The Analysis of ECE1 and PPARG Variants in the Development of Osteopenia and Osteoporosis in Postmenopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Determination of Bone Mineral Density
2.3. Genetic Analysis of ECE1 and PPARG Genes
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Association of PPARG and ECE1 Gene Variants with Susceptibility to Osteoporosis
Analysis of Linkage Disequilibrium and Haplotype Frequencies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, M.-X.; Yu, Q. Primary osteoporosis in postmenopausal women. Chronic Dis. Transl. Med. 2015, 21, 9–13. [Google Scholar]
- Muñoz, M.; Robinson, K. Bone health and osteoporosis prevention and treatment. Clin. Obs. Gynecol. 2020, 63, 770–787. [Google Scholar] [CrossRef]
- Pouresmaeili, F.; Kamalidehghan, B.; Kamarehei, M.; Goh, Y.M. A comprehensive overview on osteoporosis and its risk factors. Ther. Clin. Risk Manag. 2018, 14, 2029–2049. [Google Scholar] [CrossRef]
- Kragl, A.; Hannemann, A.; Nauck, M.; Völker, U.; Siggelkow, H.; Teumer, A.; Tzvetkov, M.V. Genetic Variants in WNT16 and PKD2L1 Locus Affect Heel Ultrasound Bone Stiffness: Analyses from the General Population and Patients Evaluated for Osteoporosis. Calcif. Tissue Int. 2023, 113, 540–551. [Google Scholar] [CrossRef]
- Wolski, H.; Bogacz, A. Polymorphism of bone morphogenetic protein (BMP2) and osteoporosis etiology. Ginekol. Pol. 2015, 86, 203–209. [Google Scholar] [CrossRef]
- Kaleta, B.; Walicka, M. Toll-Like Receptor 4 Gene Polymorphism C1196T in Polish Women with Postmenopausal Osteoporosis—Preliminary Investigation. Adv. Clin. Exp. Med. 2015, 24, 239–243. [Google Scholar] [CrossRef]
- Wolski, H.; Drwęska-Matelska, N. The role of Wnt/β-catenin pathway and LRP5 protein in metabolism of bone tissue and osteoporosis etiology. Ginekol. Pol. 2015, 86, 311–314. [Google Scholar] [CrossRef]
- Jin, H.; Evangelou, E. Polymorphisms in the 5’ flank of COL1A1 gene and osteoporosis: Meta-analysis of published studies. Osteoporos. Int. 2011, 22, 911–921. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Fayyazbakhsh, F. Association between vitamin D receptor gene polymorphisms (Fok1 and Bsm1) and osteoporosis: A systematic review. J. Diabetes Metab. Disord. 2014, 13, 98. [Google Scholar] [CrossRef]
- Hansen, K.E.; Johnson, M.G.; Carter, T.C.; Mayer, J.; Keuler, N.S.; Blank, R.D. The -839(A/C) Polymorphism in the ECE1 Isoform b Promoter Associates with Osteoporosis and Fractures. J. Endocr. Soc. 2019, 15, 2041–2050. [Google Scholar] [CrossRef]
- Funalot, B.; Courbon, D.; Brousseau, T.; Poirier, O.; Berr, C.; Cambien, F.; Amouyel, P.; Schwartz, J.C.; Ducimetière, P.; EVA Study. Genes encoding endothelin-convertingenzyme-1 and endothelin-1 interact to influence blood pressure in women: The EVA study. J. Hypertens. 2004, 22, 739–743. [Google Scholar] [CrossRef]
- Dalgic, S.N.; Yilmaz Aydogan, H.; Ozturk, O.; Pence, S.; Kanca Demirci, D.; Abaci, O.; Kocas, C.; Dalgic, Y.; Bostan, C.; Yildiz, A. Effects of ECE-1b rs213045 and rs2038089 polymorphisms on the development of contrast-induced acute kidney injury in patients with acute coronary syndrome. J. Int. Med. Res. 2020, 48, 0300060519886987. [Google Scholar] [CrossRef]
- Sin, A.; Tang, W.; Wen, C.Y.; Chung, S.K.; Chiu, K.Y. The emerging role of endothelin-1 in the pathogenesis of subchondral bone disturbance and osteoarthritis. Osteoarthr. Cartil. 2015, 23, 516–524. [Google Scholar] [CrossRef]
- Lecka-Czernik, B. PPARγ, an Essential Regulator of Bone Mass: Metabolic and Molecular Cues. IBMS Bonekey 2010, 7, 171–181. [Google Scholar] [CrossRef]
- Baroi, S.; Czernik, P.J.; Chougule, A.; Griffin, P.R.; Lecka-Czernik, B. PPARG in osteocytes controls sclerostin expression, bone mass, marrow adiposity and mediates TZD-induced bone loss. Bone 2021, 147, 115913. [Google Scholar] [CrossRef]
- Stechschulte, L.A.; Czernik, P.J.; Rotter, Z.C.; Tausif, F.N.; Corzo, C.A.; Marciano, D.P.; Asteian, A.; Zheng, J.; Bruning, J.B.; Kamenecka, T.M.; et al. PPARG Post-translational Modifications Regulate Bone Formation and Bone Resorption. EBioMedicine 2016, 10, 174–184. [Google Scholar] [CrossRef]
- Dragojevič, J.; Ostanek, B.; Mencej-Bedrač, S.; Komadina, R.; Preželj, J.; Marc, J. PPARG gene promoter polymorphism is associated with non-traumatic hip fracture risk in the elderly Slovenian population: A pilot study. Clin. Biochem. 2011, 44, 1085–1089. [Google Scholar] [CrossRef]
- Witkowska-Zimny, M.; Wróbel, E. The most important transcriptional factors of osteoblastogenesis. Adv. Cell Biol. 2009, 36, 695–705. [Google Scholar] [CrossRef]
- Reza-López, S.A.; González-Gurrola, S.; Morales-Morales, O.O.; Moreno-González, J.G.; Rivas-Gómez, A.M.; González-Rodríguez, E.; Moreno-Brito, V.; Licón-Trillo, A.; Leal-Berumen, I. Metabolic Biomarkers in Adults with Type 2 Diabetes: The Role of PPAR-γ2 and PPAR-β/δ Polymorphisms. Biomolecules 2023, 13, 1791. [Google Scholar] [CrossRef]
- Li, S.; He, C.; Nie, H.; Pang, Q.; Wang, R.; Zeng, Z.; Song, Y. G Allele of the rs1801282 Polymorphism in PPARγ Gene Confers an Increased Risk of Obesity and Hypercholesterolemia, While T Allele of the rs3856806 Polymorphism Displays a Protective Role Against Dyslipidemia: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2022, 29, 919087. [Google Scholar] [CrossRef]
- Desvergne, B.; Wahli, W. Peroxisome proliferators-activated receptors: Nuclear control of metabolism. Endocr. Rev. 1999, 20, 649–688. [Google Scholar] [PubMed]
- Thomas, T.; Gori, F. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 1999, 140, 1630–1638. [Google Scholar] [CrossRef]
- Akune, T.; Ohba, S. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J. Clin. Investig. 2004, 113, 846–855. [Google Scholar] [CrossRef]
- Mbalaviele, G.; Abu-Amer, Y. Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. J. Biol. Chem. 2000, 275, 14388–14393. [Google Scholar] [CrossRef]
- Simonet, W.S.; Lacey, D.L. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997, 89, 309–319. [Google Scholar] [CrossRef]
- Yasuda, H.; Shima, N. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): A mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 1998, 39, 1329–1337. [Google Scholar] [CrossRef]
- Woo, K.M.; Choi, Y. Osteoprotegerin is present on the membrane of osteoclasts isolated from mouse long bones. Exp. Mol. Med. 2002, 34, 347–352. [Google Scholar] [CrossRef]
- Chae, G.N.; Kwak, S.J. NF-kappaB is involved in the TNF-alpha induced inhibition of the differentiation of 3T3-L1 cells by reducing PPARgamma expression. Exp. Mol. Med. 2003, 35, 431–437. [Google Scholar] [CrossRef]
- Rhee, E.J.; Oh, K.W.; Yun, E.J.; Jung, C.H.; Park, C.Y.; Lee, W.Y.; Oh, E.S.; Baek, K.H.; Kang, M.I.; Park, S.W.; et al. The association of Pro12Ala polymorphism of peroxisome proliferator-activated receptor-γ gene with serum osteoprotegerin levels in healthy Korean women. Exp. Mol. Med. 2007, 39, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Lecka-Czernik, B.; Khan, M.P.; Letson, J.; Baroi, S.; Chougule, A. Regulatory Effect of Osteocytes on Extramedullary and Bone Marrow Adipose Tissue Development and Function. Curr. Osteoporos. Rep. 2024, 16, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Z.; Yan, H.; Hou, W.K.; Xu, P.; Tian, J.; Tian, L.F.; Zhu, B.F.; Ma, J.; Lu, S.M. Relationships between endothelial nitric oxide synthase gene polymorphisms and osteoporosis in postmenopausal women. J. Zhejiang Univ. Sci. B 2009, 10, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.G.; Konicke, K. Endothelin signaling regulates mineralization and posttranscriptionally regulates SOST in TMOb cells via miR 126-3p. Physiol. Rep. 2017, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.G.; Kristianto, J. Big endothelin changes the cellular miRNA environment in TMOb osteoblasts and increases mineralization. Connect. Tissue Res. 2014, 55, 113–116. [Google Scholar] [CrossRef] [PubMed]
Variables | Controls (N = 254) | Osteoporosis (N = 245) | Osteopenia (N = 109) | p |
---|---|---|---|---|
Age (years) | 54 ± 8 [32; 73] | 57 ± 9 [34; 74] | 53 ± 8 [30; 72] | 0.007 |
Birth weight (g) | 3600 [3445; 3790] | 3000 [2870; 3300] | 3200 [2965; 3435] | 0.001 |
First menstruation (years) | 14 [12; 15] | 13 [11; 15] | 13 [11; 15] | 0.526 |
Last menstruation (years) | 50 [47; 53.5] | 49 [45; 51] | 50 [47; 52] | 0.037 |
Years of reproduction | 36.38 ± 5.35 | 35.59 ± 5.05 | 36.20 ± 4.93 | 0.713 |
Years after menopause | 6.5 [3; 9] | 10.5 [6; 15] | 6 [3; 9.5] | <0.001 |
Pregnancy number | 2 [1; 2] | 2 [1; 3] | 2 [1; 2] | 0.941 |
Weight (kg) | 68.81 ± 12.14 | 61.21 ± 9.14 | 65.42 ± 11.15 | <0.001 |
Height (cm) | 162.66 ± 5.69 | 160.21 ± 5.15 | 162.84 ± 5.05 | 0.001 |
BMI (kg/m2) | 26.04 ± 4.55 | 23.80 ± 3.09 | 24.67 ± 3.97 | 0.003 |
L2-L4 BMD (g/cm2) | 1.18 [1.12; 1.25] | 0.83 [0.77; 0.87] | 0.97 [0.93; 1.03] | <0.001 |
L2-L4 YA (%) | 98 [94; 105] | 69 [65; 73] | 81 [77.5; 86] | <0.001 |
L2-L4 AM (%) | 108 [101.5; 114.5] | 78 [74; 82] | 89 [84; 94] | <0.001 |
LS T-score | −0.17 [−0.67; 0.57] | −3.06 [−3.48; −2.71] | −1.88 [−2.18; −1.40] | <0.001 |
LS Z-score | 0.56 [−0.10; 1.33] | −1.62 [−2.09; −1.17] | −0.88 [−1.34; −0.41] | <0.001 |
SNP | Alleles | MAF in Europe * | Controls | Osteoporosis | Osteopenia | |||
---|---|---|---|---|---|---|---|---|
MAF | HWE p | MAF | HWE p | MAF | HWE p | |||
rs1801282 | C>G | 0.1203 | 0.173 | 1.000 | 0.173 | 0.823 | 0.378 | 0.114 |
rs213045 | G>T | 0.2873 | 0.242 | 0.865 | 0.247 | 0.170 | 0.317 | 0.077 |
rs213046 | A>C | 0.0954 | 0.071 | 1.000 | 0.071 | 1.000 | 0.101 | 0.596 |
SNP | Allele | Controls (N = 508) | Osteoporosis (N = 490) | OR (95% CI) | Chi2 p | Osteopenia (N = 218) | OR (95% CI) | Chi2 p |
---|---|---|---|---|---|---|---|---|
rs1801282 | C | 420 (0.827) | 405 (0.827) | 1.00 (0.72–1.39) | χ2 = 0.0001 0.991 | 188 (0.862) | 0.76 (0.49–1.19) | χ2 = 1.421 0.233 |
G | 88 (0.173) | 85 (0.173) | 30 (0.138) | |||||
rs213045 | G | 385 (0.758) | 369 (0.753) | 1.03 (0.77–1.37) | χ2 = 0.031 0.859 | 149 (0.683) | 1.45 (1.02–2.06) | χ2 = 4.339 0.037 |
T | 123 (0.242) | 121 (0.247) | 69 (0.317) | |||||
rs213046 | A | 472 (0.929) | 455 (0.929) | 1.01 (0.62–1.63) | χ2 = 0.001 0.972 | 196 (0.899) | 1.47 (0.84–2.57) | χ2 = 1.874 0.171 |
C | 36 (0.071) | 35 (0.071) | 22 (0.101) |
SNP | Genotypes | Controls (N = 254) | Osteoporosis (N = 245) | OR (95%CI) | p | p Adj. | Osteopenia (N = 109) | OR (95%CI) | p | p Adj. |
---|---|---|---|---|---|---|---|---|---|---|
rs1801282 | CC | 173 (68.1) | 168 (68.6) | 1.00 | 0.927 | 0.836 | 83 (76.1) | 1.00 | 0.190 | 0.296 |
CG | 74 (29.1) | 69 (28.2) | 0.96 (0.65–1.42) | 22 (20.2) | 0.62 (0.36–1.07) | |||||
GG | 7 (2.8) | 8 (3.3) | 1.18 (0.42–3.32) | 4 (3.7) | 1.19 (0.34–4.18) | |||||
Dominant | 81 (31.9) | 77 (31.4) | 0.98 (0.67–1.43) | 0.912 | 0.664 | 26 (23.9) | 0.67 (0.40–1.12) | 0.119 | 0.174 | |
Recessive | 247 (97.2) | 237 (96.7) | 1.19 (0.43–3.34) | 0.739 | 0.615 | 105 (96.3) | 1.34 (0.39–4.69) | 0.647 | 0.761 | |
Overdominant | 180 (70.9) | 176 (71.8) | 0.95 (0.65–1.41) | 0.811 | 0.796 | 87 (79.8) | 0.62 (0.36–1.06) | 0.071 | 0.120 | |
rs213045 | GG | 145 (57.1) | 143 (58.3) | 1.00 | 0.491 | 0.324 | 55 (50.5) | 1.00 | 0.037 | 0.325 |
GT | 95 (37.4) | 83 (33.9) | 0.89 (0.61–1.29) | 39 (35.8) | 1.08 (0.67–1.76) | |||||
TT | 14 (5.5) | 19 (7.8) | 1.38 (0.66–2.85) | 15 (13.8) | 2.82 (1.28–6.23) | |||||
Dominant | 109 (42.9) | 102 (41.6) | 0.95 (0.67–1.35) | 0.772 | 0.247 | 54 (49.5) | 1.31 (0.83–2.05) | 0.245 | 0.136 | |
Recessive | 240 (94.5) | 226 (92.2) | 1.44 (0.71–2.94) | 0.313 | 0.695 | 94 (86.2) | 2.74 (1.27–5.89) | 0.011 | 0.615 | |
Overdominant | 159 (62.6) | 162 (66.1) | 0.86 (0.59–1.24) | 0.411 | 0.134 | 70 (64.2) | 0.93 (0.58–1.49) | 0.769 | 0.216 | |
rs213046 | AA | 219 (86.2) | 211 (86.1) | 1.00 | 0.999 | 0.512 | 87 (79.8) | 1.00 | 0.182 | 0.209 |
AC | 34 (13.4) | 33 (13.5) | 1.01 (0.60–1.69) | 22 (20.2) | 1.63 (0.90–2.94) | |||||
CC | 1 (0.4) | 1 (0.4) | 1.04 (0.06–16.70) | 0 (0.0) | — | |||||
Dominant | 35 (13.8) | 34 (13.9) | 1.01 (0.61–1.68) | 0.975 | 0.558 | 22 (20.2) | 1.58 (0.88–2.85) | 0.131 | 0.510 | |
Recessive | 253 (99.6) | 244 (99.6) | 1.04 (0.06–16.67) | 0.980 | 0.279 | 109 (100.0) | — | 1.000 | 0.128 | |
Overdominant | 220 (86.6) | 212 (86.5) | 1.01 (0.60–1.69) | 0.978 | 0.718 | 220 (86.6) | 1.64 (0.91–2.95) | 0.107 | 0.339 |
ECE1 Haplotypes | Frequency | p Controls vs. Osteopenia | p Controls vs. Osteoporosis | |||
---|---|---|---|---|---|---|
All | Osteopenia | Osteoporosis | Controls | |||
GA | 0.741 | 0.678 | 0.753 | 0.756 | 0.032 | 0.918 |
TA | 0.183 | 0.221 | 0.176 | 0.174 | 0.138 | 0.925 |
TC | 0.075 | 0.096 | 0.071 | 0.069 | 0.202 | 0.874 |
Publication | No. | Population | Gene | Conclusions and Results | Reference |
---|---|---|---|---|---|
Hansen et al. | 3564 | Postmenopausal women and predominantly non-Hispanic caucasian | ECE1 rs213045 ECE1 rs213046 | The CC (rs213046) genotype was associated with fewer fractures, whereas the AC genotype was associated with osteoporosis. | [10] |
Reza-Lopez et al. | 314 | Mexican adults with T2D | PPARG rs1801282 | The G rs1801282 allele is associated with a higher BMI and waist circumference than in CC homozygotes. | [19] |
Li et al. | 70,137 | Meta-analysis | PPARG rs1801282 | The carriers of the G allele of the rs1801282 PPARG polymorphism had a significantly higher BMI and waist-to-hip ratio compared to the CC genotype. | [20] |
Rhee et al. | 239 | Healthy Korean women | PPARG | In the haplotype analysis with the 161C>T variant for PPARG, women with the Ala and T alleles showed significantly lower serum OPG levels. | [29] |
Liu et al. | 281 | Postmenopausal women of Chinese Han nationality | ECE1 rs213045 | The GT genotype rs213045 affects plasma testosterone and osteocalcin concentrations, and the TT genotype is related to BMD. | [31] |
Uzar et al. | 608 | Postmenopausal woman | ECE1 rs213045, rs213046, PPARG 1801282 | The women with osteoporosis had statistically significantly lower body mass and BMI values compared to the control group. The haplotype containing two major GA alleles of ECE1 (rs213045, rs213046) may reduce the risk of osteopenia. The analysis of clinical and densitometric parameters depending on the allele distribution indicated a statistically significantly higher BMI in carriers of the G allele of the PPARG rs1801282 variant. | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzar, I.; Bogacz, A.; Łuszczyńska, M.; Wolek, M.; Kotrych, K.; Modrzejewski, A.; Czerny, B.; Ziętek, P.; Kamiński, A. The Analysis of ECE1 and PPARG Variants in the Development of Osteopenia and Osteoporosis in Postmenopausal Women. Biomedicines 2024, 12, 1440. https://doi.org/10.3390/biomedicines12071440
Uzar I, Bogacz A, Łuszczyńska M, Wolek M, Kotrych K, Modrzejewski A, Czerny B, Ziętek P, Kamiński A. The Analysis of ECE1 and PPARG Variants in the Development of Osteopenia and Osteoporosis in Postmenopausal Women. Biomedicines. 2024; 12(7):1440. https://doi.org/10.3390/biomedicines12071440
Chicago/Turabian StyleUzar, Izabela, Anna Bogacz, Małgorzata Łuszczyńska, Marlena Wolek, Katarzyna Kotrych, Andrzej Modrzejewski, Bogusław Czerny, Paweł Ziętek, and Adam Kamiński. 2024. "The Analysis of ECE1 and PPARG Variants in the Development of Osteopenia and Osteoporosis in Postmenopausal Women" Biomedicines 12, no. 7: 1440. https://doi.org/10.3390/biomedicines12071440
APA StyleUzar, I., Bogacz, A., Łuszczyńska, M., Wolek, M., Kotrych, K., Modrzejewski, A., Czerny, B., Ziętek, P., & Kamiński, A. (2024). The Analysis of ECE1 and PPARG Variants in the Development of Osteopenia and Osteoporosis in Postmenopausal Women. Biomedicines, 12(7), 1440. https://doi.org/10.3390/biomedicines12071440