Circulating Nucleosomes as a Novel Biomarker for Sepsis: A Scoping Review
Abstract
:1. Introduction
2. Immunostimulatory Role of Nucleosomes
3. Nucleosome Administration in Sepsis
4. Unanswered Questions
- Can circulating nucleosome concentrations serve as a biomarker for NET formation in sepsis?
- Are circulating nucleosome concentrations diagnostic biomarkers for sepsis?
- Can circulating nucleosome concentrations serve as markers of organ dysfunction or disease severity in sepsis?
- Are circulating nucleosome concentrations prognostic biomarkers in sepsis?
- Can nucleosome levels be used to guide sepsis therapy?
5. Methods
6. Results
7. Discussion
- Can circulating nucleosome concentrations serve as a biomarker for NET formation in sepsis? Circulating nucleosome concentrations are reliable biomarkers for NETosis in sepsis, reflecting the release of chromatin into the extracellular space as part of the immune response.
- Are circulating nucleosome concentrations diagnostic biomarkers for sepsis?Nucleosome concentrations have moderate utility as diagnostic biomarkers for sepsis, with limited sensitivity and specificity.
- Can circulating nucleosome concentrations serve as markers of organ dysfunction or disease severity in sepsis?There is a correlation between circulating nucleosome levels and the severity of sepsis, making them a potential biomarker for the stratification of disease severity.
- Are circulating nucleosome concentrations prognostic biomarkers in sepsis?Nucleosome concentrations on admission serve as good prognostic biomarkers for predicting mortality within 28 to 30 days.
- Can nucleosome levels be used to guide sepsis therapy?Currently, there is no evidence to support the use of circulating nucleosomes to guide therapy in sepsis.
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jarczak, D.; Kluge, S.; Nierhaus, A. Sepsis—Pathophysiology and Therapeutic Concepts. Front. Med. 2021, 8, 628302. [Google Scholar] [CrossRef]
- Barichello, T.; Generoso, J.S.; Singer, M.; Dal-Pizzol, F. Biomarkers for sepsis: More than just fever and leukocytosis—A narrative review. Crit. Care 2022, 26, 14. [Google Scholar] [CrossRef]
- Rello, J.; Van Engelen, T.S.R.; Alp, E.; Calandra, T.; Cattoir, V.; Kern, W.V.; Netea, M.G.; Nseir, S.; Opal, S.M.; van de Veerdonk, F.L.; et al. Towards precision medicine in sepsis: A position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Infect. 2018, 24, 1264–1272. [Google Scholar] [CrossRef]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.L. Biomarkers of sepsis: Time for a reappraisal. Crit. Care 2020, 24, 1–15. [Google Scholar] [CrossRef]
- Cutter, A.; Hayes, J.J. A brief review of nucleosome structure. FEBS Lett. 2015, 589, 2914–2922. [Google Scholar] [CrossRef]
- Clausell, J.; Happel, N.; Hale, T.K.; Doenecke, D.; Beato, M. Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. PLoS ONE 2009, 4, e0007243. [Google Scholar] [CrossRef]
- Polach, K.J.; Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: A dynamic equilibrium model for gene regulation. J. Mol. Biol. 1995, 254, 130–149. [Google Scholar] [CrossRef]
- Kujirai, T.; Ehara, H.; Sekine, S.I.; Kurumizaka, H. Structural transition of the nucleosome during transcription elongation. Cells 2023, 12, 1388. [Google Scholar] [CrossRef]
- Gansen, A.; Felekyan, S.; Kühnemuth, R.; Lehmann, K.; Tóth, K.; Seidel, C.A.M.; Langowski, J. High precision FRET studies reveal reversible transitions in nucleosomes between microseconds and minutes. Nat. Commun. 2018, 9, 4628. [Google Scholar] [CrossRef]
- Sehrawat, P.; Shobhawat, R.; Kumar, A. Catching nucleosome by its decorated tails determines its functional states. Front. Genet. 2022, 13, 903923. [Google Scholar] [CrossRef]
- Gao, X.; Hao, S.; Yan, H.; Ding, W.; Li, K.; Li, J. Neutrophil extracellular traps contribute to the intestine damage in endotoxemic rats. J. Surg. Res. 2015, 195, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Church, M.C.; Workman, J.L.; Suganuma, T. Macrophages, metabolites, and nucleosomes: Chromatin at the intersection between aging and inflammation. Int. J. Mol. Sci. 2021, 22, 10274. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, J.; Roeh, A.; Holdenrieder, S.; von Korn, P.; Haller, B.; Krueger, K.; Falkai, P.; Halle, M.; Hasan, A.; Scherr, J. High-mobility group box 1 protein, receptor for advanced glycation end products and nucleosomes increases after marathon. Front. Physiol. 2023, 14, 1118127. [Google Scholar] [CrossRef] [PubMed]
- Bahceci, B.; Kokacya, M.H.; Copoglu, U.S.; Bahceci, I.; Sahin, K.; Bagcioglu, E.; Dokuyucu, R. Elevated nucleosome level and oxidative stress in schizophrenia patients. Bratisl. Lek. Listy. 2015, 116, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, S.; Fukuda, D.; Higashikuni, Y.; Tanaka, K.; Hirata, Y.; Murata, C.; Kim-Kaneyama, J.-R.; Sato, F.; Bando, M.; Yagi, S.; et al. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Sci. Adv. 2016, 2, e1501332. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, V.J.; Tyler, L.N.; Mannik, M. Blood clearance kinetics and liver uptake of mononucleosomes in mice. J. Immunol. 1996, 156, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Peitsch, M.C.; Hesterkamp, T.; Polzar, B.; Mannherz, H.G.; Tschopp, J. Functional characterisation of serum DNase I in MRL-lpr/lpr mice. Biochem. Biophys. Res. Commun. 1992, 186, 739–745. [Google Scholar] [CrossRef] [PubMed]
- van der Meer, A.J.; Kroeze, A.; Hoogendijk, A.J.; Soussan, A.A.; Ellen van der Schoot, C.; Wuillemin, W.A.; Voermans, C.; van der Poll, T.; Zeerleder, S. Systemic inflammation induces release of cell-free DNA from hematopoietic and parenchymal cells in mice and humans. Blood Adv. 2019, 3, 724–728. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Zhang, D.; Li, P. Circulating nucleosomes as potential biomarkers for cancer diagnosis and treatment monitoring. Int. J. Biol. Macromol. 2024, 262, 130005. [Google Scholar] [CrossRef]
- Perlee, D.; Van Vught, L.A.; Scicluna, B.P.; Maag, A.; Lutter, R.; Kemper, E.M.; Veer, C.V.; Punchard, M.A.; González, J.; Richard, M.P.; et al. Intravenous infusion of human adipose mesenchymal stem cells modifies the host response to lipopolysaccharide in humans: A randomized, single-blind, parallel group, placebo controlled trial. Stem Cells 2018, 36, 1778–1788. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Gabler, C.; Blank, N.; Hieronymus, T.; Schiller, M.; Berden, J.; Kalden, J.; Lorenz, H.-M. Extranuclear detection of histones and nucleosomes in activated human lymphoblasts as an early event in apoptosis. Ann. Rheum. Dis. 2004, 63, 1135–1144. [Google Scholar] [CrossRef]
- Ungerer, V.; Bronkhorst, A.J.; Van den Ackerveken, P.; Herzog, M.; Holdenrieder, S. Serial profiling of cell-free DNA and nucleosome histone modifications in cell cultures. Sci. Rep. 2021, 11, 9460. [Google Scholar] [CrossRef]
- Magna, M.; Pisetsky, D.S. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol. Med. 2014, 20, 138–146. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Y.; Lai, D.; Zhang, P.; Yang, Y.; Li, Y.; Fei, K.; Jiang, G.; Fan, J. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis. 2018, 9, 597. [Google Scholar] [CrossRef]
- Urban, C.F.; Ermert, D.; Schmid, M.; Abu-Abed, U.; Goosmann, C.; Nacken, W.; Brinkmann, V.; Jungblut, P.R.; Zychlinsky, A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009, 5, e1000639. [Google Scholar] [CrossRef]
- Saffarzadeh, M.; Juenemann, C.; Queisser, M.A.; Lochnit, G.; Barreto, G.; Galuska, S.P.; Lohmeyer, J.; Preissner, K.T. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS ONE 2012, 7, e32366. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Nicholson, D.W. Apoptosis and caspases regulate death and inflammation in sepsis. Nat. Rev. Immunol. 2006, 6, 813–822. [Google Scholar] [CrossRef]
- Nija, R.J.; Sanju, S.; Sidharthan, N.; Mony, U. Extracellular trap by blood cells: Clinical implications. Tissue Eng. Regen. Med. 2020, 17, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Aulik, N.A.; Hellenbrand, K.M.; Czuprynski, C.J. Mannheimia haemolytica and Its leukotoxin cause macrophage extracellular trap formation by bovine macrophages. Infect. Immun. 2012, 80, 1923–1933. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, A.; Pais, C.; Sampaio, P. Relevance of macrophage extracellular traps in C. albicans killing. Front. Immunol. 2019, 10, 2767. [Google Scholar] [CrossRef] [PubMed]
- Koyama, R.; Arai, T.; Kijima, M.; Sato, S.; Miura, S.; Yuasa, M.; Kitamura, D.; Mizuta, R. DNase γ, DNase I and caspase-activated DNase cooperate to degrade dead cells. Genes Cells 2016, 21, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Janovičová, Ľ.; Čonka, J.; Lauková, L.; Celec, P. Variability of endogenous deoxyribonuclease activity and its pathophysiological consequences. Mol. Cell. Probes 2022, 65, 101844. [Google Scholar] [CrossRef] [PubMed]
- Sae-Khow, K.; Tachaboon, S.; Wright, H.L.; Edwards, S.W.; Srisawat, N.; Leelahavanichkul, A.; Chiewchengchol, D. Defective neutrophil function in patients with sepsis is mostly restored by ex vivo ascorbate incubation. J. Inflamm. Res. 2020, 13, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wan, D.; Luo, X.; Song, T.; Wang, Y.; Yu, Q.; Jiang, L.; Liao, R.; Zhao, W.; Su, B. Circulating histones in sepsis: Potential outcome predictors and therapeutic targets. Front. Immunol. 2021, 12, 650184. [Google Scholar] [CrossRef] [PubMed]
- Burlingame, R.W.; Volzer, M.A.; Harris, J.; Du Clos, T.W. The effect of acute phase proteins on clearance of chromatin from the circulation of normal mice. J. Immunol. 1996, 156, 4783–4788. [Google Scholar] [CrossRef]
- Rönnefarth, V.M.; Erbacher, A.I.M.; Lamkemeyer, T.; Madlung, J.; Nordheim, A.; Rammensee, H.G.; Decker, P. TLR2/TLR4-independent neutrophil activation and recruitment upon endocytosis of nucleosomes reveals a new pathway of innate immunity in systemic lupus erythematosus. J. Immunol. 2006, 177, 7740–7749. [Google Scholar] [CrossRef]
- Marsman, G.; Zeerleder, S.; Luken, B.M. Extracellular histones, cell-free DNA, or nucleosomes: Differences in immunostimulation. Cell Death Dis. 2016, 7, e2518. [Google Scholar] [CrossRef]
- Ammollo, C.T.; Semeraro, F.; Xu, J.; Esmon, N.L.; Esmon, C.T. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J. Thromb. Haemost. 2011, 9, 1795–1803. [Google Scholar] [CrossRef]
- Sharma, N.; Haggstrom, L.; Sohrabipour, S.; Dwivedi, D.J.; Liaw, P.C. Investigations of the effectiveness of heparin variants as inhibitors of histones. J. Thromb. Haemost. 2022, 20, 1485–1495. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Pelayo, R.; Monestier, M.; Ammollo, C.T.; Semeraro, F.; Taylor, F.B.; Esmon, N.L.; Lupu, F.; Esmon, C.T. Extracellular histones are major mediators of death in sepsis. Nat. Med. 2009, 15, 1318–1321. [Google Scholar] [CrossRef] [PubMed]
- Ablasser, A.; Chen, Z.J. cGAS in action: Expanding roles in immunity and inflammation. Science 2019, 363, eaat8657. [Google Scholar] [CrossRef]
- Gould, T.J.; Lysov, Z.; Liaw, P.C. Extracellular DNA and histones: Double-edged swords in immunothrombosis. J. Thromb. Haemost. 2015, 13 (Suppl. 1), S82–S91. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, S.K.; Zafar, N.; Liaw, P.C.; Kim, P.Y. Purification of silica-free DNA and characterization of its role in coagulation. J. Thromb. Haemost. 2019, 17, 1860–1865. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, S.K.; Sharma, N.; Dwivedi, D.; Cani, E.; Zhou, J.; Dwivedi, N.; Sohrabipour, S.; Liaw, P.C. The effects of DNASE I and low-molecular-weight heparin in a murine model of polymicrobial abdominal sepsis. Shock 2023, 59, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shan, X.; Ren, M.; Shang, M.; Zhou, C. Nucleosomes enter cells by clathrin- and caveolin-dependent endocytosis. Nucleic Acids Res. 2021, 49, 12306–12319. [Google Scholar] [CrossRef] [PubMed]
- Watson, K.; Gooderham, N.J.; Davies, D.S.; Edwards, R.J. Nucleosomes bind to cell surface proteoglycans. J. Biol. Chem. 1999, 274, 21707–21713. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013, 339, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zang, C.; Ren, M.; Shang, M.; Wang, Z.; Peng, X.; Zhang, Q.; Wen, X.; Xi, Z.; Zhou, C. Cellular uptake of extracellular nucleosomes induces innate immune responses by binding and activating cGMP-AMP synthase [cGAS]. Sci. Rep. 2020, 10, 15385. [Google Scholar] [CrossRef]
- Decker, P.; Wolburg, H.; Rammensee, H.G. Nucleosomes induce lymphocyte necrosis. Eur. J. Immunol. 2003, 33, 1978–1987. [Google Scholar] [CrossRef]
- Wu, H.; Bao, H.; Liu, C.; Zhang, Q.; Huang, A.; Quan, M.; Li, C.; Xiong, Y.; Chen, G.; Hou, L. Extracellular nucleosomes accelerate microglial inflammation via C-type lectin receptor 2D and Toll-like receptor 9 in mPFC of mice with chronic stress. Front. Immunol. 2022, 13, 854202. [Google Scholar] [CrossRef] [PubMed]
- Gowda, N.M.; Wu, X.; Gowda, D.C. The nucleosome [histone-DNA complex] is the TLR9-specific immunostimulatory component of Plasmodium falciparum that activates DCs. PLoS ONE 2011, 6, e20398. [Google Scholar] [CrossRef]
- Decker, P.; Singh-Jasuja, H.; Haager, S.; Kötter, I.; Rammensee, H.G. Nucleosome, the main autoantigen in systemic lupus erythematosus, induces direct dendritic cell activation via a MyD88-independent pathway: Consequences on inflammation. J. Immunol. 2005, 174, 3326–3334. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Gamboni-Robertson, F.; He, Q.; Svetkauskaite, D.; Kim, J.Y.; Strassheim, D.; Kim, J.-Y.; Strassheim, D.; Sohn, J.-W.; Yamada, S.; et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell Physiol. 2006, 290, C917–C924. [Google Scholar] [CrossRef]
- Urbonaviciute, V.; Fürnrohr, B.G.; Meister, S.; Munoz, L.; Heyder, P.; De Marchis, F.; Bianchi, M.E.; Kirschning, C.; Wagner, H.; Manfredi, A.A.; et al. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: Implications for the pathogenesis of SLE. J. Exp. Med. 2008, 205, 3007–3018. [Google Scholar] [CrossRef] [PubMed]
- Silk, E.; Zhao, H.; Weng, H.; Ma, D. The role of extracellular histone in organ injury. Cell Death Dis. 2017, 8, e2812. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.J.; Chuang, I.C.; Dong, H.P.; Yang, R.C. Hypoxia-inducible factor 1α regulates the expression of the mitochondrial ATPase inhibitor protein [IF1] in rat liver. Shock 2011, 36, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Pan, B.; Alam, H.B.; Liang, Y.; Wu, Z.; Liu, B.; Mor-Vaknin, N.; Duan, X.; Williams, A.M.; Tian, Y.; et al. Citrullinated histone H3 as a therapeutic target for endotoxic shock in mice. Front. Immunol. 2020, 10, 2957. [Google Scholar] [CrossRef]
- Ramasubramanian, B.; Kim, J.; Ke, Y.; Li, Y.; Zhang, C.O.; Promnares, K.; Tanaka, K.A.; Birukov, K.G.; Karki, P.; Birukova, A.A. Mechanisms of pulmonary endothelial permeability and inflammation caused by extracellular histone subunits H3 and H4. FASEB J. 2022, 36, e22470. [Google Scholar] [CrossRef]
- Garcia, B.; Su, F.; Dewachter, L.; Wang, Y.; Li, N.; Remmelink, M.; Van Eycken, M.; Khaldi, A.; Favory, R.; Herpain, A.; et al. Neutralization of extracellular histones by sodium-Β-O-methyl cellobioside sulfate in septic shock. Crit. Care 2023, 27, 458. [Google Scholar] [CrossRef]
- Faria, L.C.; Andrade, A.M.F.; Trant, C.G.M.C.; Lima, A.S.; Machado, P.A.B.; Porto, R.D.; Andrade, M.V.M. Circulating levels of high-mobility group box 1 protein and nucleosomes are associated with outcomes after liver transplant. Clin. Transplant. 2020, 34, e13869. [Google Scholar] [CrossRef]
- McInnes, M.D.; Moher, D.; Thombs, B.D.; McGrath, T.A.; Bossuyt, P.M.; Clifford, T.; Cohen, J.F.; Deeks, J.J.; Gatsonis, C.; Hooft, L.; et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA 2018, 319, 388. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Lenz, M.; Maiberger, T.; Armbrust, L.; Kiwit, A.; Von der Wense, A.; Reinshagen, K.; Elrod, J.; Boettcher, M. cfDNA and DNases: New biomarkers of sepsis in preterm neonates—A pilot study. Cells 2022, 11, 192. [Google Scholar] [CrossRef]
- Sheu, C.C.; Gong, M.N.; Zhai, R.; Chen, F.; Bajwa, E.K.; Clardy, P.F.; Gallagher, D.C.; Thompson, B.T.; Christiani, D.C. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest 2010, 138, 559–567. [Google Scholar] [CrossRef]
- Haem Rahimi, M.; Bidar, F.; Lukaszewicz, A.C.; Garnier, L.; Payen-Gay, L.; Venet, F.; Monneret, G. Association of pronounced elevation of NET formation and nucleosome biomarkers with mortality in patients with septic shock. Ann. Intensive Care 2023, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, T.; Huber, S.; Weiss, R.; Ebeyer-Masotta, M.; Lauková, L.; Emprechtinger, R.; Bellmann-Weiler, R.; Lorenz, I.; Martini, J.; Pirklbauer, M.; et al. Infection with SARS-CoV-2 is associated with elevated levels of IP-10, MCP-1, and IL-13 in sepsis patients. Diagnostics 2023, 13, 1069. [Google Scholar] [CrossRef] [PubMed]
- Rai, N.; Khanna, P.; Kashyap, S.; Kashyap, L.; Anand, R.K.; Kumar, S. Comparison of serum nucleosomes and tissue inhibitor of metalloproteinase1 [timp1] in predicting mortality in adult critically ill patients in sepsis: Prospective observational study. Indian J. Crit. Care Med. 2022, 26, 804–810. [Google Scholar] [PubMed]
- Morimont, L.; Dechamps, M.; David, C.; Bouvy, C.; Gillot, C.; Haguet, H.; Favresse, J.; Ronvaux, L.; Candiracci, J.; Herzog, M.; et al. NETosis and nucleosome biomarkers in septic shock and critical COVID-19 patients: An observational study. Biomolecules 2022, 12, 1038. [Google Scholar] [CrossRef]
- Beltrán-García, J.; Manclús, J.J.; García-López, E.M.; Carbonell, N.; Ferreres, J.; Rodríguez-Gimillo, M.; Garcés, C.; Pallardó, F.V.; García-Giménez, J.L.; Montoya, Á.; et al. Comparative analysis of chromatin-delivered biomarkers in the monitoring of sepsis and septic shock: A pilot study. Int. J. Mol. Sci. 2021, 22, 9935. [Google Scholar] [CrossRef]
- Patel, P.; Walborn, A.; Rondina, M.; Fareed, J.; Hoppensteadt, D. Markers of inflammation and infection in sepsis and disseminated intravascular coagulation. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029619843338. [Google Scholar] [CrossRef]
- Lee, K.H.; Cavanaugh, L.; Leung, H.; Yan, F.; Ahmadi, Z.; Chong, B.H.; Passam, F. Quantification of NETs-associated markers by flow cytometry and serum assays in patients with thrombosis and sepsis. Int. J. Lab. Hematol. 2018, 40, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Duplessis, C.; Gregory, M.; Frey, K.; Bell, M.; Truong, L.; Schully, K.; Lawler, J.; Langley, R.J.; Kingsmore, S.F.; Woods, C.W.; et al. Evaluating the discriminating capacity of cell death [apoptotic] biomarkers in sepsis. J. Intensive Care 2018, 6, 72. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, T.; Magosevich, D.; Moreno, M.C.; Guzman, M.A.; D’Atri, L.P.; Carestia, A.; Fandiño, M.E.; Fondevila, C.; Schattner, M. Nucleosomes and neutrophil extracellular traps in septic and burn patients. Clin. Immunol. 2017, 183, 254–262. [Google Scholar] [CrossRef]
- Delabranche, X.; Stiel, L.; Severac, F.; Galoisy, A.C.; Mauvieux, L.; Zobairi, F.; Lavigne, T.; Toti, F.; Anglès-Cano, E.; Meziani, F.; et al. Evidence of Netosis in septic shock-induced disseminated intravascular coagulation. Shock 2017, 47, 313–317. [Google Scholar] [CrossRef]
- Raffray, L.; Douchet, I.; Augusto, J.F.; Youssef, J.; Contin-Bordes, C.; Richez, C.; Duffau, P.; Truchetet, M.-E.; Moreau, J.-F.; Cazanave, C.; et al. Septic shock sera containing circulating histones induce dendritic cell–regulated necrosis in fatal septic shock patients. Crit. Care Med. 2015, 43, e107–e116. [Google Scholar] [CrossRef]
- Miki, T.; Iba, T. Kinetics of circulating damage-associated molecular patterns in sepsis. J. Immunol. Res. 2015, 2015, 424575. [Google Scholar] [CrossRef]
- Huson, M.A.M.; Zeerleder, S.S.; Van Mierlo, G.; Wouters, D.; Grobusch, M.P.; Van Der Poll, T. HIV infection is associated with elevated nucleosomes in asymptomatic patients and during sepsis or malaria. J. Infect. 2015, 71, 266–269. [Google Scholar] [CrossRef] [PubMed]
- de Jong, H.K.; Koh, G.C.; Achouiti, A.; van der Meer, A.J.; Bulder, I.; Stephan, F.; Roelofs, J.J.; Day, N.P.; Peacock, S.J.; Zeerleder, S.; et al. Neutrophil extracellular traps in the host defense against sepsis induced by Burkholderia pseudomallei [melioidosis]. Intensive Care Med. Exp. 2014, 2, 21. [Google Scholar] [CrossRef]
- Zeerleder, S.; Stephan, F.; Emonts, M.; de Kleijn, E.D.; Esmon, C.T.; Varadi, K.; Hack, C.E.; Hazelzet, J.A. Circulating nucleosomes and severity of illness in children suffering from meningococcal sepsis treated with protein C. Crit. Care Med. 2012, 40, 3224. [Google Scholar] [CrossRef]
- Chen, Q.; Ye, L.; Jin, Y.; Zhang, N.; Lou, T.; Qiu, Z.; Jin, Y.; Cheng, B.; Fang, X. Circulating nucleosomes as a predictor of sepsis and organ dysfunction in critically ill patients. Int. J. Infect. Dis. 2012, 16, e558–e564. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.U.; Lehmann, L.E.; Schewe, J.; Schröder, S.; Book, M.; Hoeft, A.; Stüber, F.; Thiele, J.T. Low serum α-tocopherol and selenium are associated with accelerated apoptosis in severe sepsis. BioFactors 2008, 33, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Zeerleder, S.; Zwart, B.; Wuillemin, W.A.; Aarden, L.A.; Groeneveld, A.B.J.; Caliezi, C.; van Nieuwenhuijze, A.E.M.; van Mierlo, G.J.; Eerenberg, A.J.M.; Lämmle, B.; et al. Elevated nucleosome levels in systemic inflammation and sepsis. Crit. Care Med. 2003, 31, 1947–1951. [Google Scholar] [CrossRef] [PubMed]
- Salgame, P.; Varadhachary, A.S.; Primiano, L.L.; Fincke, J.E.; Muller, S.; Monestier, M. An ELISA for detection of apoptosis. Nucleic Acids Res. 1997, 25, 680–681. [Google Scholar] [CrossRef] [PubMed]
- Holdenrieder, S.; Stieber, P.; Bodenmüller, H.; Fertig, G.; Fürst, H.; Schmeller, N.; Untch, M.; Seidel, D. Nucleosomes in serum as a marker for cell death. Clin. Chem. Lab. Med. 2001, 39, 596–605. [Google Scholar] [CrossRef]
- Mittra, I.; Nair, N.K.; Mishra, P.K. Nucleic acids in circulation: Are they harmful to the host? J. Biosci. 2012, 37, 301–312. [Google Scholar] [CrossRef]
Author [Ref.] | Year | Study Type | Sample | Methods | Catching Ab Detection Ab | Patient Population | Range |
---|---|---|---|---|---|---|---|
Haem Rahimi et al. [66] | 2023 | Retrospective Monocenter | Plasma | Chemiluminescence immunoassay [Volition] | Nucleosomes H3.1 [H2A, H3B, H3, H4 + DNA] | 50 healthy volunteers 151 septic shock | Median 15.4 ng/mL Day 1–2 median 1515 ng/mL |
Eichhorn et al. [67] | 2023 | Prospective Monocenter | Plasma | ELISA ROCHE | Mono anti-histone Mono anti-DNA-POD | 25 healthy volunteers 78 sepsis patients [14 with COVID] | 0.01 [0.01; 0.02] AU 0.09 [0.05; 0.11] AU without COVID 0.11 [0.04; 0.15] AU with COVID |
Rai et al. [68] | 2022 | Prospective Monocenter | Serum | ELISA [Orgentec] | Unknown | 80 sepsis | male: 209.8 [68.0–1263.0] ρg/μL female: 248.7 [65.0–1721.0] ρg/μL |
Morimont et al. [69] | 2022 | Retrospective Monocenter | Plasma | ELISA [Volition] | Nucleosomes H3.1 [H2A, H3B, H3, H4 + DNA] | 48 control patients 46 septic shock 22 critical COVID-19 | 24.6 [12.2–61.7] ng/mL 862 [252–9398] ng/mL |
Beltrán-García et al. [70] | 2021 | Retrospective Monocenter | Plasma | ELISA Kit 1 [home made] Kit2 [Roche] | Mono anti-histone Mono anti-DNA-POD | 17 healthy volunteers 9 ICU control patients 10 septic ICU patients 17 septic shock | 70.66 ± 42.22 ng/mL (kit 1); 0.083 ± 0.04 AU (kit 2) 56.97 ± 25.76 ng/mL (kit 1); 0.080 ± 0.01 AU (kit 2) 111.8 ± 74.50 ng/mL (kit 1); 0.130 ± 0.08 AU (kit 2) 152.7 ± 74.93 ng/mL (kit 1); 0.216 ± 0.17 AU (kit 2) |
van der Meer et al. [18] | 2019 | Retrospective Monocenter | Plasma | ELISA | Mono anti-histone mAb CLB-ANA/58 | 20 sepsis patients | NR [only figure available] |
Patel et al. [71] | 2019 | Retrospective Monocenter | Plasma | ELISA [Roche] | Mono anti-histone Mono anti-DNA-POD | 50 healthy volunteers 20 sepsis + no DIC 59 sepsis + non-overt DIC 24 sepsis + overt DIC | <10AU <10 AU 10–15 AU 20–30 AU |
Lee et al. [72] | 2018 | Prospective Monocenter | Plasma | ELISA [Roche] | Mono anti-histone Mono anti-DNA-POD | 21 sepsis patients 23 healthy volunteers | 0.3 ± 0.08 U/L 0.1 ± 0.03 U/L |
Duplessis et al. [73] | 2018 | Retrospective Multicenter [4 in USA] | Plasma | ELISA [Roche] | Mono anti-histone Mono anti-DNA-POD | 24 non-infectious SIRS 4 uncomplicated sepsis 127 severe sepsis 35 septic shock | 1.1 ± 1.7 µg/mL 1.7 ± 1.9 µg/mL 3.0 ± 9.4 µg/mL 5.5 ± 10.9 µg/mL |
Kaufman et al. [74] | 2017 | Prospective Monocenter | Plasma | ELISA [Roche] | Mono anti-histone Mono anti-DNA-POD | 30 healthy volunteers 24 sepsis | 0 [0–0.1] µg/mL 0.35 [0–1.9] µg/mL |
Delabranche et al. [75] | 2017 | Prospective Monocenter | Plasma | ELISA [Roche] | Mono anti-histone Mono anti-DNA-POD | 20 septic shock [10 with DIC vs. 10 without] | Higher in patients with DIC |
Raffray et al. [76] | 2015 | Prospective Monocenter | Plasma | ELISA [Roche] | Mono anti-histone Mono anti-DNA-POD | 17 healthy volunteers 49 septic shock 22 cardiogenic shock | NR [only figure available] |
Miki et al. [77] | 2015 | Prospective Monocenter | Plasma | ELISA [Roche] | Mono anti-histone Mono anti-DNA-POD | 5 healthy volunteers 30 sepsis patients [20 survivors, 10 non-survivors] | NR [only figure available] |
Huson et al. [78] | 2015 | Prospective Monocenter | Plasma | ELISA [Sanquin] | Monoclonal antibody H3 Monoclonal antibody nucleosome | 35 healthy controls 105 sepsis patients 60 asymptomatic HIV patients 126 patients with malaria | NR 64 U/mL NR 175 U/mL |
de Jong et al. [79] | 2014 | Prospective Monocenter | Plasma | ELISA | H3 H2A, H 2B and dsDNA | 82 healthy controls 44 sepsis [12 non-survivors] | Survivors 33.6 ± 4 U/mL * Non-survivors 192.3 ± 5 U/mL * |
Zeerleder et al. [80] | 2012 | Retrospective Monocenter | Plasma | ELISA | H3 H2A, H 2B and dsDNA | 38 children with meningococcal sepsis | 47–8638 U/mL |
Chen et al. [81] | 2012 | Prospective Multicenter [2 hospitals in China] | Plasma | ELISA [Roche] | Mono anti-histone Mono anti-DNA-POD | Medical: 45 sepsis vs. 29 controls [no sepsis] Post-surgery: 70 sepsis vs. 21 controls [no sepsis] | 2.98 [0.30–12.60] vs. 1.29 [0.11–9.86] AU 1.86 [0.40–10.27] vs. 0.78 [0.35–9.69] AU |
Weber et al. [82] | 2008 | Prospective Monocenter | Serum | ELISA [Roche] | Mono anti-histone Mono anti-DNA-POD | 11 healthy volunteers 16 severe sepsis patients 10 ICU patients without sepsis | 0.118 ± 0.036 AU 0.356 ± 0.057 AU 0.149 ± 0.026 AU |
Zeerleder et al. [83] | 2003 | Retrospective Monocenter | Plasma | ELISA | H3 H2A, H 2B and dsDNA,x | 14 fever 15 SIRS 32 severe sepsis 8 septic shock | 38 [<35–285] units/mL 53 [<35–793] units/mL 269 [<35–1947] units/mL 814 [52–1979] units/mL |
Author [Ref.] | NET Biomarker Utilized | Reported Correlation |
---|---|---|
van der Meer et al. [18] | elastase-a1-antitrypsin | r = 0.155 (p = 0.1295) |
Morimont et al. [69] | citrullinated H3R8-nucleosomes, free citrullinated histones, NE and MPO | NE: Pearson r = 0.719 |
Duplessis et al. [73] | cfDNA | r = 0.41 |
Kaufman et al. [74] | human neutrophil elastase DNA | r2 = 0.3962 (p = 0.0499) |
Delabranche et al. [75] | DNA-bound MPO | r2 = 0.397 (p = 0.004) |
Huson et al. [78] | elastase-α1antitrypsin | r = 0.41 (p < 0.0001) |
de Jong et al. [79] | neutrophil elastase | r = 0.84 (p < 0.001) |
Zeerleder et al. [80] | elastase–α1antitrypsin complexes | r = 0.206 (p = 0.200) |
Author [Ref.] | Sample Collection Time | Nucleosome Levels Predict Sepsis Severity | Severity Score | ||
---|---|---|---|---|---|
SOFA | APACHE II | SAPS II | |||
Haem Rahimi et al. [66] | Daily (D1–D8) | Yes | r = 0.4 (p < 0.0001) | NR | r = 0.2 (p = 0.008) |
Rai et al. [68] | Single (within 24 h of diagnosis) | No | 0.08 (p = 0.46) | 0.10 (p = 0.34) | NR |
Morimont et al. [69] | Single (admission) | Yes | 0.61 | 0.47 | NR |
Duplessis et al. [73] | Daily (T0 and T24) | Yes (a small correlation) | NR | 0.24 | NR |
Kaufman et al. [74] | Within 24 h of admission and on day 4 | No | R2 = 0.195 (p = 0.0362) | NR | NR |
Miki et al. [77] | Days 0, 1, 3, 7 | No | NR | NR | NR |
Zeerleder et al. [80] | Days 0–8 | Yes | R = 0.44 (p = 0.008) | NR | NR |
Chen et al. [81] | Admission, days 1, 3, 5, 7 | Yes | Admission r = 0.21 (p = 0.03) | Admission r = 0.24 (p = 0.01) | NR |
Zeerleder et al. [83] | Admission | Yes | NR | NR | NR |
Author [Ref.] | Survivors | Non-Survivors | p Value [Survivors vs. Non-Survivors] | Prediction of Mortality |
---|---|---|---|---|
Haem Rahimi et al. [66] | 1333.14 [385.14–3637.92] ng/mL | 1919 [880.75–12,098.9] ng/mL | 0.006 | Cut-off 4639 ng/mL AUC 0.63 |
Eichhorn et al. [67] | 0.09 [0.05; 0.11] AU | 0.11 [0.05; 0.2] AU | NS | NR |
Rai et al. [68] | 185.0 [68.0–1721.0] pg/µL | 345.0 [65.0–1584.2] pg/µL | 0.004 | Cut-off 215.0 [pg/μL] AUC: 0.68 [95% CI 0.56–0.80] Odds ratio 3.42 [1.35–8.68] |
Morimont et al. [69] | 785.2 [173.4–3076.1] ng/mL | 901.6 [402.7–16,032.5] ng/mL | 0.0664 | NR |
Duplessis et al. [73] | 3.2 ± 9.1 µg/mL | 5.0 ± 4.9 µg/mL | 0.007 | T0: AUC: 0.75 T24: AUC: 0.67 |
Kaufman et al. [74] | NR | NR | NR | Yes, Wald = 5.31 |
Raffray et al. [76] | 9.2 AU | 71.8 AU | p < 0.0001 | NR [available from figure] |
Miki et al. [77] | NR | NR | NS | Day 7 AUC: 0.57 |
Huson et al. [78] | 60 [25–135] AU/mL | 333 [298–456] AU/mL | 0.0002 | NR |
de Jong et al. [79] | 33.6 ± 4 AU/mL | 192.3 ± 5 AU/mL | 0.001 | NR |
Zeerleder et al. [80] | 583 (47–2329) AU/mL | 2244 [610–8638] AU/mL | 0.0061 | NR |
Chen et al. [81] | 1.97 AU | 2.58 AU | 0.06 | NR |
Zeerleder et al. [83] | 276 [35–1947] AU/mL | 628 [35–1979] AU/mL | 0.333 | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, F.; Moreau, A.; Savi, M.; Salvagno, M.; Annoni, F.; Zhao, L.; Xie, K.; Vincent, J.-L.; Taccone, F.S. Circulating Nucleosomes as a Novel Biomarker for Sepsis: A Scoping Review. Biomedicines 2024, 12, 1385. https://doi.org/10.3390/biomedicines12071385
Su F, Moreau A, Savi M, Salvagno M, Annoni F, Zhao L, Xie K, Vincent J-L, Taccone FS. Circulating Nucleosomes as a Novel Biomarker for Sepsis: A Scoping Review. Biomedicines. 2024; 12(7):1385. https://doi.org/10.3390/biomedicines12071385
Chicago/Turabian StyleSu, Fuhong, Anthony Moreau, Marzia Savi, Michele Salvagno, Filippo Annoni, Lina Zhao, Keliang Xie, Jean-Louis Vincent, and Fabio Silvio Taccone. 2024. "Circulating Nucleosomes as a Novel Biomarker for Sepsis: A Scoping Review" Biomedicines 12, no. 7: 1385. https://doi.org/10.3390/biomedicines12071385
APA StyleSu, F., Moreau, A., Savi, M., Salvagno, M., Annoni, F., Zhao, L., Xie, K., Vincent, J. -L., & Taccone, F. S. (2024). Circulating Nucleosomes as a Novel Biomarker for Sepsis: A Scoping Review. Biomedicines, 12(7), 1385. https://doi.org/10.3390/biomedicines12071385