N-acetyltransferase Gene Variants Involved in Pediatric Idiosyncratic Drug-Induced Liver Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Study
2.2. Ethics Approval and Consent to Participate
2.3. Sample Processing
2.4. Whole-Exome Sequencing (WES)
2.5. WES Data Analysis
2.6. Variant Selection
2.7. Validation of DILI-Related Variants and Frequency in Our Samples
2.8. Predicting the Functional Effect of Amino Acid Substitutions
2.9. Statistical Analysis
2.10. Genotyping of SNPs in NAT2 by Real-Time qPCR
3. Results
3.1. Sequence Coverage and Mutation Analysis
3.2. Validation of DILI-Related Variants
3.3. Functional Role of NAT2 Variants in DILI
3.3.1. Prediction of Function
3.3.2. Frequency of SNPs Linked to DILI and Statistical Analysis
3.3.3. Frequency of Variants
3.3.4. Real-Time Quantitative PCR Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrade, R.J.; Lucena, M.I.; Fernández, M.C.; Pelaez, G.; Pachkoria, K.; García-Ruiz, E.; García-Muñoz, B.; González-Grande, R.; Pizarro, A.; Durán, J.A.; et al. Drug-induced liver injury: An analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology 2005, 129, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Squires, R.H.; Shneider, B.L.; Bucuvalas, J.; Alonso, E.; Sokol, R.J.; Narkewicz, M.R.; Dhawan, A.; Rosenthal, P.; Rodriguez-Baez, N.; Murray, K.F.; et al. Acute liver failure in children: The first 348 patients in the pediatric acute liver failure study group. J. Pediatr. 2006, 148, 652–665. [Google Scholar] [CrossRef] [PubMed]
- Kearns, G.L.; Abdel-Rahman, S.M.; Alander, S.W.; Blowey, D.L.; Leeder, J.S.; Kauffman, R.E. Developmental Pharmacology—Drug Disposition, Action, and Therapy in Infants and Children. N. Engl. J. Med. 2003, 349, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Winnike, J.H.; Li, Z.; Wright, F.A.; MacDonald, J.M.; O’Connell, T.M.; Watkins, P.B. Use of pharmaco-metabonomics for early prediction of acetaminophen-induced hepatotoxicity in humans. Clin. Pharmacol. Ther. 2010, 88, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Bamshad, M.J.; Ng, S.B.; Bigham, A.W.; Tabor, H.K.; Emond, M.J.; Nickerson, D.A.; Shendure, J. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 2011, 12, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Xavier, A.; Scott, R.J.; Talseth-Palmer, B.A. TAPES: A tool for assessment and prioritisation in exome studies. PLoS Comput. Biol. 2019, 15, e1007453. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, M.; Li, X.; Wang, Z.; Pan, D.; Shi, Y. Correction to: Performance comparison of four types of target enrichment baits for exome DNA sequencing. Hereditas 2023, 160, 35. [Google Scholar] [CrossRef] [PubMed]
- Hoofnagle, J.H.; Björnsson, E.S. Drug-Induced Liver Injury—Types and Phenotypes. N. Engl. J. Med. 2019, 381, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Virgen, J.E.; Piña-Poza, M.; Hernández-Tobías, E.A.; Taja-Chaye, L.; De Lourdes López-González, M.; Meraz-Ríos, M.A.; Gomez, R. NAT2 global landscape: Genetic diversity and acetylation statuses from a systematic review. PLoS ONE 2023, 18, e0283726. [Google Scholar] [CrossRef]
- Zhu, K.; Xu, A.; Xia, W.; Li, P.; Zhang, B.; Jiang, H.; Zhou, S.; Wang, R. Association Between NAT2 Polymorphism and Lung Cancer Risk: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 567762. [Google Scholar] [CrossRef]
- Nakai, T.; Sakai, D.; Nakamura, Y.; Horikita, N.; Matsushita, E.; Naiki, M.; Watanabe, M. Association of NAT2 genetic polymorphism with the efficacy of Neurotropin® for the enhancement of aggrecan gene expression in nucleus pulposus cells: A pilot study. BMC Med. Genom. 2021, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Matejcic, M.; Vogelsang, M.; Wang, Y.; Parker, I.M. NAT1 and NAT2 genetic polymorphisms and environmental exposure as risk factors for oesophageal squamous cell carcinoma: A case-control study. BMC Cancer 2015, 15, 150. [Google Scholar]
- Tiis, R.P.; Osipova, L.P.; Lichman, D.V.; Voronina, E.N.; Filipenko, M.L. Studying polymorphic variants of the NAT2 gene (NAT2*5 and NAT2*7) in Nenets populations of Northern Siberia. BMC Genet. 2020, 21, 115. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Mandal, R.K.; Elasbali, A.M.; Dar, S.A.; Jawed, A.; Wahid, M.; Mahto, H.; Lohani, M.; Mishra, B.N.; Akhter, N.; et al. Pharmacogenetic association between NAT2 gene polymorphisms and isoniazid induced hepatotoxicity: Trial sequence meta-analysis as evidence. Biosci. Rep. 2019, 39, BSR20180845. [Google Scholar] [CrossRef] [PubMed]
- Megaraj, V.; Zhao, T.; Paumi, C.M.; Gerk, P.M.; Kim, R.B.; Vore, M. Functional analysis of nonsynonymous single nucleotide polymorphisms of multidrug resistance-associated protein 2 (ABCC2). Pharmacogenet. Genom. 2011, 21, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Ocete Hita, E.; Martín García, J.A.; Giménez Sánchez, F.; Flores González, J.C.; Abril Molina, A.; Salmerón Escobar, J.; Ruiz Extremera, A. Hepatotoxicity due to drugs or natural products in children. An. Pediatría 2013, 78, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Danan, G.; Teschke, R. RUCAM in Drug and Herb Induced Liver Injury: The Update. Int. J. Mol. Sci. 2015, 17, 14. [Google Scholar] [CrossRef] [PubMed]
- Stanley, L.A.; Sim, E. Update on the pharmacogenetics of NATs: Structural considerations. Pharmacogenomics 2008, 9, 1673–1693. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Dombrovsky, L.; Tempel, W.; Martin, F.; Loppnau, P.; Goodfellow, G.H.; Grant, D.M.; Plotnikov, A.N. Structural basis of substrate-binding specificity of human arylamine N-acetyltransferases. J. Biol. Chem. 2007, 282, 30189–30197. [Google Scholar] [CrossRef] [PubMed]
- Sim, E.; Fakis, G.; Laurieri, N.; Boukouvala, S. Arylamine N-Acetyltransferases—From Drug Metabolism and Pharmacogenetics to Identification of Novel Targets for Pharmacological Intervention. Adv. Pharmacol. 2012, 63, 169–205. [Google Scholar]
- Chorfi, L.; Fercha, A.; Derouiche, F.; Sebihi, F.Z.; Houhou, D.; Chorfi, K.; Bendjemana, K. N-Acetyltransferase 2, glutathione S-transferase gene polymorphisms and susceptibility to hepatocellular carcinoma in an Algerian population. Xenobiotica 2022, 52, 99–104. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, E.M.; Boukouvala, S.; Aklillu, E.; Hein, D.W.; Altman, R.B.; Klein, T.E. PharmGKB summary: Very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet. Genom. 2014, 24, 409–425. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Xie, M.; Wang, J.; Xu, Y.; Liu, X. Susceptibility of N-acetyltransferase 2 slow acetylators to antituberculosis drug-induced liver injury: A meta-analysis. Pharmacogenomics 2015, 16, 2083–2097. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.Y.; Xie, S.Y.; Hao, Q.; Zhang, C.; Jiang, B.F. NAT2 polymorphisms and susceptibility to anti-tuberculosis drug-induced liver injury: A meta-analysis. Int. J. Tuberc. Lung Dis. 2012, 16, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Yuliwulandari, R.; Prayuni, K.; Susilowati, R.W.; Subagyo, S.; Soedarsono, S.; M Sofro, A.S.; Tokunaga, K.; Shin, J.-G. NAT2 slow acetylator is associated with anti-tuberculosis drug-induced liver injury severity in indonesian population. Pharmacogenomics 2019, 20, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Jiang, X.G.; Zheng, S.L.; Wu, T.; Zhang, Q.; Ye, X.C.; Liu, S.; Shi, J.C. N-acetyltransferase 2 genetic polymorphisms and anti-tuberculosis-drug-induced liver injury: A correlation study. Front. Pharmacol. 2023, 14, 1171353. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.S.; Tseng, S.Y.; Chang, T.E.; Perng, C.L.; Huang, Y.H. Sulfamethoxazole-trimethoprim-induced liver injury and genetic polymorphisms of NAT2 and CYP2C9 in Taiwan. Pharmacogenet. Genom. 2021, 31, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, E.; Niewiarowski, W.; Bodalski, J.; Rȩbowski, G.; Skrȩtkowicz, J.; Mianowska, K.; Sekulska, M. Genotyping of the arylamine N-acetyltransferase polymorphism in the prediction of idiosyncratic reactions to trimethoprim-sulfamethoxazole in infants. Pharm. World Sci. 1998, 20, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Rogers, Z.; Hiruy, H.; Pasipanodya, J.G.; Mbowane, C.; Adamson, J.; Ngotho, L.; Karim, F.; Jeena, P.; Bishai, W.; Gumbo, T. The Non-Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism. EBioMedicine 2016, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Oh, J.; Yoon, S.H.; Yu, K.S.; Cho, J.Y.; Chung, J.Y. A non-linear pharmacokinetic-pharmacodynamic relationship of metformin in healthy volunteers: An open-label, parallel group, randomized clinical study. PLoS ONE 2018, 13, e0191258. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.G.; Swancutt, M.A.; Gumbo, T. Fractal geometry and the pharmacometrics of micafungin in overweight, obese, and extremely obese people. Antimicrob. Agents Chemother. 2011, 55, 5107–5112. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.G.; Swancutt, M.A.; Meek, C.; Leff, R.; Gumbo, T. Weight drives caspofungin pharmacokinetic variability in overweight and obese people: Fractal power signatures beyond two-thirds or three-fourths. Antimicrob. Agents Chemother. 2013, 57, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.K.; Pasipanodya, J.G.; Alder, L.; Lee, W.M.; Gumbo, T. Pegylated interferon fractal pharmacokinetics: Individualized dosing for hepatitis C virus infection. Antimicrob. Agents Chemother. 2013, 57, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Beranger, A.; Bekker, A.; Solans, B.P.; Cotton, M.F.; Mirochnick, M.; Violari, A.; Wang, J.; Cababasay, M.; Wiesner, L.; Browning, R.; et al. Influence of NAT2 Genotype and Maturation on Isoniazid Exposure in Low-Birth-Weight and Preterm Infants with or Without Human Immunodeficiency Virus (HIV) Exposure. Clin. Infect. Dis. 2022, 75, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Kiser, J.J.; Seifart, H.I.; Werely, C.J.; Mitchell, C.D.; D’Argenio, D.Z.; Fletcher, C.V. The pharmacogenetics of NAT2 enzyme maturation in perinatally HIV exposed infants receiving isoniazid. J. Clin. Pharmacol. 2012, 52, 511–519. [Google Scholar] [CrossRef] [PubMed]
Data Specification | Mean ± SD |
---|---|
Total reads | 6.48 × 107 ± 8.96 × 106 |
Total yield (bp) | 8.98 × 109 ± 1.25 × 109 |
Average read length (bp) | 1.39 × 102 ± 4.33 × 100 |
Average throughput depth of target regions (X) | 2.71 × 102 ± 3.78 × 101 |
Initial mappable reads (mapped to human genome) | 6.48 × 107 ± 8.96 × 106 |
Non-redundant reads | 5.31 × 107 ± 7.94 × 106 |
On-target reads | 4.29 × 107 ± 8.87 × 106 |
Number of on-target genotypes (more than 1× | 3.29 × 107 ± 5.58 × 104 |
Number of on-target genotypes (more than 10×) | 3.26 × 107 ± 3.26 × 105 |
Number of on-target genotypes (more than 20×) | 3.23 × 107 ± 1.84 × 105 |
Mean depth of target regions (X) | 1.30 × 102 ± 2.69 × 101 |
Number of SNPs | 6.00 × 104 ± 1.11 × 103 |
Number of synonymous SNPs | 1.16 × 104 ± 1.47 × 102 |
Number of Missense Variants | 1.09 × 104 ± 1.84 × 102 |
Number of Stop Losses | 1.47 × 101 ± 2.65 × 100 |
Number of indels | 8.78 × 103 ± 5.20 × 102 |
Number of Frameshift Variants | 2.29 × 102 ± 1.98 × 101 |
Number of Inframe Insertions | 1.86 × 102 ± 8.32 × 100 |
Number of Inframe Deletions | 2.63 × 102 ± 1.18 × 101 |
% Found in dbSNP138 | 9.32 × 101 ± 3.07 × 10−1 |
% Found in dbSNP154 | 9.31 × 101 ± 4.06 × 10−1 |
Het/Hom ratio | 1.69 × 100 ± 1.19 × 10−1 |
Ts/Tv ratio | 2.40 × 100 ± 1.79 × 10−15 |
Feature | Variant 1 | Variant 2 |
---|---|---|
Gene symbol | NAT2 | |
Description | N-Acetyltransferase 2 | |
rsID | rs1799930 | rs1801280 |
Variation name | NM_000015.3 | NM_000015.2 |
HGVS.c | c.590G>A | c.341T>C |
HGVS.p | p.Arg197Gln | p.Ile114Thr |
SIFT score/pred | 0.054/T 1 | 0.048/D 2 |
PROVEAN score/pred | −2.84/D 2 | −4.18/D 2 |
Align GVGD | 42.81 (Class C35) 3 | 89.28 (Class C65) 3 |
Panther | Probably damaging | Possibly damaging |
Polyphen 2 | Probably damaging | Possibly damaging |
Controls | Patients | |||
---|---|---|---|---|
NAT2 SNP | Proportions | % | Proportions | % |
rs1801280 | 2 | 7.1 | 21 | 48.8 |
rs1799930 | 1 | 3.6 | 19 | 44.2 |
rs1801279 | 6 | 21.4 | 8 | 18.6 |
rs4986997 | 5 | 17.9 | 8 | 18.6 |
rs1041983 | 3 | 10.7 | 6 | 14.0 |
rs1565684 | 3 | 10.7 | 5 | 11.6 |
rs1799929 | 2 | 7.1 | 5 | 11.6 |
rs1208 | 1 | 3.6 | 2 | 4.7 |
rs1799931 | 1 | 3.6 | 2 | 4.7 |
rs4271002 | 2 | 7.1 | 2 | 4.7 |
rs4345600 | 1 | 3.6 | 2 | 4.7 |
rs9987109 | 1 | 3.6 | 2 | 4.7 |
rs4986996 | 1 | 3.6 | 1 | 2.3 |
n | SNP1 Count | SNP1 % | SNP2 Count | SNP2 % | SNP1-2 Count | SNP1-2 % | |
---|---|---|---|---|---|---|---|
Controls | 16 | 1 | 6.25 | 2 | 12.50 | 0 | 0 |
Patients | 8 | 3 | 37.50 | 5 | 62.50 | 2 | 25.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alés-Palmer, M.L.; Andújar-Vera, F.; Iglesias-Baena, I.; Muñoz-de-Rueda, P.; Ocete-Hita, E. N-acetyltransferase Gene Variants Involved in Pediatric Idiosyncratic Drug-Induced Liver Injury. Biomedicines 2024, 12, 1288. https://doi.org/10.3390/biomedicines12061288
Alés-Palmer ML, Andújar-Vera F, Iglesias-Baena I, Muñoz-de-Rueda P, Ocete-Hita E. N-acetyltransferase Gene Variants Involved in Pediatric Idiosyncratic Drug-Induced Liver Injury. Biomedicines. 2024; 12(6):1288. https://doi.org/10.3390/biomedicines12061288
Chicago/Turabian StyleAlés-Palmer, María Luisa, Francisco Andújar-Vera, Iván Iglesias-Baena, Paloma Muñoz-de-Rueda, and Esther Ocete-Hita. 2024. "N-acetyltransferase Gene Variants Involved in Pediatric Idiosyncratic Drug-Induced Liver Injury" Biomedicines 12, no. 6: 1288. https://doi.org/10.3390/biomedicines12061288
APA StyleAlés-Palmer, M. L., Andújar-Vera, F., Iglesias-Baena, I., Muñoz-de-Rueda, P., & Ocete-Hita, E. (2024). N-acetyltransferase Gene Variants Involved in Pediatric Idiosyncratic Drug-Induced Liver Injury. Biomedicines, 12(6), 1288. https://doi.org/10.3390/biomedicines12061288