fenoglio, C.; Galimberti, D.; Lovati, C.; Guidi, I.; Gatti, A.; Fogliarino, S.; Tiriticco, M.; Mariani, C.; Forloni, G.; Pettenati, C.; et al. MCP-1 in Alzheimer’s disease patients: A-2518G polymorphism and serum levels. Neurobiol. Aging 2004, 9, 1169–1173. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, E.; Rovin, B.H.; Sen, L.; Cooke, G.; Dhanda, R.; Mummidi, S.; Kulkarni, H.; Bamshad, M.J.; Telles, V.; Anderson, S.A.; et al. HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc. Natl. Acad. Sci. USA 2002, 99, 13795–13800. [Google Scholar] [CrossRef] [PubMed]
- McDermott, D.H.; Yang, Q.; Kathiresan, S.; Cupples, L.A.; Massaro, J.M.; Keaney, J.F., Jr.; Larson, M.G.; Vasan, R.S.; Hirschhorn, J.N.; O’Donnell, C.J.; et al. CCL2 polymorphisms are associated with serum monocyte chemoattractant protein-1 levels and myocardial infarction in the Framingham Heart Study. Circulation 2005, 112, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, N.G.; Namaki, S.; Hashemi, S.M.; Salehi, M.; Ghaffarpour, S.; Ghazanfari, T. Impact of the MCP-1-2518A>G polymorphism on COVID-19 severity in the Iranian population: A case-control study. Int. Immunopharmacol. 2023, 119, 110217. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.Y.; Cho, M.L.; Park, B.; Kim, J.Y.; Kim, Y.H.; Min, D.J.; Min, J.K.; Kim, H.Y. Allelic frequency of the MCP-1 promoter -2518 polymorphism in the Korean population and in Korean patients with rheumatoid arthritis, systemic lupus erythematosus and adult-onset Still’s disease. Eur. J. Immunogenet. 2002, 29, 413–416. [Google Scholar] [CrossRef]
Control | pCAD | p | |
---|---|---|---|
n = 1070 | n = 972 | ||
Demographic and clinical characteristics | |||
Age (years) | 51 (45–57) | 53 (49–58) | <0.001 |
Sex (% de men) | 41.2 | 82.3 | <0.001 |
Body mass index (kg/m2) | 27.8 (25.4–30.8) | 28.3 (26.0–31.1) | 0.002 |
Waist circumference (cm) | 94 (86–101) | 97 (92–105) | <0.001 |
Systolic blood pressure (mmHg) | 112 (104–123) | 115 (106–126) | <0.001 |
Diastolic blood pressure (mmHg) | 71 (65–77) | 71 (66–78) | 0.159 |
Biochemical profile | |||
Total cholesterol (mg/dL) | 189 (166–210) | 161 (132–193) | <0.001 |
HDL-Cholesterol (mg/dL) | 45(36–55) | 37 (32–44) | <0.001 |
LDL-Cholesterol (mg/dL) | 115 (95–134) | 91 (69–116) | <0.001 |
Triglycerides (mg/dL) | 145 (107–202) | 163 (119–222) | <0.001 |
LDL size | 1.21 (1.08–1.38) | 1.12 (0.97–1.32) | <0.001 |
Glucose (mg/mL) | 89 (84–97) | 94 (87–117) | <0.001 |
hsCRP (mg/L) | 1.5 (0.80–3.10) | 1.15 (0.61–2.54) | <0.001 |
MCP-1 (pg/mL) | 217 (164–288) | 217 (157–298) | 0.883 |
Coronary risk factors | |||
Obesity (%) | 29.9 | 35.1 | 0.001 |
Hypertension (%) | 18.8 | 67.9 | 0.002 |
Hypercholesterolemia (%) | 36.4 | 20.4 | <0.001 |
Hypoalphalipoproteinemia (%) | 51.5 | 67.5 | <0.001 |
Hypertriglyceridemia (%) | 47.3 | 56.7 | <0.001 |
LDL Pattern B (%) | 47.0 | 60.9 | <0.001 |
Current smoking (%) | 22.4 | 12.2 | <0.001 |
Genotypes | |||
MCP1 rs1024611 (%) GG/GA/AA | 32.2/47.3/20.5 | 32.4/47.3/20.3 | 0.993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posadas-Sánchez, R.; Velázquez-Sánchez, F.; Reyes-Barrera, J.; Cardoso-Saldaña, G.; Velázquez-Argueta, F.; Antonio-Villa, N.E.; Fragoso, J.M.; Vargas-Alarcón, G. MCP-1 rs1024611 Polymorphism, MCP-1 Concentrations, and Premature Coronary Artery Disease: Results of the Genetics of Atherosclerotic Disease (GEA) Mexican Study. Biomedicines 2024, 12, 1292. https://doi.org/10.3390/biomedicines12061292
Posadas-Sánchez R, Velázquez-Sánchez F, Reyes-Barrera J, Cardoso-Saldaña G, Velázquez-Argueta F, Antonio-Villa NE, Fragoso JM, Vargas-Alarcón G. MCP-1 rs1024611 Polymorphism, MCP-1 Concentrations, and Premature Coronary Artery Disease: Results of the Genetics of Atherosclerotic Disease (GEA) Mexican Study. Biomedicines. 2024; 12(6):1292. https://doi.org/10.3390/biomedicines12061292
Chicago/Turabian StylePosadas-Sánchez, Rosalinda, Fernando Velázquez-Sánchez, Juan Reyes-Barrera, Guillermo Cardoso-Saldaña, Frida Velázquez-Argueta, Neftali Eduardo Antonio-Villa, José Manuel Fragoso, and Gilberto Vargas-Alarcón. 2024. "MCP-1 rs1024611 Polymorphism, MCP-1 Concentrations, and Premature Coronary Artery Disease: Results of the Genetics of Atherosclerotic Disease (GEA) Mexican Study" Biomedicines 12, no. 6: 1292. https://doi.org/10.3390/biomedicines12061292
APA StylePosadas-Sánchez, R., Velázquez-Sánchez, F., Reyes-Barrera, J., Cardoso-Saldaña, G., Velázquez-Argueta, F., Antonio-Villa, N. E., Fragoso, J. M., & Vargas-Alarcón, G. (2024). MCP-1 rs1024611 Polymorphism, MCP-1 Concentrations, and Premature Coronary Artery Disease: Results of the Genetics of Atherosclerotic Disease (GEA) Mexican Study. Biomedicines, 12(6), 1292. https://doi.org/10.3390/biomedicines12061292