TAFRO Syndrome and COVID-19
Abstract
:1. Introduction
2. Etiologies of TAFRO Syndrome and MCD Focusing on Viral Infection
3. TAFRO Syndrome and Cytokine Storms
4. COVID-19 and Cytokine Storms
5. TAFRO Syndrome and COVID-19
5.1. TAFRO Syndrome and COVID-19 Infections
Case | Age | Sex | Vaccine | Time to Symptom Onset | Treatment | Outcome | Reference |
---|---|---|---|---|---|---|---|
TAFRO syndrome and COVID-19 | |||||||
1 | 61 | F | BioNTech BNT 162b | 7 days after COVID-19 | Corticosteroid, RTX, PE, CsA | Improved | [22] |
iMCD and COVID-19 | |||||||
2 | 16 | F | None | 6 weeks after COVID-19 | Corticosteroid, siltuximab | Improved | [62] |
TAFRO syndrome and COVID-19 vaccination | |||||||
3 | 42 | M | BioNTech BNT 162b2 | 2 weeks after vaccination | Corticosteroid, tocilizumab, RTX | Dead | [65] |
4 | 45 | M | Moderna mRNA-1273 | 6 days after vaccination | Corticosteroid | Improved | [66] |
iMCD and COVID-19 vaccination | |||||||
5 | 20 | M | BioNTech BNT 162b2 | 18 days after vaccination | Corticosteroid, siltuximab | Improved | [67] |
6 | 40 | M | Moderna mRNA | 3 months after vaccination | Chemotherapy | Improved | [68] |
5.2. TAFRO Syndrome and COVID-19 Vaccination
6. Genetic Predisposition of iMCD, TAFRO Syndrome, and Severe COVID-19
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masaki, Y.; Kawabata, H.; Takai, K.; Tsukamoto, N.; Fujimoto, S.; Ishigaki, Y.; Kurose, N.; Miura, K.; Nakamura, S.; Aoki, S.; et al. 2019 Updated diagnostic criteria and disease severity classification for TAFRO syndrome. Int. J. Hematol. 2020, 111, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Masaki, Y.; Arita, K.; Sakai, T.; Takai, K.; Aoki, S.; Kawabata, H. Castleman disease and TAFRO syndrome. Ann. Hematol. 2022, 101, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Masaki, Y.; Kawabata, H.; Fujimoto, S.; Kawano, M.; Iwaki, N.; Kotani, T.; Nakashima, A.; Kurose, N.; Takai, K.; Suzuki, R.; et al. Epidemiological analysis of multicentric and unicentric Castleman disease and TAFRO syndrome in Japan. J. Clin. Exp. Hematop. 2019, 59, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Feng, C.; Zhang, X.; Zhou, J. TAFRO syndrome: A disease that known is half cured. Hematol. Oncol. 2023, 41, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, N.; Fajgenbaum, D.C.; Nabel, C.S.; Gion, Y.; Kondo, E.; Kawano, M.; Masunari, T.; Yoshida, I.; Moro, H.; Nikkuni, K.; et al. Clinicopathologic analysis of TAFRO syndrome demonstrates a distinct subtype of HHV-8-negative multicentric Castleman disease. Am. J. Hematol. 2016, 91, 220–226. [Google Scholar] [CrossRef]
- Nishimura, Y.; Fajgenbaum, D.C.; Pierson, S.K.; Iwaki, N.; Nishikori, A.; Kawano, M.; Nakamura, N.; Izutsu, K.; Takeuchi, K.; Nishimura, M.F.; et al. Validated international definition of the thrombocytopenia, anasarca, fever, reticulin fibrosis, renal insufficiency, and organomegaly clinical subtype (TAFRO) of idiopathic multicentric Castleman disease. Am. J. Hematol. 2021, 96, 1241–1252. [Google Scholar] [CrossRef]
- Fujimoto, S.; Sakai, T.; Kawabata, H.; Kurose, N.; Yamada, S.; Takai, K.; Aoki, S.; Kuroda, J.; Ide, M.; Setoguchi, K.; et al. Is TAFRO syndrome a subtype of idiopathic multicentric Castleman disease? Am. J. Hematol. 2019, 94, 975–983. [Google Scholar] [CrossRef]
- Polizzotto, M.N.; Uldrick, T.S.; Wyvill, K.M.; Aleman, K.; Marshall, V.; Wang, V.; Whitby, D.; Pittaluga, S.; Jaffe, E.S.; Millo, C.; et al. Clinical Features and Outcomes of Patients With Symptomatic Kaposi Sarcoma Herpesvirus (KSHV)-associated Inflammation: Prospective Characterization of KSHV Inflammatory Cytokine Syndrome (KICS). Clin. Infect. Dis. 2016, 62, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Dumic, I.; Radovanovic, M.; Igandan, O.; Savic, I.; Nordstrom, C.W.; Jevtic, D.; Subramanian, A.; Ramanan, P. A Fatal Case of Kaposi Sarcoma Immune Reconstitution Syndrome (KS-IRIS) Complicated by Kaposi Sarcoma Inflammatory Cytokine Syndrome (KICS) or Multicentric Castleman Disease (MCD): A Case Report and Review. Am. J. Case Rep. 2020, 21, e926433. [Google Scholar] [CrossRef] [PubMed]
- Dispenzieri, A.; Fajgenbaum, D.C. Overview of Castleman disease. Blood 2020, 135, 1353–1364. [Google Scholar] [CrossRef]
- Nishimura, Y.; Nishimura, M.F.; Sato, Y. International definition of iMCD-TAFRO: Future perspectives. J. Clin. Exp. Hematop. 2022, 62, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Fajgenbaum, D.C. Novel insights and therapeutic approaches in idiopathic multicentric Castleman disease. Blood 2018, 132, 2323–2330. [Google Scholar] [CrossRef] [PubMed]
- Carbone, A.; Borok, M.; Damania, B.; Gloghini, A.; Polizzotto, M.N.; Jayanthan, R.K.; Fajgenbaum, D.C.; Bower, M. Castleman disease. Nat. Rev. Dis. Primers 2021, 7, 84. [Google Scholar] [CrossRef] [PubMed]
- Nabel, C.S.; Sameroff, S.; Shilling, D.; Alapat, D.; Ruth, J.R.; Kawano, M.; Sato, Y.; Stone, K.; Spetalen, S.; Valdivieso, F.; et al. Virome capture sequencing does not identify active viral infection in unicentric and idiopathic multicentric Castleman disease. PLoS ONE 2019, 14, e0218660. [Google Scholar] [CrossRef]
- Chen, C.H.; Liu, H.C.; Hung, T.T.; Liu, T.P. Possible roles of Epstein-Barr virus in Castleman disease. J. Cardiothorac. Surg. 2009, 4, 31. [Google Scholar] [CrossRef] [PubMed]
- Gomes, H.; Huyett, P.; Laver, N.; Wein, R.O. A unique presentation of Epstein-Barr virus-associated Castleman’s disease. Am. J. Otolaryngol. 2013, 34, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Haap, M.; Wiefels, J.; Horger, M.; Hoyer, A.; Mussig, K. Clinical, laboratory and imaging findings in Castleman’s disease—The subtype decides. Blood Rev. 2018, 32, 225–234. [Google Scholar] [CrossRef]
- Simons, M.; Apor, E.; Butera, J.N.; Treaba, D.O. TAFRO Syndrome Associated with EBV and Successful Triple Therapy Treatment: Case Report and Review of the Literature. Case Rep. Hematol. 2016, 2016, 4703608. [Google Scholar] [CrossRef]
- Kakiuchi, S.; Akiyama, H.; Harima, I.; Takagi, I.; Rikitake, J.; Kozuki, Y.; Inaba, M.; Fujiwara, H.; Kurose, N.; Yamada, S.; et al. Epstein-Barr Virus-Positive Cutaneous and Systemic Plasmacytosis with TAFRO Syndrome-like Symptoms Successfully Treated with Rituximab. Medicina 2023, 59, 216. [Google Scholar] [CrossRef] [PubMed]
- Tane, M.; Kosako, H.; Hosoi, H.; Tabata, K.; Hiroi, T.; Osawa, K.; Iwamoto, R.; Murata, S.; Mushino, T.; Murata, S.I.; et al. Severe systemic inflammation mimicking TAFRO syndrome following COVID-19. Int. J. Hematol. 2023, 118, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Karki, R.; Kanneganti, T.D. The ‘cytokine storm’: Molecular mechanisms and therapeutic prospects. Trends Immunol. 2021, 42, 681–705. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, N.; Gion, Y.; Kondo, E.; Kawano, M.; Masunari, T.; Moro, H.; Nikkuni, K.; Takai, K.; Hagihara, M.; Hashimoto, Y.; et al. Elevated serum interferon gamma-induced protein 10 kDa is associated with TAFRO syndrome. Sci. Rep. 2017, 7, 42316. [Google Scholar] [CrossRef] [PubMed]
- Pierson, S.K.; Katz, L.; Williams, R.; Mumau, M.; Gonzalez, M.; Guzman, S.; Rubenstein, A.; Oromendia, A.B.; Beineke, P.; Fossa, A.; et al. CXCL13 is a predictive biomarker in idiopathic multicentric Castleman disease. Nat. Commun. 2022, 13, 7236. [Google Scholar] [CrossRef] [PubMed]
- Maisonobe, L.; Bertinchamp, R.; Damian, L.; Gerard, L.; Berisha, M.; Guillet, S.; Fieschi, C.; Malphettes, M.; Fadlallah, J.; Hie, M.; et al. Characteristics of thrombocytopenia, anasarca, fever, reticulin fibrosis and organomegaly syndrome: A retrospective study from a large Western cohort. Br. J. Haematol. 2022, 196, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Abe, N.; Kono, M.; Kono, M.; Ohnishi, N.; Sato, T.; Tarumi, M.; Yoshimura, M.; Sato, T.; Karino, K.; Shimizu, Y.; et al. Glycogen synthase kinase 3beta/CCR6-positive bone marrow cells correlate with disease activity in multicentric Castleman disease-TAFRO. Br. J. Haematol. 2022, 196, 1194–1204. [Google Scholar] [CrossRef] [PubMed]
- Sumiyoshi, R.; Koga, T.; Kawakami, A. Candidate biomarkers for idiopathic multicentric Castleman disease. J. Clin. Exp. Hematop. 2022, 62, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Fajgenbaum, D.C.; Langan, R.A.; Japp, A.S.; Partridge, H.L.; Pierson, S.K.; Singh, A.; Arenas, D.J.; Ruth, J.R.; Nabel, C.S.; Stone, K.; et al. Identifying and targeting pathogenic PI3K/AKT/mTOR signaling in IL-6-blockade-refractory idiopathic multicentric Castleman disease. J. Clin. Investig. 2019, 129, 4451–4463. [Google Scholar] [CrossRef]
- Arenas, D.J.; Floess, K.; Kobrin, D.; Pai, R.L.; Srkalovic, M.B.; Tamakloe, M.A.; Rasheed, R.; Ziglar, J.; Khor, J.; Parente, S.A.T.; et al. Increased mTOR activation in idiopathic multicentric Castleman disease. Blood 2020, 135, 1673–1684. [Google Scholar] [CrossRef]
- Pai, R.L.; Japp, A.S.; Gonzalez, M.; Rasheed, R.F.; Okumura, M.; Arenas, D.; Pierson, S.K.; Powers, V.; Layman, A.A.K.; Kao, C.; et al. Type I IFN response associated with mTOR activation in the TAFRO subtype of idiopathic multicentric Castleman disease. JCI Insight 2020, 5, e135031. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.D.; Kakkis, J.J.; Tsao, P.Y.; Pierson, S.K.; Fajgenbaum, D.C. Increased mTORC2 pathway activation in lymph nodes of iMCD-TAFRO. J. Cell Mol. Med. 2022, 26, 3147–3152. [Google Scholar] [CrossRef] [PubMed]
- Killian, M.; Viel, S.; Chalayer, E.; Forest, F.; Grange, S.; Bonnefoy, P.B.; Oksenhendler, E.; Cathebras, P.; Paul, S. JAK1/2 Inhibition in Severe TAFRO Syndrome: A Case Report. Ann. Intern. Med. 2021, 174, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Tvedt, T.H.A.; Vo, A.K.; Bruserud, O.; Reikvam, H. Cytokine Release Syndrome in the Immunotherapy of Hematological Malignancies: The Biology behind and Possible Clinical Consequences. J. Clin. Med. 2021, 10, 5190. [Google Scholar] [CrossRef]
- Yakoub-Agha, I.; Chabannon, C.; Bader, P.; Basak, G.W.; Bonig, H.; Ciceri, F.; Corbacioglu, S.; Duarte, R.F.; Einsele, H.; Hudecek, M.; et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: Best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica 2020, 105, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol. 2015, 1282, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Carty, M.; Guy, C.; Bowie, A.G. Detection of Viral Infections by Innate Immunity. Biochem. Pharmacol. 2021, 183, 114316. [Google Scholar] [CrossRef] [PubMed]
- Mdkhana, B.; Saheb Sharif-Askari, N.; Ramakrishnan, R.K.; Goel, S.; Hamid, Q.; Halwani, R. Nucleic Acid-Sensing Pathways During SARS-CoV-2 Infection: Expectations versus Reality. J. Inflamm. Res. 2021, 14, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Guy, C.; Bowie, A.G. Recent insights into innate immune nucleic acid sensing during viral infection. Curr. Opin. Immunol. 2022, 78, 102250. [Google Scholar] [CrossRef]
- Peluso, M.J.; Abdel-Mohsen, M.; Henrich, T.J.; Roan, N.R. Systems analysis of innate and adaptive immunity in Long COVID. Semin. Immunol. 2024, 72, 101873. [Google Scholar] [CrossRef]
- Schultheiss, C.; Willscher, E.; Paschold, L.; Gottschick, C.; Klee, B.; Henkes, S.S.; Bosurgi, L.; Dutzmann, J.; Sedding, D.; Frese, T.; et al. The IL-1beta, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep. Med. 2022, 3, 100663. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.A.F.; Brito, W.; Pereira, K.A.S.; Pereira, L.M.S.; Amoras, E.; Lima, S.S.; Santos, E.F.D.; Costa, F.P.D.; Sarges, K.M.L.; Cantanhede, M.H.D.; et al. Severe COVID-19 and long COVID are associated with high expression of STING, cGAS and IFN-alpha. Sci. Rep. 2024, 14, 4974. [Google Scholar] [CrossRef] [PubMed]
- Krishna, B.A.; Lim, E.Y.; Metaxaki, M.; Jackson, S.; Mactavous, L.; BioResource, N.; Lyons, P.A.; Doffinger, R.; Bradley, J.R.; Smith, K.G.C.; et al. Spontaneous, persistent, T cell-dependent IFN-gamma release in patients who progress to Long Covid. Sci. Adv. 2024, 10, eadi9379. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.M. Multisystem Inflammatory Syndrome in Children (MIS-C). Curr. Allergy Asthma Rep. 2022, 22, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Hsu, C.K.; Hsueh, S.C.; Yen, M.Y.; Ko, W.C.; Hsueh, P.R. Multisystem inflammatory syndrome in adults: Characteristics, treatment, and outcomes. J. Med. Virol. 2023, 95, e28426. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.J.; Gaines, S.B.; Amezcua, M.L.; Lubell, T.R.; Dayan, P.S.; Dale, M.; Boneparth, A.D.; Hicar, M.D.; Winchester, R.; Gorelik, M. Upregulation of type 1 conventional dendritic cells implicates antigen cross-presentation in multisystem inflammatory syndrome. J. Allergy Clin. Immunol. 2022, 149, 912–922. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.C.; May, J.W.; Cunningham, M.W.; Jones, O.Y. Multisystem Inflammatory Syndrome in Children (MIS-C), a Post-viral Myocarditis and Systemic Vasculitis-A Critical Review of Its Pathogenesis and Treatment. Front. Pediatr. 2020, 8, 626182. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Ganigara, M.; Galeotti, C.; Burns, J.; Berganza, F.M.; Hayes, D.A.; Singh-Grewal, D.; Bharath, S.; Sajjan, S.; Bayry, J. Multisystem inflammatory syndrome in children and Kawasaki disease: A critical comparison. Nat. Rev. Rheumatol. 2021, 17, 731–748. [Google Scholar] [CrossRef]
- Carter, M.J.; Fish, M.; Jennings, A.; Doores, K.J.; Wellman, P.; Seow, J.; Acors, S.; Graham, C.; Timms, E.; Kenny, J.; et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat. Med. 2020, 26, 1701–1707. [Google Scholar] [CrossRef]
- Cheung, E.W.; Zachariah, P.; Gorelik, M.; Boneparth, A.; Kernie, S.G.; Orange, J.S.; Milner, J.D. Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City. JAMA 2020, 324, 294–296. [Google Scholar] [CrossRef]
- DeBiasi, R.L.; Harahsheh, A.S.; Srinivasalu, H.; Krishnan, A.; Sharron, M.P.; Parikh, K.; Smith, K.; Bell, M.; Michael, D.; Delaney, M.; et al. Multisystem Inflammatory Syndrome of Children: Subphenotypes, Risk Factors, Biomarkers, Cytokine Profiles, and Viral Sequencing. J. Pediatr. 2021, 237, 125–135.e118. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; DeCuir, J.; Abrams, J.; Campbell, A.P.; Godfred-Cato, S.; Belay, E.D. Clinical Characteristics of Multisystem Inflammatory Syndrome in Adults: A Systematic Review. JAMA Netw. Open 2021, 4, e2126456. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Fajgenbaum, D.C. Is severe COVID-19 a cytokine storm syndrome: A hyperinflammatory debate. Curr. Opin. Rheumatol. 2021, 33, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Belay, E.D.; Godfred Cato, S.; Rao, A.K.; Abrams, J.; Wyatt Wilson, W.; Lim, S.; Newton-Cheh, C.; Melgar, M.; DeCuir, J.; Webb, B.; et al. Multisystem Inflammatory Syndrome in Adults After Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and Coronavirus Disease 2019 (COVID-19) Vaccination. Clin. Infect. Dis. 2022, 75, e741–e748. [Google Scholar] [CrossRef]
- Fujimoto, S.; Kawabata, H.; Sakai, T.; Yanagisawa, H.; Nishikori, M.; Nara, K.; Ohara, S.; Tsukamoto, N.; Kurose, N.; Yamada, S.; et al. Optimal treatments for TAFRO syndrome: A retrospective surveillance study in Japan. Int. J. Hematol. 2021, 113, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Rarani, F.Z.; Rashidi, B.; Jafari Najaf Abadi, M.H.; Hamblin, M.R.; Reza Hashemian, S.M.; Mirzaei, H. Cytokines and microRNAs in SARS-CoV-2: What do we know? Mol. Ther. Nucleic Acids 2022, 29, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Kerch, G. Severe COVID-19-A Review of Suggested Mechanisms Based on the Role of Extracellular Matrix Stiffness. Int. J. Mol. Sci. 2023, 24, 1187. [Google Scholar] [CrossRef]
- Drouin, A.; Plumb, I.D.; McCullough, M.; James Gist, J.; Liu, S.; Theberge, M.; Katz, J.; Moreida, M.; Flaherty, S.; Chatwani, B.; et al. Clinical and laboratory characteristics of patients hospitalized with severe COVID-19 in New Orleans, August 2020 to September 2021. Sci. Rep. 2024, 14, 6539. [Google Scholar] [CrossRef]
- Penuelas, O.; Lomeli, M.; Del Campo-Albendea, L.; Toledo, S.I.; Arellano, A.; Chavarria, U.; Marin, M.C.; Rosas, K.; Galvan Merlos, M.A.; Mercado, R.; et al. Frailty in severe COVID-19 survivors after ICU admission. A prospective and multicenter study in Mexico. Med. Intensiv. 2024; in press. [Google Scholar] [CrossRef]
- Sakaki, A.; Hosoi, H.; Kosako, H.; Furuya, Y.; Iwamoto, R.; Hiroi, T.; Murata, S.; Mushino, T.; Murata, S.I.; Sonoki, T. Successful combination treatment with rituximab, steroid pulse therapy, plasma exchange and romiplostim for very severe TAFRO syndrome. Leuk. Lymphoma 2022, 63, 2499–2502. [Google Scholar] [CrossRef]
- Mosleh, E.; Mehta, S.; Young, E.; Zhang, L.; Vij, K.; Schuettpelz, L.G. Idiopathic multicentric Castleman disease in an adolescent diagnosed following COVID-19 infection. Pediatr. Blood Cancer 2023, 70, e30239. [Google Scholar] [CrossRef] [PubMed]
- Oshima, K.; Kanamori, H.; Takei, K.; Baba, H.; Tokuda, K. Severe coronavirus disease 2019 in a patient with TAFRO syndrome: A case report. Clin Infect Pract 2022, 16, 100158. [Google Scholar] [CrossRef] [PubMed]
- Shyamsundar, S.; Pierson, S.K.; Connolly, C.M.; Teles, M.; Segev, D.L.; Werbel, W.A.; van Rhee, F.; Casper, C.; Brandstadter, J.D.; Noy, A. Castleman disease patients report mild COVID-19 symptoms and mount a humoral response to SARS-CoV-2 vaccination. Blood Neoplasia 2024, 1, 100002. [Google Scholar] [CrossRef]
- Yamada, M.; Sada, R.M.; Kashihara, E.; Okubo, G.; Matsushita, S.; Manabe, A.; Tagawa, S.; Akebo, H.; Miyake, H.; Hatta, K. TAFRO syndrome with a fatal clinical course following BNT162b2 mRNA (Pfizer-BioNTech) COVID-19 vaccination: A case report. J. Infect. Chemother. 2022, 28, 1008–1011. [Google Scholar] [CrossRef] [PubMed]
- Hirose, H.; Suzuki, H.; Umezawa, Y.; Iwasaki, M.; Fukuda, H.; Takahara, H.; Tomita, S.; Suzuki, Y. A Case of TAFRO Syndrome Developed after COVID-19 Vaccination. Case Rep. Nephrol. 2023, 2023, 7292895. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.; Wechselberger, T.; Drexel, H.; Dertinger, S.; Dirnhofer, S.; Pierson, S.K.; Fajgenbaum, D.C.; Kessler, A. Idiopathic Multicentric Castleman Disease Occurring Shortly after mRNA SARS-CoV-2 Vaccine. Vaccines 2022, 10, 1725. [Google Scholar] [CrossRef] [PubMed]
- Ker, C.-Y.; Liu, H.-W.; Su, Y.-C.; Lai, P.-Y. Idiopathic Multicentric Castleman Disease following SARS-CoV-2 Vaccination. J. Cancer Res. Pract. 2023, 10, 121–123. [Google Scholar]
- Verbeke, R.; Hogan, M.J.; Lore, K.; Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 2022, 55, 1993–2005. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lee, A.; Grigoryan, L.; Arunachalam, P.S.; Scott, M.K.D.; Trisal, M.; Wimmers, F.; Sanyal, M.; Weidenbacher, P.A.; Feng, Y.; et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 2022, 23, 543–555. [Google Scholar] [CrossRef]
- Ostrowski, S.R.; Sogaard, O.S.; Tolstrup, M.; Staerke, N.B.; Lundgren, J.; Ostergaard, L.; Hvas, A.M. Inflammation and Platelet Activation After COVID-19 Vaccines—Possible Mechanisms Behind Vaccine-Induced Immune Thrombocytopenia and Thrombosis. Front. Immunol. 2021, 12, 779453. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Scott, M.K.D.; Hagan, T.; Li, C.; Feng, Y.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V.V.; Lai, L.; et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature 2021, 596, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Perez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Miyazato, Y.; Yamamoto, K.; Yamada, G.; Kubota, S.; Ishikane, M.; Sugiyama, M.; Ueno, M.; Matsunaga, A.; Miyoshi-Akiyama, T.; Ishizaka, Y.; et al. Multisystem Inflammatory Syndrome in Adult after First Dose of mRNA Vaccine. Emerg. Infect. Dis. 2022, 28, 870–872. [Google Scholar] [CrossRef] [PubMed]
- Bova, C.; Vigna, E.; Gentile, M. Multisystem Inflammatory Syndrome after Ad26.COV2.S vaccination. IDCases 2022, 27, e01411. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, M.; Nune, A.; Hesham, D.; Fouad, F.M.; Hassan, H.; Hamouda, H.; Sherif, H.; Abdelwahab, M.M.; Hegazi, N.; El-Rahman, Y.A. Multisystem Inflammatory Syndrome (MIS) following SARS-CoV-2 vaccinations; a systematic review. Trop. Dis. Travel. Med. Vaccines 2023, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Grange, L.; Chalayer, E.; Boutboul, D.; Paul, S.; Galicier, L.; Gramont, B.; Killian, M. TAFRO syndrome: A severe manifestation of Sjogren’s syndrome? A systematic review. Autoimmun. Rev. 2022, 21, 103137. [Google Scholar] [CrossRef] [PubMed]
- Shirakashi, M.; Nishida, Y.; Nakashima, R.; Fujimoto, M.; Hiwa, R.; Tsuji, H.; Kitagori, K.; Akizuki, S.; Morinobu, A.; Yoshifuji, H. TAFRO syndrome is associated with anti-SSA/Ro60 antibodies, in contrast to idiopathic castleman disease. Sci. Rep. 2024, 14, 2889. [Google Scholar] [CrossRef]
- Gracia-Ramos, A.E.; Martin-Nares, E.; Hernandez-Molina, G. New Onset of Autoimmune Diseases Following COVID-19 Diagnosis. Cells 2021, 10, 3592. [Google Scholar] [CrossRef]
- Mingot-Castellano, M.E.; Butta, N.; Canaro, M.; Gomez Del Castillo Solano, M.D.C.; Sanchez-Gonzalez, B.; Jimenez-Barcenas, R.; Pascual-Izquierdo, C.; Caballero-Navarro, G.; Entrena Urena, L.; Jose Gonzalez-Lopez, T.; et al. COVID-19 Vaccines and Autoimmune Hematologic Disorders. Vaccines 2022, 10, 961. [Google Scholar] [CrossRef]
- Hosoi, H.; Tane, M.; Kosako, H.; Ibe, M.; Takeyama, M.; Murata, S.; Mushino, T.; Sonoki, T. Acute-type acquired hemophilia A after COVID-19 mRNA vaccine administration: A new disease entity? J. Autoimmun. 2022, 133, 102915. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Tang, K.; Levin, M.; Irfan, O.; Morris, S.K.; Wilson, K.; Klein, J.D.; Bhutta, Z.A. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect. Dis. 2020, 20, e276–e288. [Google Scholar] [CrossRef] [PubMed]
- Schulert, G.S.; Cron, R.Q. The genetics of macrophage activation syndrome. Genes. Immun. 2020, 21, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Baker, T.S.; Gambino, K.J.; Schriefer, L.; Lim, J.Y.; Steinberg, K.M.; Fajgenbaum, D.C.; Martin Garcia-Sancho, A.; Byun, M. A novel FAS mutation with variable expressivity in a family with unicentric and idiopathic multicentric Castleman disease. Blood Adv. 2018, 2, 2959–2963. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Lin, Q.; Zhao, J.; Shi, F.; Young, K.H.; Qian, W. Whole-exome sequencing identifies novel somatic alterations associated with outcomes in idiopathic multicentric Castleman disease. Br. J. Haematol. 2020, 188, e64–e67. [Google Scholar] [CrossRef] [PubMed]
- Butzmann, A.; Kumar, J.; Sridhar, K.; Gollapudi, S.; Ohgami, R.S. A Review of Genetic Abnormalities in Unicentric and Multicentric Castleman Disease. Biology 2021, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Bhaduri, A.; Shahmarvand, N.; Shahryari, J.; Zehnder, J.L.; Warnke, R.A.; Mughal, T.; Ali, S.; Ohgami, R.S. Next-generation sequencing of idiopathic multicentric and unicentric Castleman disease and follicular dendritic cell sarcomas. Blood Adv. 2018, 2, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Yoshimi, A.; Trippett, T.M.; Zhang, N.; Chen, X.; Penson, A.V.; Arcila, M.E.; Pichardo, J.; Baik, J.; Sigler, A.; Harada, H.; et al. Genetic basis for iMCD-TAFRO. Oncogene 2020, 39, 3218–3225. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e278. [Google Scholar] [CrossRef]
- Initiative, C.-H.G. A first update on mapping the human genetic architecture of COVID-19. Nature 2022, 608, E1–E10. [Google Scholar] [CrossRef]
- Horowitz, J.E.; Kosmicki, J.A.; Damask, A.; Sharma, D.; Roberts, G.H.L.; Justice, A.E.; Banerjee, N.; Coignet, M.V.; Yadav, A.; Leader, J.B.; et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat. Genet. 2022, 54, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Niemi, M.E.K.; Daly, M.J.; Ganna, A. The human genetic epidemiology of COVID-19. Nat. Rev. Genet. 2022, 23, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Pairo-Castineira, E.; Clohisey, S.; Klaric, L.; Bretherick, A.D.; Rawlik, K.; Pasko, D.; Walker, S.; Parkinson, N.; Fourman, M.H.; Russell, C.D.; et al. Genetic mechanisms of critical illness in COVID-19. Nature 2021, 591, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Initiative, C.-H.G. Mapping the human genetic architecture of COVID-19. Nature 2021, 600, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Banday, A.R.; Stanifer, M.L.; Florez-Vargas, O.; Onabajo, O.O.; Papenberg, B.W.; Zahoor, M.A.; Mirabello, L.; Ring, T.J.; Lee, C.H.; Albert, P.S.; et al. Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nat. Genet. 2022, 54, 1103–1116. [Google Scholar] [CrossRef] [PubMed]
- Bolze, A.; Neveux, I.; Schiabor Barrett, K.M.; White, S.; Isaksson, M.; Dabe, S.; Lee, W.; Grzymski, J.J.; Washington, N.L.; Cirulli, E.T. HLA-A *03:01 is associated with increased risk of fever, chills, and stronger side effects from Pfizer-BioNTech COVID-19 vaccination. HGG Adv. 2022, 3, 100084. [Google Scholar] [CrossRef]
- Magri, C.; Marchina, E.; Sansone, E.; D’Adamo, A.P.; Cappellani, S.; Bonfanti, C.; Terlenghi, L.; Biasiotto, G.; Zanella, I.; Sala, E.; et al. Genome-wide association studies of response and side effects to the BNT162b2 vaccine in Italian healthcare workers: Increased antibody levels and side effects in carriers of the HLA-A*03:01 allele. HLA 2023, 102, 707–719. [Google Scholar] [CrossRef]
- Nogawa, S.; Kanamori, H.; Tokuda, K.; Kawafune, K.; Chijiiwa, M.; Saito, K.; Takahashi, S. A web-based genome-wide association study reveals the susceptibility loci of common adverse events following COVID-19 vaccination in the Japanese population. Sci. Rep. 2023, 13, 20820. [Google Scholar] [CrossRef]
Characteristics | Severe COVID-19 | MIS-C/A | TAFRO |
---|---|---|---|
Clinical manifestation | Respiratory failure, fever, coagulation abnormality | Fever, cardiac dysfunction, myocarditis, multi-organ dysfunction | Fever, thrombocytopenia, anasarca, myelofibrosis, renal failure |
Pathophysiology | Cytokine storm triggered by SARS-CoV-2 infection | Delayed dysregulated immune response after COVID-19 | Cytokine storm; trigger is not identified |
Pathogenic cytokine driver | IL-6, IL-8, IL-1β, TNF-α, MCP-1 | IL-6, IL-10 | IL-6, VEGF, CXCL10 |
Age | Elderly individuals | Children, young adults | Middle-aged, elderly individuals |
Sex (M:F) | 6–7:3–4 | 7:3 | 5:5 |
Treatment | Corticosteroids, tocilizumab, baricitinib, anti-SARS-CoV-2 drugs | Corticosteroids, IVIG, anakinra | Corticosteroids, rituximab, tocilizumab, CsA |
Outcome | Mortality rate: 10–20% (initially 60%) | Mortality rate: 0–10% | Five-year survival rate: 67% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tane, M.; Kosako, H.; Sonoki, T.; Hosoi, H. TAFRO Syndrome and COVID-19. Biomedicines 2024, 12, 1287. https://doi.org/10.3390/biomedicines12061287
Tane M, Kosako H, Sonoki T, Hosoi H. TAFRO Syndrome and COVID-19. Biomedicines. 2024; 12(6):1287. https://doi.org/10.3390/biomedicines12061287
Chicago/Turabian StyleTane, Misato, Hideki Kosako, Takashi Sonoki, and Hiroki Hosoi. 2024. "TAFRO Syndrome and COVID-19" Biomedicines 12, no. 6: 1287. https://doi.org/10.3390/biomedicines12061287
APA StyleTane, M., Kosako, H., Sonoki, T., & Hosoi, H. (2024). TAFRO Syndrome and COVID-19. Biomedicines, 12(6), 1287. https://doi.org/10.3390/biomedicines12061287