Recent Insights into Cellular and Molecular Mechanisms of Defective Angiogenesis in Systemic Sclerosis
Abstract
:1. Introduction
2. Objective and Methods
3. Endothelial Cell Dysfunction and Impaired Angiogenesis in SSc
3.1. Most Recent Molecular Mechanisms Involved in Impaired Angiogenesis and EndoMT
3.2. Defective Lymphangiogenesis and Occurrence of Lymphatic EndoMT
4. Circulating Factors and Cells Involved in SSc Defective Angiogenesis
4.1. Circulating Factors
4.2. Circulating Angiogenic Cells
5. Genetic and Epigenetic Mechanisms Involved in SSc Defective Angiogenesis
6. Transcriptomic and Proteomic Evidence for SSc Endothelial Cell Dysfunction
7. Animal Models of SSc Vasculopathy
7.1. Endothelial Fli1-Deficient Mouse and Bleomycin-Treated Fli1-Haploinsufficient (+/−) Mouse
7.2. Klf5 and Fli1 Gene Double Heterozygous (Klf5+/−;Fli1+/−) Mouse
7.3. Fra-2 Transgenic Mouse
7.4. uPAR-Deficient Mouse
7.5. Transgenic Mouse with Endothelial Cell-Specific Inducible Expression of Constitutively Active TGF-β Receptor I
7.6. Tumor Necrosis Factor-Transgenic Mouse Model
7.7. Sclerodermatous Graft-Versus-Host Disease Mouse Model
7.8. Other Animal Models with SSc-like Pathological Vascular Features
8. Potential Therapeutic Approaches to Improve Angiogenesis and Reduce EndoMT in SSc
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dudley, A.C.; Griffioen, A.W. Pathological Angiogenesis: Mechanisms and Therapeutic Strategies. Angiogenesis 2023, 26, 313–347. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, E.; Lyons, M.; Tran, K.; Pattanaik, D. Endothelial Dysfunction in Systemic Sclerosis. Int. J. Mol. Sci. 2023, 24, 14385. [Google Scholar] [CrossRef] [PubMed]
- Rabquer, B.J.; Koch, A.E. Angiogenesis and Vasculopathy in Systemic Sclerosis: Evolving Concepts. Curr. Rheumatol. Rep. 2012, 14, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, H.; Deng, R. Angiogenesis as a Potential Treatment Strategy for Rheumatoid Arthritis. Eur. J. Pharmacol. 2021, 910, 174500. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guo, J.; Li, M.; Chu, G.; Jin, H.; Ma, J.; Jia, Q. Cancer Stem Cells and Angiogenesis. Pathol.-Res. Pract. 2024, 253, 155064. [Google Scholar] [CrossRef] [PubMed]
- Manetti, M.; Guiducci, S.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Mechanisms in the Loss of Capillaries in Systemic Sclerosis: Angiogenesis versus Vasculogenesis. J. Cell. Mol. Med. 2010, 14, 1241–1254. [Google Scholar] [CrossRef]
- Stepanova, D.; Byrne, H.M.; Maini, P.K.; Alarcón, T. Computational Modeling of Angiogenesis: The Importance of Cell Rearrangements during Vascular Growth. WIREs Mech. Dis. 2023, 16, e1634. [Google Scholar] [CrossRef]
- Asano, Y. The Pathogenesis of Systemic Sclerosis: An Understanding Based on a Common Pathologic Cascade across Multiple Organs and Additional Organ-Specific Pathologies. J. Clin. Med. 2020, 9, 2687. [Google Scholar] [CrossRef] [PubMed]
- Gerasimova, E.V.; Shayakhmetova, R.U.; Gerasimova, D.A.; Popkova, T.V.; Ananyeva, L.P. Systemic Sclerosis and Atherosclerosis: Potential Cellular Biomarkers and Mechanisms. Front. Biosci. (Schol. Ed.) 2023, 15, 16. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Kuwana, M. Pathogenesis of Vasculopathy in Systemic Sclerosis and Its Contribution to Fibrosis. Curr. Opin. Rheumatol. 2023, 35, 309–316. [Google Scholar] [CrossRef]
- Jinnin, M. ‘Narrow-Sense’ and ‘Broad-Sense’ Vascular Abnormalities of Systemic Sclerosis. Immunol. Med. 2020, 43, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Romano, E.; Rosa, I.; Fioretto, B.S.; Manetti, M. The Contribution of Endothelial Cells to Tissue Fibrosis. Curr. Opin. Rheumatol. 2024, 36, 52–60. [Google Scholar] [CrossRef]
- Doridot, L.; Jeljeli, M.; Chêne, C.; Batteux, F. Implication of Oxidative Stress in the Pathogenesis of Systemic Sclerosis via Inflammation, Autoimmunity and Fibrosis. Redox Biol. 2019, 25, 101122. [Google Scholar] [CrossRef]
- Romano, E.; Rosa, I.; Fioretto, B.S.; Matucci-Cerinic, M.; Manetti, M. New Insights into Profibrotic Myofibroblast Formation in Systemic Sclerosis: When the Vascular Wall Becomes the Enemy. Life 2021, 11, 610. [Google Scholar] [CrossRef]
- Rius Rigau, A.; Li, Y.-N.; Matei, A.-E.; Györfi, A.-H.; Bruch, P.-M.; Koziel, S.; Devakumar, V.; Gabrielli, A.; Kreuter, A.; Wang, J.; et al. Characterization of Vascular Niche in Systemic Sclerosis by Spatial Proteomics. Circ. Res. 2024, 134, 875–891. [Google Scholar] [CrossRef] [PubMed]
- Tsou, P.-S.; Shi, B.; Varga, J. Role of Cellular Senescence in the Pathogenesis of Systemic Sclerosis. Curr. Opin. Rheumatol. 2022, 34, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Suda, M.; Paul, K.H.; Minamino, T.; Miller, J.D.; Lerman, A.; Ellison-Hughes, G.M.; Tchkonia, T.; Kirkland, J.L. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023, 12, 1296. [Google Scholar] [CrossRef] [PubMed]
- Ramadhiani, R.; Ikeda, K.; Hirata, K.-I.; Emoto, N. Endothelial Cell Senescence Exacerbates Pulmonary Fibrosis Potentially Through Accelerated Endothelial to Mesenchymal Transition. Kobe J. Med. Sci. 2021, 67, E84–E91. [Google Scholar]
- Gniadecki, R.; Iyer, A.; Hennessey, D.; Khan, L.; O’Keefe, S.; Redmond, D.; Storek, J.; Durand, C.; Cohen-Tervaert, J.W.; Osman, M. Genomic Instability in Early Systemic Sclerosis. J. Autoimmun. 2022, 131, 102847. [Google Scholar] [CrossRef]
- Yang, M.M.; Lee, S.; Neely, J.; Hinchcliff, M.; Wolters, P.J.; Sirota, M. Gene Expression Meta-Analysis Reveals Aging and Cellular Senescence Signatures in Scleroderma-Associated Interstitial Lung Disease. Front. Immunol. 2024, 15, 1326922. [Google Scholar] [CrossRef]
- Shen, C.-Y.; Li, K.-J.; Lai, P.-H.; Yu, C.-L.; Hsieh, S.-C. Anti-CENP-B and Anti-TOPO-1-Containing Sera from Systemic Sclerosis-Related Diseases with Raynaud’s Phenomenon Induce Vascular Endothelial Cell Senescence Not via Classical P53-P21 Pathway. Clin. Rheumatol. 2018, 37, 749–756. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, C.; Yang, S.; He, H.; Zhu, X.; Liang, M. Contribution to the Peripheral Vasculopathy and Endothelial Cell Dysfunction by CXCL4 in Systemic Sclerosis. J. Dermatol. Sci. 2021, 104, 63–73. [Google Scholar] [CrossRef]
- Kwantwi, L.B.; Wang, S.; Sheng, Y.; Wu, Q. Multifaceted Roles of CCL20 (C-C Motif Chemokine Ligand 20): Mechanisms and Communication Networks in Breast Cancer Progression. Bioengineered 2021, 12, 6923–6934. [Google Scholar] [CrossRef] [PubMed]
- Ikawa, T.; Miyagawa, T.; Fukui, Y.; Minatsuki, S.; Maki, H.; Inaba, T.; Hatano, M.; Toyama, S.; Omatsu, J.; Awaji, K.; et al. Association of Serum CCL20 Levels with Pulmonary Vascular Involvement and Primary Biliary Cholangitis in Patients with Systemic Sclerosis. Int. J. Rheum. Dis. 2021, 24, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Ikawa, T.; Miyagawa, T.; Fukui, Y.; Toyama, S.; Omatsu, J.; Awaji, K.; Norimatsu, Y.; Watanabe, Y.; Yoshizaki, A.; Sato, S.; et al. Endothelial CCR6 Expression Due to FLI1 Deficiency Contributes to Vasculopathy Associated with Systemic Sclerosis. Arthritis Res. Ther. 2021, 23, 283. [Google Scholar] [CrossRef]
- Korman, B.D.; Marangoni, R.G.; Hinchcliff, M.; Shah, S.J.; Carns, M.; Hoffmann, A.; Ramsey-Goldman, R.; Varga, J. Elevated Adipsin Levels Are Associated with Pulmonary Arterial Hypertension in Systemic Sclerosis. Arthritis Rheumatol. 2017, 69, 2062–2068. [Google Scholar] [CrossRef]
- Miyagawa, T.; Taniguchi, T.; Saigusa, R.; Fukayama, M.; Takahashi, T.; Yamashita, T.; Hirabayashi, M.; Miura, S.; Nakamura, K.; Yoshizaki, A.; et al. Fli1 Deficiency Induces Endothelial Adipsin Expression, Contributing to the Onset of Pulmonary Arterial Hypertension in Systemic Sclerosis. Rheumatology 2020, 59, 2005–2015. [Google Scholar] [CrossRef]
- Khan, K.A.; McMurray, J.L.; Mohammed, F.; Bicknell, R. C-Type Lectin Domain Group 14 Proteins in Vascular Biology, Cancer and Inflammation. FEBS J. 2019, 286, 3299–3332. [Google Scholar] [CrossRef]
- Cipriani, P.; Ruscitti, P.; Di Cola, I.; Vomero, M.; Abbruzzese, F.; Di Nino, E.; Ross, R.; Del Galdo, F.; Giacomelli, R. Fibroblast Expression of CD248 May Contribute to Exacerbation of Microvascular Damage during Systemic Sclerosis. Rheumatology 2023, 62, 1317–1325. [Google Scholar] [CrossRef]
- Henrot, P.; Moisan, F.; Laurent, P.; Manicki, P.; Kaulanjan-Checkmodine, P.; Jolivel, V.; Rezvani, H.R.; Leroy, V.; Picard, F.; Boulon, C.; et al. Decreased CCN3 in Systemic Sclerosis Endothelial Cells Contributes to Impaired Angiogenesis. J. Investig. Dermatol. 2020, 140, 1427–1434.E5. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zuo, X.; Xiao, Y.; Liu, D.; Luo, H.; Zhu, H. Neutrophil-Derived Exosome from Systemic Sclerosis Inhibits the Proliferation and Migration of Endothelial Cells. Biochem. Biophys. Res. Commun. 2020, 526, 334–340. [Google Scholar] [CrossRef]
- Farina, A.; Rosato, E.; York, M.; Gewurz, B.E.; Trojanowska, M.; Farina, G.A. Innate Immune Modulation Induced by EBV Lytic Infection Promotes Endothelial Cell Inflammation and Vascular Injury in Scleroderma. Front. Immunol. 2021, 12, 651013. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, H.; Shi, X.; Liu, J.; Lin, J.-M.; Ma, Q.; Jiang, S.; Pu, W.; Ma, Y.; Liu, J.; et al. GRB2 Serves as a Viable Target against Skin Fibrosis in Systemic Sclerosis by Regulating Endothelial Cell Apoptosis. J. Dermatol. Sci. 2023, 111, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Kramer, B.; Corallo, C.; Van Den Heuvel, A.; Crawford, J.; Olivier, T.; Elstak, E.; Giordano, N.; Vulto, P.; Lanz, H.L.; Janssen, R.A.J.; et al. High-Throughput 3D Microvessel-on-a-Chip Model to Study Defective Angiogenesis in Systemic Sclerosis. Sci. Rep. 2022, 12, 16930. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.L.; Mavria, G.; Del Galdo, F.; Elies, J. Downregulation of Vascular Hemeoxygenase-1 Leads to Vasculopathy in Systemic Sclerosis. Front. Physiol. 2022, 13, 900631. [Google Scholar] [CrossRef]
- Marden, G.; Wan, Q.; Wilks, J.; Nevin, K.; Feeney, M.; Wisniacki, N.; Trojanowski, M.; Bujor, A.; Stawski, L.; Trojanowska, M. The Role of the Oncostatin M/OSM Receptor β Axis in Activating Dermal Microvascular Endothelial Cells in Systemic Sclerosis. Arthritis. Res. Ther. 2020, 22, 179. [Google Scholar] [CrossRef] [PubMed]
- Andreucci, E.; Margheri, F.; Peppicelli, S.; Bianchini, F.; Ruzzolini, J.; Laurenzana, A.; Fibbi, G.; Bruni, C.; Bellando-Randone, S.; Guiducci, S.; et al. Glycolysis-Derived Acidic Microenvironment as a Driver of Endothelial Dysfunction in Systemic Sclerosis. Rheumatology 2021, 60, 4508–4519. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Tsou, P.-S.; Gharaee-Kermani, M.; Plazyo, O.; Xing, X.; Kirma, J.; Wasikowski, R.; Hile, G.A.; Harms, P.W.; Jiang, Y.; et al. Systems-Based Identification of the Hippo Pathway for Promoting Fibrotic Mesenchymal Differentiation in Systemic Sclerosis. Nat. Commun. 2024, 15, 210. [Google Scholar] [CrossRef]
- Suarez, A.C.; Hammel, J.H.; Munson, J.M. Modeling Lymphangiogenesis: Pairing in Vitro and in Vivo Metrics. Microcirculation 2023, 30, e12802. [Google Scholar] [CrossRef]
- Bruni, C.; Frech, T.; Manetti, M.; Rossi, F.W.; Furst, D.E.; De Paulis, A.; Rivellese, F.; Guiducci, S.; Matucci-Cerinic, M.; Bellando-Randone, S. Vascular Leaking, a Pivotal and Early Pathogenetic Event in Systemic Sclerosis: Should the Door Be Closed? Front. Immunol. 2018, 9, 2045. [Google Scholar] [CrossRef]
- Manetti, M.; Romano, E.; Rosa, I.; Fioretto, B.S.; Guiducci, S.; Bellando-Randone, S.; Pigatto, E.; Cozzi, F.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Systemic Sclerosis Serum Significantly Impairs the Multi-Step Lymphangiogenic Process: In Vitro Evidence. Int. J. Mol. Sci. 2019, 20, 6189. [Google Scholar] [CrossRef] [PubMed]
- Manetti, M.; Pratesi, S.; Romano, E.; Rosa, I.; Bruni, C.; Bellando-Randone, S.; Guiducci, S.; Maggi, E.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Decreased Circulating Lymphatic Endothelial Progenitor Cells in Digital Ulcer-Complicated Systemic Sclerosis. Ann. Rheum. Dis. 2019, 78, 575–577. [Google Scholar] [CrossRef] [PubMed]
- Rosa, I.; Romano, E.; Fioretto, B.S.; El Aoufy, K.; Bellando-Randone, S.; Matucci-Cerinic, M.; Manetti, M. Lymphatic Endothelial-to-Myofibroblast Transition: A Potential New Mechanism Underlying Skin Fibrosis in Systemic Sclerosis. Cells 2023, 12, 2195. [Google Scholar] [CrossRef] [PubMed]
- Muruganandam, M.; Ariza-Hutchinson, A.; Patel, R.A.; Sibbitt, W.L. Biomarkers in the Pathogenesis, Diagnosis, and Treatment of Systemic Sclerosis. J. Inflamm. Res. 2023, 16, 4633–4660. [Google Scholar] [CrossRef] [PubMed]
- Fioretto, B.S.; Rosa, I.; Matucci-Cerinic, M.; Romano, E.; Manetti, M. Current Trends in Vascular Biomarkers for Systemic Sclerosis: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 4097. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Kim, J.H.; Lee, Y.J. The Role of Adipokines in Tumor Progression and Its Association with Obesity. Biomedicines 2024, 12, 97. [Google Scholar] [CrossRef] [PubMed]
- Pellicano, C.; Leodori, G.; Colalillo, A.; Navarini, L.; Gigante, A.; Rosato, E. Serum Resistin Is Predictive Marker of Development of New Digital Ulcers in Systemic Sclerosis. Clin. Exp. Med. 2022, 22, 421–426. [Google Scholar] [CrossRef]
- Pellicano, C.; Colalillo, A.; Rosato, E. Serum Kynurenic Acid Is Lower in Systemic Sclerosis Patients with Microvascular Damage of Hands. Microvasc. Res. 2023, 148, 104537. [Google Scholar] [CrossRef] [PubMed]
- Leleu, D.; Levionnois, E.; Laurent, P.; Lazaro, E.; Richez, C.; Duffau, P.; Blanco, P.; Sisirak, V.; Contin-Bordes, C.; Truchetet, M.-E. Elevated Circulatory Levels of Microparticles Are Associated to Lung Fibrosis and Vasculopathy During Systemic Sclerosis. Front. Immunol. 2020, 11, 532177. [Google Scholar] [CrossRef]
- Didriksen, H.; Molberg, Ø.; Fretheim, H.; Gude, E.; Jordan, S.; Brunborg, C.; Palchevskiy, V.; Garen, T.; Midtvedt, Ø.; Andreassen, A.K.; et al. Association of Lymphangiogenic Factors With Pulmonary Arterial Hypertension in Systemic Sclerosis. Arthritis Rheumatol. 2021, 73, 1277–1287. [Google Scholar] [CrossRef]
- Raschi, E.; Privitera, D.; Bodio, C.; Lonati, P.A.; Borghi, M.O.; Ingegnoli, F.; Meroni, P.L.; Chighizola, C.B. Scleroderma-Specific Autoantibodies Embedded in Immune Complexes Mediate Endothelial Damage: An Early Event in the Pathogenesis of Systemic Sclerosis. Arthritis. Res. Ther. 2020, 22, 265. [Google Scholar] [CrossRef]
- Rodríguez-Carrio, J.; López, P.; Suárez, A. Endothelial Progenitor Cells as Mediators of the Crosstalk between Vascular Repair and Immunity: Lessons from Systemic Autoimmune Diseases. Curr. Med. Chem. 2018, 25, 4478–4496. [Google Scholar] [CrossRef]
- Lo Gullo, A.; Mandraffino, G.; Rodríguez-Carrio, J.; Scuruchi, M.; Sinicropi, D.; Postorino, M.; Morace, C.; Giuffrida, C.; Sciortino, D.; Gallizzi, R.; et al. Endocan and Circulating Progenitor Cells in Women with Systemic Sclerosis: Association with Inflammation and Pulmonary Hypertension. Biomedicines 2021, 9, 533. [Google Scholar] [CrossRef] [PubMed]
- Ota, Y.; Kuwana, M. Endothelial Cells and Endothelial Progenitor Cells in the Pathogenesis of Systemic Sclerosis. Eur. J. Rheumatol. 2020, 7, S139–S146. [Google Scholar] [CrossRef] [PubMed]
- Manetti, M.; Pratesi, S.; Romano, E.; Bellando-Randone, S.; Rosa, I.; Guiducci, S.; Fioretto, B.S.; Ibba-Manneschi, L.; Maggi, E.; Matucci-Cerinic, M. Angiogenic T Cell Expansion Correlates with Severity of Peripheral Vascular Damage in Systemic Sclerosis. PLoS ONE 2017, 12, e0183102. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Yang, F.; Zhang, K.; Lv, M.; Zhang, Y.; Zhu, P. The Risk of Circulating Angiogenic T Cells and Subsets in Patients with Systemic Sclerosis. Int. Immunopharmacol. 2020, 81, 106282. [Google Scholar] [CrossRef]
- Di Martino, M.L.; Frau, A.; Losa, F.; Muggianu, E.; Mura, M.N.; Rotta, G.; Scotti, L.; Marongiu, F. Role of Circulating Endothelial Cells in Assessing the Severity of Systemic Sclerosis and Predicting Its Clinical Worsening. Sci. Rep. 2021, 11, 2681. [Google Scholar] [CrossRef]
- Michalska-Jakubus, M.M.; Rusek, M.; Kowal, M.; Czop, M.; Kocki, J.; Krasowska, D. Anti-Endothelial Cell Antibodies Are Associated Withapoptotic Endothelial Microparticles, Endothelialsloughing and Decrease in Angiogenic Progenitorsin Systemic Sclerosis. Postępy Dermatol. Alergol. 2020, 37, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Ortíz-Fernández, L.; Martín, J.; Alarcón-Riquelme, M.E. A Summary on the Genetics of Systemic Lupus Erythematosus, Rheumatoid Arthritis, Systemic Sclerosis, and Sjögren’s Syndrome. Clinic. Rev. Allergy Immunol. 2022, 64, 392–411. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Martín, G.; Martín, J.; Bossini-Castillo, L. Recent Advances in Elucidating the Genetic Basis of Systemic Sclerosis. Curr. Opin. Rheumatol. 2022, 34, 295–301. [Google Scholar] [CrossRef]
- Ramos, P.S. Epigenetics of Scleroderma: Integrating Genetic, Ethnic, Age, and Environmental Effects. J. Scleroderma Relat. Disord. 2019, 4, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Ramahi, A.; Altorok, N.; Kahaleh, B. Epigenetics and Systemic Sclerosis: An Answer to Disease Onset and Evolution? Eur. J. Rheumatol. 2020, 7, S147–S156. [Google Scholar] [CrossRef] [PubMed]
- Fioretto, B.S.; Rosa, I.; Romano, E.; Wang, Y.; Guiducci, S.; Zhang, G.; Manetti, M.; Matucci-Cerinic, M. The Contribution of Epigenetics to the Pathogenesis and Gender Dimorphism of Systemic Sclerosis: A Comprehensive Overview. Ther. Adv. Musculoskelet. Dis. 2020, 12, 1759720X20918456. [Google Scholar] [CrossRef]
- Takagi, K.; Kawamoto, M.; Higuchi, T.; Tochimoto, A.; Harigai, M.; Kawaguchi, Y. Single Nucleotide Polymorphisms of the HIF1A Gene Are Associated with Susceptibility to Pulmonary Arterial Hypertension in Systemic Sclerosis and Contribute to SSc-PAH Disease Severity. Int. J. Rheum. Dis. 2020, 23, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.; Wu, W.; Liu, Q.; Ma, Y.; Tu, W.; Zuo, X.; Guo, G.; Jiang, S.; Zhao, Y.; Zuo, X.; et al. Exome-Wide Association Analysis Suggests LRP2BP as a Susceptibility Gene for Endothelial Injury in Systemic Sclerosis in the Han Chinese Population. J. Investig. Dermatol. 2021, 141, 1254–1263.e6. [Google Scholar] [CrossRef] [PubMed]
- Tsou, P.; Palisoc, P.J.; Ali, M.; Khanna, D.; Sawalha, A.H. Genome-Wide Reduction in Chromatin Accessibility and Unique Transcription Factor Footprints in Endothelial Cells and Fibroblasts in Scleroderma Skin. Arthritis Rheumatol. 2021, 73, 1501–1513. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, L.; Zhan, H.; Li, H.; Li, X.; Huang, Y.; Li, Y. The Roles of Noncoding RNAs in Systemic Sclerosis. Front. Immunol. 2022, 13, 856036. [Google Scholar] [CrossRef] [PubMed]
- Szabo, I.; Muntean, L.; Crisan, T.; Rednic, V.; Sirbe, C.; Rednic, S. Novel Concepts in Systemic Sclerosis Pathogenesis: Role for miRNAs. Biomedicines 2021, 9, 1471. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, J.; Kahaleh, B. Epigenetic Down-Regulation of microRNA-126 in Scleroderma Endothelial Cells Is Associated with Impaired Responses to VEGF and Defective Angiogenesis. J. Cell. Mol. Med. 2021, 25, 7078–7088. [Google Scholar] [CrossRef]
- Nada, S.; Kahaleh, B.; Altorok, N. Genome-Wide DNA Methylation Pattern in Systemic Sclerosis Microvascular Endothelial Cells: Identification of Epigenetically Affected Key Genes and Pathways. J. Scleroderma Relat. Disord. 2022, 7, 71–81. [Google Scholar] [CrossRef]
- Kanno, Y.; Shu, E.; Niwa, H.; Seishima, M.; Ozaki, K. MicroRNA-30c Attenuates Fibrosis Progression and Vascular Dysfunction in Systemic Sclerosis Model Mice. Mol. Biol. Rep. 2021, 48, 3431–3437. [Google Scholar] [CrossRef] [PubMed]
- Piera-Velazquez, S.; Mendoza, F.A.; Addya, S.; Pomante, D.; Jimenez, S.A. Increased Expression of Interferon Regulated and Antiviral Response Genes in CD31+/CD102+ Lung Microvascular Endothelial Cells from Systemic Sclerosis Patients with End-Stage Interstitial Lung Disease. Clin. Exp. Rheumatol. 2021, 39, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Distler, O.; Shen, L.; Xu, X.; Yuan, Y.; Li, R.; Liu, B.; Li, Q.; Huang, Q.; Xie, F.; et al. Endothelial Response to Type I Interferon Contributes to Vasculopathy and Fibrosis and Predicts Disease Progression of Systemic Sclerosis. Arthritis Rheumatol. 2024, 76, 78–91. [Google Scholar] [CrossRef]
- Sapao, P.; Roberson, E.D.O.; Shi, B.; Assassi, S.; Skaug, B.; Lee, F.; Naba, A.; Perez White, B.E.; Córdova-Fletes, C.; Tsou, P.-S.; et al. Reduced SPAG17 Expression in Systemic Sclerosis Triggers Myofibroblast Transition and Drives Fibrosis. J. Investig. Dermatol. 2023, 143, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, S.A.; Stifano, G.; Tabib, T.; Rice, L.M.; Morse, C.M.; Kahaleh, B.; Lafyatis, R. Single Cell RNA Sequencing Identifies HSPG2 and APLNR as Markers of Endothelial Cell Injury in Systemic Sclerosis Skin. Front. Immunol. 2018, 9, 2191. [Google Scholar] [CrossRef] [PubMed]
- Spinella, A.; Tartaro, D.L.; Gibellini, L. Altered Pathways of Keratinization, Extracellular Matrix Generation, Angiogenesis, and Stromal Stem Cells Proliferation in Patients with Systemic Sclerosis. J. Scleroderma Relat. Disorders 2023, 8, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Tabib, T.; Khanna, D.; Assassi, S.; Domsic, R.; Lafyatis, R. Single-Cell Transcriptomes and Chromatin Accessibility of Endothelial Cells Unravel Transcription Factors Associated with Dysregulated Angiogenesis in Systemic Sclerosis. Ann. Rheum. Dis. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tabib, T.; Huang, M.; Yuan, K.; Kim, Y.; Morse, C.; Sembrat, J.; Valenzi, E.; Lafyatis, R. Molecular Changes Implicate Angiogenesis and Arterial Remodeling in Systemic Sclerosis-Associated and Idiopathic Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Bellocchi, C.; Assassi, S.; Lyons, M.; Marchini, M.; Mohan, C.; Santaniello, A.; Beretta, L. Proteomic Aptamer Analysis Reveals Serum Markers That Characterize Preclinical Systemic Sclerosis (SSc) Patients at Risk for Progression toward Definite SSc. Arthritis. Res. Ther. 2023, 25, 15. [Google Scholar] [CrossRef]
- Motta, F.; Tonutti, A.; Isailovic, N.; Ceribelli, A.; Costanzo, G.; Rodolfi, S.; Selmi, C.; De Santis, M. Proteomic Aptamer Analysis Reveals Serum Biomarkers Associated with Disease Mechanisms and Phenotypes of Systemic Sclerosis. Front. Immunol. 2023, 14, 1246777. [Google Scholar] [CrossRef]
- Bi, X.; Mills, T.; Wu, M. Animal Models in Systemic Sclerosis: An Update. Curr. Opin. Rheumatol. 2023, 35, 364–370. [Google Scholar] [CrossRef]
- Asano, Y.; Stawski, L.; Hant, F.; Highland, K.; Silver, R.; Szalai, G.; Watson, D.K.; Trojanowska, M. Endothelial Fli1 Deficiency Impairs Vascular Homeostasis: A Role in Scleroderma Vasculopathy. Am. J. Pathol. 2010, 176, 1983–1998. [Google Scholar] [CrossRef]
- Taniguchi, T.; Asano, Y.; Akamata, K.; Noda, S.; Takahashi, T.; Ichimura, Y.; Toyama, T.; Trojanowska, M.; Sato, S. Fibrosis, Vascular Activation, and Immune Abnormalities Resembling Systemic Sclerosis in Bleomycin-Treated Fli-1–Haploinsufficient Mice. Arthritis Rheumatol. 2015, 67, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Noda, S.; Asano, Y.; Nishimura, S.; Taniguchi, T.; Fujiu, K.; Manabe, I.; Nakamura, K.; Yamashita, T.; Saigusa, R.; Akamata, K.; et al. Simultaneous Downregulation of KLF5 and Fli1 Is a Key Feature Underlying Systemic Sclerosis. Nat. Commun. 2014, 5, 5797. [Google Scholar] [CrossRef]
- Nakamura, K.; Taniguchi, T.; Hirabayashi, M.; Yamashita, T.; Saigusa, R.; Miura, S.; Takahashi, T.; Toyama, T.; Ichimura, Y.; Yoshizaki, A.; et al. Altered Properties of Endothelial Cells and Mesenchymal Stem Cells Underlying the Development of Scleroderma-like Vasculopathy in KLF5 +/−; Fli-1 +/− Mice. Arthritis Rheumatol. 2020, 72, 2136–2146. [Google Scholar] [CrossRef] [PubMed]
- Maurer, B.; Busch, N.; Jüngel, A.; Pileckyte, M.; Gay, R.E.; Michel, B.A.; Schett, G.; Gay, S.; Distler, J.; Distler, O. Transcription Factor Fos-Related Antigen-2 Induces Progressive Peripheral Vasculopathy in Mice Closely Resembling Human Systemic Sclerosis. Circulation 2009, 120, 2367–2376. [Google Scholar] [CrossRef]
- Maurer, B.; Reich, N.; Juengel, A.; Kriegsmann, J.; Gay, R.E.; Schett, G.; Michel, B.A.; Gay, S.; Distler, J.H.W.; Distler, O. Fra-2 Transgenic Mice as a Novel Model of Pulmonary Hypertension Associated with Systemic Sclerosis. Ann. Rheum. Dis. 2012, 71, 1382–1387. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Maier, C.; Zhang, Y.; Soare, A.; Dees, C.; Beyer, C.; Harre, U.; Chen, C.-W.; Distler, O.; Schett, G.; et al. Nintedanib Inhibits Macrophage Activation and Ameliorates Vascular and Fibrotic Manifestations in the Fra2 Mouse Model of Systemic Sclerosis. Ann. Rheum. Dis. 2017, 76, 1941–1948. [Google Scholar] [CrossRef] [PubMed]
- Wollin, L.; Trinh-Minh, T.; Zhang, Y.; Distler, J.H.W. The Effect of Nintedanib versus Mycophenolate Mofetil in the Fra2 Mouse Model of Systemic Sclerosis-Associated Interstitial Lung Disease. Clin. Exp. Rheumatol. 2021, 39, 134–141. [Google Scholar] [CrossRef]
- Birnhuber, A.; Jandl, K.; Biasin, V.; Fließer, E.; Valzano, F.; Marsh, L.M.; Krolczik, C.; Olschewski, A.; Wilhelm, J.; Toller, W.; et al. Pirfenidone Exacerbates Th2-Driven Vasculopathy in a Mouse Model of Systemic Sclerosis-Associated Interstitial Lung Disease. Eur. Respir. J. 2022, 60, 2102347. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, H.; Layritz, F.; Luo, H.; Wohlfahrt, T.; Chen, C.; Soare, A.; Bergmann, C.; Ramming, A.; Groeber, F.; et al. Recombinant Adenosine Deaminase Ameliorates Inflammation, Vascular Disease, and Fibrosis in Preclinical Models of Systemic Sclerosis. Arthritis Rheumatol. 2020, 72, 1385–1395. [Google Scholar] [CrossRef] [PubMed]
- Manetti, M.; Rosa, I.; Milia, A.F.; Guiducci, S.; Carmeliet, P.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Inactivation of Urokinase-Type Plasminogen Activator Receptor (uPAR) Gene Induces Dermal and Pulmonary Fibrosis and Peripheral Microvasculopathy in Mice: A New Model of Experimental Scleroderma? Ann. Rheum. Dis. 2014, 73, 1700–1709. [Google Scholar] [CrossRef] [PubMed]
- Manetti, M.; Romano, E.; Rosa, I.; Guiducci, S.; Bellando-Randone, S.; Paulis, A.D.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Endothelial-to-Mesenchymal Transition Contributes to Endothelial Dysfunction and Dermal Fibrosis in Systemic Sclerosis. Ann. Rheum. Dis. 2017, 76, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Wermuth, P.J.; Carney, K.R.; Mendoza, F.A.; Piera-Velazquez, S.; Jimenez, S.A. Endothelial Cell-Specific Activation of Transforming Growth Factor-β Signaling in Mice Induces Cutaneous, Visceral, and Microvascular Fibrosis. Lab. Investig. 2017, 97, 806–818. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.D.; White, R.J.; Garcia-Hernandez, M.L.; Wu, E.; Rahimi, H.; Marangoni, R.G.; Slattery, P.; Duemmel, S.; Nuzzo, M.; Huertas, N.; et al. Tumor Necrosis Factor Induces Obliterative Pulmonary Vascular Disease in a Novel Model of Connective Tissue Disease–Associated Pulmonary Arterial Hypertension. Arthritis Rheumatol. 2020, 72, 1759–1770. [Google Scholar] [CrossRef] [PubMed]
- Ruzek, M.C.; Jha, S.; Ledbetter, S.; Richards, S.M.; Garman, R.D. A Modified Model of Graft-versus-Host–Induced Systemic Sclerosis (Scleroderma) Exhibits All Major Aspects of the Human Disease. Arthritis Rheum. 2004, 50, 1319–1331. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, W.R.; De Jesus Queiroz, Z.A.; Dos Santos, L.A.; Catanozi, S.; Dos Santos Filho, A.; Bueno, C.; Vendramini, M.B.G.; Fernezlian, S.D.M.; Eher, E.M.; Sampaio-Barros, P.D.; et al. Proposition of a Novel Animal Model of Systemic Sclerosis Induced by Type V Collagen in C57BL/6 Mice That Reproduces Fibrosis, Vasculopathy and Autoimmunity. Arthritis. Res. Ther. 2019, 21, 278. [Google Scholar] [CrossRef] [PubMed]
- Doskaliuk, B.; Zaiats, L. Structural and Functional Characteristics of the Pulmonary Hemomicrocirculatory Bed in Induced Systemic Sclerosis: An Experimental Study. Rheumatol. Int. 2023, 43, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Mandujano, A.; Golubov, M. Animal Models of Systemic Sclerosis: Using Nailfold Capillaroscopy as a Potential Tool to Evaluate Microcirculation and Microangiopathy: A Narrative Review. Life 2022, 12, 703. [Google Scholar] [CrossRef]
- Flavahan, N.A. New Mechanism-Based Approaches to Treating and Evaluating the Vasculopathy of Scleroderma. Curr. Opin. Rheumatol. 2021, 33, 471–479. [Google Scholar] [CrossRef]
- Zanin-Silva, D.C.; Santana-Gonçalves, M.; Kawashima-Vasconcelos, M.Y.; Oliveira, M.C. Management of Endothelial Dysfunction in Systemic Sclerosis: Current and Developing Strategies. Front. Med. 2021, 8, 788250. [Google Scholar] [CrossRef] [PubMed]
- Giordo, R.; Thuan, D.T.B.; Posadino, A.M.; Cossu, A.; Zinellu, A.; Erre, G.L.; Pintus, G. Iloprost Attenuates Oxidative Stress-Dependent Activation of Collagen Synthesis Induced by Sera from Scleroderma Patients in Human Pulmonary Microvascular Endothelial Cells. Molecules 2021, 26, 4729. [Google Scholar] [CrossRef] [PubMed]
- Tsou, P.; Palisoc, P.J.; Flavahan, N.A.; Khanna, D. Dissecting the Cellular Mechanism of Prostacyclin Analog Iloprost in Reversing Vascular Dysfunction in Scleroderma. Arthritis Rheumatol. 2021, 73, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Argentino, G.; Olivieri, B.; Barbieri, A.; Beri, R.; Bason, C.; Friso, S.; Tinazzi, E. Exploring the Utility of Circulating Endothelial Cell-Derived Extracellular Vesicles as Markers of Health and Damage of Vasal Endothelium in Systemic Sclerosis Patients Treated with Iloprost. Biomedicines 2024, 12, 295. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yin, H.; Wang, J.; He, D.; Yan, Q.; Lu, L. Dihydroartemisinin Alleviates Skin Fibrosis and Endothelial Dysfunction in Bleomycin-Induced Skin Fibrosis Models. Clin. Rheumatol. 2021, 40, 4269–4277. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, F.; Li, Q.; Shen, C.; Yang, J.; Li, M. Tanshinone IIA Ameliorates the Bleomycin-Induced Endothelial-to-Mesenchymal Transition via the Akt/mTOR/p70S6K Pathway in a Murine Model of Systemic Sclerosis. Int. Immunopharmacol. 2019, 77, 105968. [Google Scholar] [CrossRef] [PubMed]
- Fukasawa, T.; Yoshizaki, A.; Ebata, S.; Fukayama, M.; Kuzumi, A.; Norimatsu, Y.; Matsuda, K.M.; Kotani, H.; Sumida, H.; Yoshizaki-Ogawa, A.; et al. Interleukin-17 Pathway Inhibition with Brodalumab in Early Systemic Sclerosis: Analysis of a Single-Arm, Open-Label, Phase 1 Trial. J. Am. Acad. Dermatol. 2023, 89, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Fukasawa, T.; Yoshizaki-Ogawa, A.; Yoshizaki, A.; Sato, S. Impact of Guselkumab on Three Cases of SSc Accompanying Psoriasis. Rheumatology 2024, 63, e6–e8. [Google Scholar] [CrossRef]
- Strunz, P.-P.; Labinsky, H.; Nagler, L.-K.; Portegys, J.; Froehlich, M.; Gernert, M.; Schmalzing, M. Case Report: Effectiveness of Secukinumab in Systemic Sclerosis with Early Skin Progress after Autologous Hematopoietic Stem Cell Transplantation and End-Stage Kidney Disease. Front. Immunol. 2023, 14, 1294496. [Google Scholar] [CrossRef]
- Romano, E.; Rosa, I.; Fioretto, B.S.; Giuggioli, D.; Manetti, M.; Matucci-Cerinic, M. Soluble Guanylate Cyclase Stimulation Fosters Angiogenesis and Blunts Myofibroblast-like Features of Systemic Sclerosis Endothelial Cells. Rheumatology 2023, 62, SI125–SI137. [Google Scholar] [CrossRef]
- Santana-Gonçalves, M.; Zanin-Silva, D.; Henrique-Neto, Á.; Moraes, D.A.; Kawashima- Vasconcelos, M.Y.; Lima-Júnior, J.R.; Dias, J.B.E.; Bragagnollo, V.; De Azevedo, J.T.C.; Covas, D.T.; et al. Autologous Hematopoietic Stem Cell Transplantation Modifies Specific Aspects of Systemic Sclerosis-Related Microvasculopathy. Ther. Adv. Musculoskelet. 2022, 14, 1759720X2210848. [Google Scholar] [CrossRef] [PubMed]
- Velier, M.; Simoncini, S.; Abellan, M.; Francois, P.; Eap, S.; Lagrange, A.; Bertrand, B.; Daumas, A.; Granel, B.; Delorme, B.; et al. Adipose-Derived Stem Cells from Systemic Sclerosis Patients Maintain Pro-Angiogenic and Antifibrotic Paracrine Effects In Vitro. J. Clin. Med. 2019, 8, 1979. [Google Scholar] [CrossRef] [PubMed]
Animal Model | Vascular Manifestations | References |
---|---|---|
Endothelial Fli1-Deficient Mouse | Disorganized dermal vascular networks; loss of vascular integrity; downregulation of EC markers | [82] |
Bleomycin-Treated Fli1-Haploinsufficient (+/−) Mouse | Disturbed angiogenesis; EndoMT in dermal vessels | [83] |
Klf5+/−;Fli1+/− Mouse | Disturbed angiogenesis; EndoMT in dermal vessels | [85] |
Fra-2 Transgenic Mouse | Loss of small blood vessels; early EC apoptosis; proliferative vasculopathy in the lungs resembling SSc-related PAH | [86,87] |
uPAR-Deficient Mouse | Dermal EC apoptosis and severe capillary reduction; EndoMT in dermal vessels | [92,93] |
Transgenic Mouse with EC-Specific Inducible Expression of Constitutively Active TGF-βRI | EndoMT in pulmonary vessels | [94] |
Type V Collagen Immunized Mouse | EC activation and apoptosis | [97] |
Rats Subcutaneously Injected with NaClO | Capillary disruption, narrowing of vascular lumen, and perivascular infiltration in lungs | [98] |
TNF-Transgenic Mouse | Pulmonary vasculopathy; EndoMT; dysregulated angiogenic pathways | [81,95] |
Sclerodermatous Graft-Versus-Host Disease Mouse | Fibroproliferative vasculopathy | [81,96] |
Compound/Treatment | Mechanism of Action and Effects | References |
---|---|---|
Iloprost | Prostacyclin analog that increases EPC turnover, exerts antioxidant effects, reduces vascular permeability, increases angiogenesis, blocks EndoMT, and affects the release of EC-derived extracellular vesicles | [102,103,104] |
Dihydroartemisinin | Antimalarial drug that counteracts EndoMT in vivo and in vitro | [105] |
Tanshinone IIA | Phytochemical extract that counteracts EndoMT and increases tube formation in bleomycin-treated HUVECs | [106] |
MK-2947 | sGC stimulator that improves SSc MVEC proliferation, wound healing capacity and in vitro angiogenesis, and dampens SSc MVEC profibrotic features | [110] |
Autologous hematopoietic stem cell transplantation | Increased number of capillaries, with a decrease in the giant ones; decreased E-selectin and increased angiopoietin-1 in skin biopsies | [111] |
Autologous adipose-derived stem/stromal cells | Promotion of angiogenesis of dermal MVECs through paracrine mechanisms | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, E.; Rosa, I.; Fioretto, B.S.; Manetti, M. Recent Insights into Cellular and Molecular Mechanisms of Defective Angiogenesis in Systemic Sclerosis. Biomedicines 2024, 12, 1331. https://doi.org/10.3390/biomedicines12061331
Romano E, Rosa I, Fioretto BS, Manetti M. Recent Insights into Cellular and Molecular Mechanisms of Defective Angiogenesis in Systemic Sclerosis. Biomedicines. 2024; 12(6):1331. https://doi.org/10.3390/biomedicines12061331
Chicago/Turabian StyleRomano, Eloisa, Irene Rosa, Bianca Saveria Fioretto, and Mirko Manetti. 2024. "Recent Insights into Cellular and Molecular Mechanisms of Defective Angiogenesis in Systemic Sclerosis" Biomedicines 12, no. 6: 1331. https://doi.org/10.3390/biomedicines12061331
APA StyleRomano, E., Rosa, I., Fioretto, B. S., & Manetti, M. (2024). Recent Insights into Cellular and Molecular Mechanisms of Defective Angiogenesis in Systemic Sclerosis. Biomedicines, 12(6), 1331. https://doi.org/10.3390/biomedicines12061331