Advanced and Metastatic Non-Melanoma Skin Cancer: Epidemiology, Risk Factors, Clinical Features, and Treatment Options
Abstract
:1. Introduction
2. Materials and Methods
3. Basal Cell Carcinoma
3.1. Epidemiology
3.2. Risk Factors
3.3. Clinical Features
3.4. Treatment
3.4.1. Vismodegib
3.4.2. Sonidegib
3.4.3. Cemipilimab
4. Squamous Cell Carcinoma
4.1. Epidemiology
4.2. Risk Factors
4.3. Clinical Features
4.4. Treatment
4.4.1. Cemiplimab
4.4.2. Pembrolizumab
4.4.3. Nivolumab
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Zeng, W.; Jiang, A.; He, Z.; Shen, X.; Dong, X.; Feng, J.; Lu, H. Global, regional and national incidence, mortality and disability-adjusted life-years of skin cancers and trend analysis from 1990 to 2019: An analysis of the Global Burden of Disease Study 2019. Cancer Med. 2021, 10, 4905–4922. [Google Scholar] [CrossRef]
- Hayes, R.C.; Leonfellner, S.; Pilgrim, W.; Liu, J.; Keeling, D.N. Incidence of nonmelanoma skin cancer in New Brunswick, Canada, 1992 to 2001. J. Cutan. Med. Surg. 2007, 11, 45–52. [Google Scholar] [CrossRef]
- Urban, K.; Mehrmal, S.; Uppal, P.; Giesey, R.L.; Delost, G.R. The global burden of skin cancer: A longitudinal analysis from the Global Burden of Disease Study, 1990–2017. JAAD Int. 2021, 2, 98–108. [Google Scholar] [CrossRef]
- Veisani, Y.; Jenabi, E.; Khazaei, S.; Nematollahi, S. Global incidence and mortality rates in pancreatic cancer and the association with the Human Development Index: Decomposition approach. Public Health 2018, 156, 87–91. [Google Scholar] [CrossRef]
- Shalhout, S.Z.; Emerick, K.S.; Kaufman, H.L.; Miller, D.M. Immunotherapy for Non-melanoma Skin Cancer. Curr. Oncol. Rep. 2021, 23, 125. [Google Scholar] [CrossRef]
- Allied Market Research. Skin Cancer Treatment Market Size, Share, Competitive Landscape and Trend Analysis Report by Type, by Therapy, by Distribution Channel: Global Opportunity Analysis and Industry Forecast, 2021–2031. Available online: https://www.alliedmarketresearch.com/skin-cancer-treatment-market-A17526 (accessed on 1 January 2020).
- Griffin, L.L.; Ali, F.R.; Lear, J.T. Non-melanoma skin cancer. Clin. Med. 2016, 16, 62–65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cribier, B.; Scrivener, Y.; Grosshans, E. Tumors arising in nevus sebaceus: A study of 596 cases. J. Am. Acad. Dermatol. 2000, 42, 263–268. [Google Scholar] [CrossRef]
- Christenson, L.J. Incidence of Basal Cell and Squamous Cell Carcinomas in a Population Younger than 40 Years. JAMA 2005, 294, 681. [Google Scholar] [CrossRef]
- Russomanno, K.; Abdel Azim, S.; Patel, V.A. Immunomodulators for Non-Melanoma Skin Cancers: Updated Perspectives. Clin. Cosmet. Investig. Dermatol. 2023, 16, 1025–1045. [Google Scholar] [CrossRef]
- Ibrahim, N.; Jovic, M.; Ali, S.; Williams, N.; Gibson, J.A.G.; Griffiths, R.; Dobbs, T.D.; Akbari, A.; A Lyons, R.; A Hutchings, H.; et al. The epidemiology, healthcare and societal burden of basal cell carcinoma in Wales 2000–2018: A retrospective nationwide analysis. Br. J. Dermatol. 2023, 188, 380–389. [Google Scholar] [CrossRef]
- Gupta, A.K.; Bharadwaj, M.; Mehrotra, R. Skin Cancer Concerns in People of Color: Risk Factors and Prevention. Asian Pac. J. Cancer Prev. 2016, 17, 5257–5264. [Google Scholar] [CrossRef]
- McDaniel, B.; Badri, T.; Steele, R.B. Basal Cell Carcinoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482439/ (accessed on 1 January 2020).
- Huang, H.W.; Lee, C.H.; Yu, H.S. Arsenic-Induced Carcinogenesis and Immune Dysregulation. IJERPH 2019, 16, 2746. [Google Scholar] [CrossRef]
- AlSabbagh, M.M.; Baqi, M.A. Bazex-Dupré-Christol syndrome: Review of clinical and molecular aspects. Int. J. Dermatol. 2018, 57, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, C.; Maturo, M.; Di Nardo, L.; Ciciarelli, V.; Gutiérrez García-Rodrigo, C.; Fargnoli, M. Understanding the Molecular Genetics of Basal Cell Carcinoma. Int. J. Mol. Sci. 2017, 18, 2485. [Google Scholar] [CrossRef]
- Roelink, H.; Augsburger, A.; Heemskerk, J.; Korzh, V.; Norlin, S.; Altaba, A.R.; Tanabe, Y.; Placzek, M.; Edlund, T.; Jessell, T.; et al. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 1994, 76, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; So, P.; Epsteinjr, E. Novel Hedgehog pathway targets against basal cell carcinoma. Toxicol. Appl. Pharmacol. 2007, 224, 257–264. [Google Scholar] [CrossRef]
- Cives, M.; Mannavola, F.; Lospalluti, L.; Sergi, M.C.; Cazzato, G.; Filoni, E.; Cavallo, F.; Giudice, G.; Stucci, L.S.; Porta, C.; et al. Non-Melanoma Skin Cancers: Biological and Clinical Features. IJMS 2020, 21, 5394. [Google Scholar] [CrossRef]
- Chmiel, P.; Kłosińska, M.; Forma, A.; Pelc, Z.; Gęca, K.; Skórzewska, M. Novel Approaches in Non-Melanoma Skin Cancers—A Focus on Hedgehog Pathway in Basal Cell Carcinoma (BCC). Cells 2022, 11, 3210. [Google Scholar] [CrossRef] [PubMed]
- Martens, M.C.; Seebode, C.; Lehmann, J.; Emmert, S. Photocarcinogenesis and Skin Cancer Prevention Strategies: An Update. Anticancer Res. 2018, 38, 1153–1158. [Google Scholar] [CrossRef]
- Al Wohaib, M.; Al Ahmadi, R.; Al Essa, D.; Maktabbi, A.; Khandekar, R.; Al Sharif, E.; Al Katan, H.; Schellini, S.A.; Al Shaikh, O. Characteristics and Factors Related to Eyelid Basal Cell Carcinoma in Saudi Arabia. Middle East Afr. J. Ophthalmol. 2018, 25, 96–102. [Google Scholar] [CrossRef]
- Cortez Vila, J.A.; Lacy Niebla, R.M.; Boeta Ángeles, L. Micronodular Basal Cell Carcinoma Presenting as an Achromic Macule. Cureus 2023, 15, e49806. [Google Scholar] [CrossRef]
- Fania, L.; Didona, D.; Morese, R.; Campana, I.; Coco, V.; Di Pietro, F.R.; Ricci, F.; Pallotta, S.; Candi, E.; Abeni, D.; et al. Basal Cell Carcinoma: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2020, 8, 449. [Google Scholar] [CrossRef] [PubMed]
- Marks, J.G.; Miller, J.J. Epidermal Growths. In Lookingbill and Marks’ Principles of Dermatology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 41–61. [Google Scholar] [CrossRef]
- Richman, T.; Penneys, N.S. Analysis of morpheaform basal cell carcinoma. J. Cutan. Pathol. 1988, 15, 359–362. [Google Scholar] [CrossRef]
- East, E.; Fullen, D.R.; Arps, D.; Patel, R.M.; Palanisamy, N.; Carskadon, S.; Harms, P.W. Morpheaform Basal Cell Carcinomas with Areas of Predominantly Single-Cell Pattern of Infiltration: Diagnostic Utility of p63 and Cytokeratin. Am. J. Dermatopathol. 2016, 38, 744–750. [Google Scholar] [CrossRef]
- Gutzmer, R.; Schulze, H.; Hauschild, A.; Leiter, U.; Meier, F.; Haferkamp, S.; Ulrich, C.; Wahl, R.; Berking, C.; Herbst, R.; et al. Effectiveness, safety and utilization of vismodegib in locally advanced basal cell carcinoma under real-world conditions in Germany—The non-interventional study NIELS. Acad. Dermatol. Venereol. 2021, 35, 1678–1685. [Google Scholar] [CrossRef]
- Dummer, R.; Ascierto, P.; Basset-Seguin, N.; Dréno, B.; Garbe, C.; Gutzmer, R.; Hauschild, A.; Krattinger, R.; Lear, J.; Malvehy, J.; et al. Sonidegib and vismodegib in the treatment of patients with locally advanced basal cell carcinoma: A joint expert opinion. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1944–1956. [Google Scholar] [CrossRef]
- Stratigos, A.J.; Sekulic, A.; Peris, K.; Bechter, O.; Prey, S.; Kaatz, M.; Lewis, K.D.; Basset-Seguin, N.; Chang, A.L.S.; Dalle, S.; et al. Cemiplimab in locally advanced basal cell carcinoma after hedgehog inhibitor therapy: An open-label, multi-centre, single-arm, phase 2 trial. Lancet Oncol. 2021, 22, 848–857. [Google Scholar] [CrossRef]
- Lomas, A.; Leonardi-Bee, J.; Bath-Hextall, F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br. J. Dermatol. 2012, 166, 1069–1080. [Google Scholar] [CrossRef]
- Rouvinov, K.; Mazor, G.; Kozlener, E.; Meirovitz, A.; Shrem, N.S.; Abu Saleh, O.; Shalata, S.; Yakobson, A.; Shalata, W. Cemiplimab as First Line Therapy in Advanced Penile Squamous Cell Carcinoma: A Real-World Experience. J. Pers. Med. 2023, 13, 1623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nanz, L.; Keim, U.; Katalinic, A.; Meyer, T.; Garbe, C.; Leiter, U. Epidemiology of Keratinocyte Skin Cancer with a Focus on Cutaneous Squamous Cell Carcinoma. Cancers 2024, 16, 606. [Google Scholar] [CrossRef]
- Granger, E.E.; Groover, M.; Harwood, C.; Proby, C.M.; Karn, E.; Murad, F.; Schmults, C.D.; Ruiz, E.S. Cutaneous squamous cell carcinoma tumor accrual rates in immunosuppressed patients with autoimmune and inflammatory conditions: A retrospective cohort study. J. Am. Acad. Dermatol. 2024, 90, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Burton, K.A.; Ashack, K.A.; Khachemoune, A. Cutaneous Squamous Cell Carcinoma: A Review of High-Risk and Metastatic Disease. Am. J. Clin. Dermatol. 2016, 17, 491–508. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.K.; Kelley, B.F.; Prokop, L.J.; Murad, M.H.; Baum, C.L. Risk Factors for Cutaneous Squamous Cell Carcinoma Recurrence, Metastasis, and Disease-Specific Death: A Systematic Review and Meta-analysis. JAMA Dermatol. 2016, 152, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Tokez, S.; Venables, Z.C.; Hollestein, L.M.; Qi, H.; Bramer, E.M.; Rentroia-Pacheco, B.; van den Bos, R.R.; Rous, B.; Leigh, I.M.; Nijsten, T.; et al. Risk factors for metastatic cutaneous squamous cell carcinoma: Refinement and replication based on 2 nationwide nested case-control studies. J. Am. Acad. Dermatol. 2022, 87, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Marques, E.; Chen, T.M. Actinic Keratosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK557401/ (accessed on 9 May 2024).
- Gutzmer, R.; Wiegand, S.; Kölbl, O.; Wermker, K.; Heppt, M.; Berking, C. Actinic Keratosis and Cutaneous Squamous Cell Carcinoma. Dtsch. Arztebl. Int. 2019, 116, 616–626. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.N.; Sammain, A.; Erdmann, R.; Hartmann, V.; Stockfleth, E.; Nast, A. The natural history of actinic keratosis: A systematic review. Br. J. Dermatol. 2013, 169, 502–518. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.H.; Kessels, J.P.; Nelemans, P.J.; Kouloubis, N.; Arits, A.H.; van Pelt, H.P.; Quaedvlieg, P.J.; Essers, B.A.; Steijlen, P.M.; Kelleners-Smeets, N.W.; et al. Randomized Trial of Four Treatment Approaches for Actinic Keratosis. N. Engl. J. Med. 2019, 380, 935–946. [Google Scholar] [CrossRef]
- Fuchs, A.; Marmur, E. The Kinetics of Skin Cancer: Progression of Actinic Keratosis to Squamous Cell Carcinoma. Dermatol. Surg. 2007, 33, 1099–1101. [Google Scholar] [CrossRef] [PubMed]
- Witek, M.E.; Wieland, A.M.; Chen, S.; Kennedy, T.A.; Hullett, C.R.; Liang, E.; Hartig, G.K.; Kimple, R.J.; Harari, P.M. Outcomes for patients with head and neck squamous cell carcinoma presenting with N3 nodal disease. Cancers Head Neck 2017, 2, 8. [Google Scholar] [CrossRef]
- Christensen, R.E.; Elston, D.M.; Worley, B.; Dirr, M.A.; Anvery, N.; Kang, B.Y.; Bahrami, S.; Brodell, R.T.; Cerroni, L.; Elston, C.; et al. Dermatopathologic features of cutaneous squamous cell carcinoma and actinic keratosis: Consensus criteria and proposed reporting guidelines. J. Am. Acad. Dermatol. 2023, 88, 1317–1325. [Google Scholar] [CrossRef]
- Zalaudek, I.; Argenziano, G. Dermoscopy of actinic keratosis, intraepidermal carcinoma and squamous cell carcinoma. Curr. Probl. Dermatol. 2015, 46, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.F.; Lim, A.M.; Chang, A.L.S.; et al. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Migden, M.R.; Khushalani, N.I.; Chang, A.L.S.; Lewis, K.D.; Schmults, C.D.; Hernandez-Aya, L.; Meier, F.; Schadendorf, D.; Guminski, A.; Hauschild, A.; et al. Cemiplimab in locally advanced cutaneous squamous cell carcinoma: Results from an open-label, phase 2, single-arm trial. Lancet Oncol. 2020, 21, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef] [PubMed]
- Hughes, B.; Munoz-Couselo, E.; Mortier, L.; Bratland, Å.; Gutzmer, R.; Roshdy, O.; Mendoza, R.G.; Schachter, J.; Arance, A.; Grange, F.; et al. Pembrolizumab for locally advanced and recurrent/metastatic cutaneous squamous cell carcinoma (KEYNOTE-629 study): An open-label, nonrandomized, multicenter, phase II trial. Ann. Oncol. 2021, 32, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Munhoz, R.R.; Nader-Marta, G.; de Camargo, V.P.; Queiroz, M.M.; Cury-Martins, J.; Ricci, H.; de Mattos, M.R.; de Menezes, T.A.F.; Machado, G.U.C.; Bertolli, E.; et al. A phase 2 study of first-line nivolumab in patients with locally advanced or metastatic cutaneous squamous-cell carcinoma. Cancer 2022, 128, 4223–4231. [Google Scholar] [CrossRef] [PubMed]
- Stratigos, A.J.; Garbe, C.; Dessinioti, C.; Lebbe, C.; Bataille, V.; Bastholt, L.; Dreno, B.; Fargnoli, M.C.; Forsea, A.M.; Frenard, C.; et al. European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: Part 2. Treatment. Eur. J. Cancer 2020, 128, 83–102. [Google Scholar] [CrossRef] [PubMed]
- Ascierto, P.A.; Schadendorf, D. Update in the treatment of non-melanoma skin cancers: The use of PD-1 inhibitors in basal cell carcinoma and cutaneous squamous-cell carcinoma. J. Immunother. Cancer 2022, 10, e005082. [Google Scholar] [CrossRef]
- Migden, M.R.; Chang, A.L.S.; Dirix, L.; Stratigos, A.J.; Lear, J.T. Emerging trends in the treatment of advanced basal cell carcinoma. Cancer Treat. Rev. 2018, 64, 1–10. [Google Scholar] [CrossRef]
- Paulson, K.G.; Lahman, M.C.; Chapuis, A.G.; Brownell, I. Immunotherapy for skin cancer. Int. Immunol. 2019, 31, 465–475. [Google Scholar] [CrossRef]
- Sabag, N.; Yakobson, A.; Retchkiman, M.; Silberstein, E. Novel Biomarkers and Therapeutic Targets for Melanoma. Int. J. Mol. Sci. 2022, 23, 11656. [Google Scholar] [CrossRef]
- Sabag, N.; Yakobson, A.; Silberstein, E. Recent Changes and Innovations in Melanoma Treatment: A Review. Isr. Med. Assoc. J. 2020, 11, 704–710. [Google Scholar] [PubMed]
- García, J.; Suárez-Varela, M.; Vilata, J.; Marquina, A.; Pallardó, L.; Crespo, J. Risk Factors for Non-melanoma Skin Cancer in Kidney Transplant Patients in a Spanish Population in the Mediterranean Region. Acta Derm. Venereol. 2013, 93, 422–427. [Google Scholar] [CrossRef]
- Espinosa, P.; Pfeiffer, R.M.; García-Casado, Z.; Requena, C.; Landi, M.T.; Kumar, R.; Nagore, E. Risk factors for keratinocyte skin cancer in patients diagnosed with melanoma, a large retrospective study. Eur. J. Cancer 2016, 53, 115–124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lahmann, P.H.; Hughes, M.C.; Williams, G.M.; Green, A.C. A prospective study of measured body size and height and risk of keratinocyte cancers and melanoma. Cancer Epidemiol. 2016, 40, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Calzavara-Pinton, P.; Ortel, B.; Venturini, M. Non-melanoma skin cancer, sun exposure and sun protection. Ital. J. Dermatol. Venereol. 2015, 150, 369–378. [Google Scholar] [PubMed]
- Chuang, T.Y.; Popescu, A.; Su, W.P.D.; Chute, C.G. Basal cell carcinoma. J. Am. Acad. Dermatol. 1990, 22, 413–417. [Google Scholar] [CrossRef]
- Shafaei, S.; Sharifian, M.; Hajian-Tilaki, K. Immunohistochemical expression of CD10 in cutaneous basal and squamous cell carcinomas. Casp. J. Intern. Med. 2015, 6, 103–107. [Google Scholar] [PubMed] [PubMed Central]
- Agirgol, S.; Mansur, A.T.; Bozkurt, K.; Azakli, H.N.; Babacan, A.; Dikmen, A. Giant Cornu Cutaneum Superimposed on Basal Cell Carcinoma. West Indian Med. J. 2015, 64, 438–440. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goodwin, C.R.; Sankey, E.W.; Liu, A.; Elder, B.D.; Kosztowski, T.; Lo, S.F.; Fisher, C.G.; Clarke, M.J.; Gokaslan, Z.L.; Sciubba, D.M. A systematic review of clinical outcomes for patients diagnosed with skin cancer spinal metastases. J. Neurosurg. Spine 2016, 24, 837–849, Erratum in J. Neurosurg. Spine 2016, 25, 671. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Samarasinghe, V.; Madan, V. Nonmelanoma skin cancer. J. Cutan. Aesthetic Surg. 2012, 5, 3. [Google Scholar] [CrossRef]
- Thai, A.A.; Lim, A.M.; Solomon, B.J.; Rischin, D. Biology and Treatment Advances in Cutaneous Squamous Cell Carcinoma. Cancers 2021, 13, 5645. [Google Scholar] [CrossRef]
- Wunderlich, K.; Suppa, M.; Gandini, S.; Lipski, J.; White, J.M.; Del Marmol, V. Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma. Cancers 2024, 16, 1016. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naik, P.P.; Desai, M.B. Basal Cell Carcinoma: A Narrative Review on Contemporary Diagnosis and Management. Oncol. Ther. 2022, 10, 317–335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cohen, P.R.; Torres-Quiñones, M.; Uebelhoer, N.S. Red Dot Basal Cell Carcinoma: Literature Review of a Unique Clinical Subtype of Basal Cell Carcinoma. Dermatol. Ther. 2021, 11, 401–413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marzuka, A.G.; Book, S.E. Basal cell carcinoma: Pathogenesis, epidemiology, clinical features, diagnosis, histopathology, and management. Yale J. Biol. Med. 2015, 88, 167–179. [Google Scholar] [PubMed] [PubMed Central]
- Saeidi, V.; Doudican, N.; Carucci, J.A. Understanding the squamous cell carcinoma immune microenvironment. Front. Immunol. 2023, 14, 1084873. [Google Scholar] [CrossRef]
- Yanofsky, V.R.; Mitsui, H.; Felsen, D.; Carucci, J.A. Understanding dendritic cells and their role in cutaneous carcinoma and cancer immunotherapy. Clin. Dev. Immunol. 2013, 2013, 624123. [Google Scholar] [CrossRef]
- Rowe, D.E.; Carroll, R.J.; Day, C.L., Jr. Prognostic factors for local recurrence, metastasis, and survival rates in squamous cell carcinoma of the skin, ear, and lip. Implications for treatment modality selection. J. Am. Acad. Dermatol. 1992, 26, 976–990. [Google Scholar] [CrossRef]
- Di Nardo, L.; Pellegrini, C.; Di Stefani, A.; Del Regno, L.; Sollena, P.; Piccerillo, A.; Longo, C.; Garbe, C.; Fargnoli, M.C.; Peris, K. Molecular genetics of cutaneous squamous cell carcinoma: Perspective for treatment strategies. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 932–941. [Google Scholar] [CrossRef]
- Chuang, T.Y. Squamous Cell Carcinoma: A Population-Based Incidence Study in Rochester, Minn. Arch. Dermatol. 1990, 126, 185. [Google Scholar] [CrossRef]
- Tao, S.S.H.; Michael Bolger, P. Dietary arsenic intakes in the United States: FDA Total Diet Study, September 1991–December 1996. Food Addit. Contam. 1999, 16, 465–472. [Google Scholar] [CrossRef]
- Silverberg, M.J.; Leyden, W.; Warton, E.M.; Quesenberry, C.P.; Engels, E.A.; Asgari, M.M. HIV Infection Status, Immunodeficiency, and the Incidence of Non-Melanoma Skin Cancer. JNCI J. Natl. Cancer Inst. 2013, 105, 350–360. [Google Scholar] [CrossRef]
- Lear, J.T. Oral hedgehog-pathway inhibitors for basal-cell carcinoma. N. Engl. J. Med. 2012, 366, 2225–2226. [Google Scholar] [CrossRef]
- Euvrard, S.; Kanitakis, J.; Claudy, A. Skin Cancers after Organ Transplantation. N. Engl. J. Med. 2003, 348, 1681–1691. [Google Scholar] [CrossRef]
- Slominski, R.M.; Chen, J.Y.; Raman, C.; Slominski, A.T. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc. Natl. Acad. Sci. USA 2024, 121, e2308374121. [Google Scholar] [CrossRef]
- Slominski, A.T.; Tuckey, R.C.; Jetten, A.M.; Holick, M.F. Recent Advances in Vitamin D Biology: Something New under the Sun. J. Investig. Dermatol. 2023, 143, 2340–2342. [Google Scholar] [CrossRef]
- Slominski, A.T.; Kim, T.-K.; Li, W.; Postlethwaite, A.; Tieu, E.W.; Tang, E.K.Y.; Tuckey, R.C. Detection of novel11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland. Sci. Rep. 2015, 5, 14875. [Google Scholar] [CrossRef]
- Slominski, A.T.; Brożyna, A.A.; Kim, T.K.; Elsayed, M.M.; Janjetovic, Z.; Qayyum, S.; Slominski, R.M.; Oak, A.S.; Li, C.; Podgorska, E.; et al. CYP11A1-derived vitamin D hydroxyderivatives as candidates for therapy of basal and squamous cell carcinomas. Int. J. Oncol. 2022, 61, 96. [Google Scholar] [CrossRef]
- Slominski, R.M.; Raman, C.; Chen, J.Y.; Slominski, A.T. How cancer hijacks the body’s homeostasis through the neuroendocrine system. Trends Neurosci. 2023, 46, 263–275. [Google Scholar] [CrossRef]
- Schwarz, A.; Navid, F.; Sparwasser, T.; Clausen, B.E.; Schwarz, T. 1,25-dihydroxyvitamin D exerts similar immunosuppressive effects as UVR but is dispensable for local UVR-induced immunosuppression. J. Investig. Dermatol. 2012, 132, 2762–2769. [Google Scholar] [CrossRef]
- Becklund, B.R.; Severson, K.S.; Vang, S.V.; DeLuca, H.F. UV radiation suppresses experimental autoimmune encephalomyelitis independent of vitamin D production. Proc. Natl. Acad. Sci. USA 2010, 107, 6418–6423. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Zmijewski, M.A.; Plonka, P.M.; Szaflarski, J.P.; Paus, R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Slominski, R.M.; Pyza, E.; Kleszczynski, K.; Tuckey, R.C.; Reiter, R.J.; Holick, M.F.; Slominski, A.T. Evolutionary formation of melatonin and vitamin D in early life forms: Insects take centre stage. Biol. Rev. Camb. Philos. Soc. 2024. [Google Scholar] [CrossRef]
- Vallini, G.; Calabrese, L.; Canino, C.; Trovato, E.; Gentileschi, S.; Rubegni, P.; Tognetti, L. Signaling Pathways and Therapeutic Strategies in Advanced Basal Cell Carcinoma. Cells 2023, 12, 2534. [Google Scholar] [CrossRef]
- Ally, M.S.; Ransohoff, K.; Sarin, K.; Atwood, S.X.; Rezaee, M.; Bailey-Healy, I.; Kim, J.; Beachy, P.A.; Chang, A.L.S.; Oro, A.; et al. Effects of Combined Treatment with Arsenic Trioxide and Itraconazole in Patients with Refractory Metastatic Basal Cell Carcinoma. JAMA Dermatol. 2016, 152, 452–456. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.J.; Kim, J.; Gardner, D.; Beachy, P.A. Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc. Natl. Acad. Sci. USA 2010, 107, 13432–13437. [Google Scholar] [CrossRef] [PubMed]
Measure | laBCC 200 mg (n = 66) | laBCC 800 mg (n = 128) | mBCC 200 mg (n = 13) | mBCC 800 mg (n = 23) |
---|---|---|---|---|
Efficacy Outcomes | ||||
ORR, % (95% CI) | 56 (43–68) | 46.1 (37.2–55.1) | 8 (0.2–36) | 17 (5–39) |
CR, % (95% CI) | 5 (0.9–13) | 1.6 (0.2–5.5) | 0 (0–25) | 0 (0–15) |
Adverse Effects | ||||
Muscle spasms | 43 (54%) | 104 (69.3%) | - | - |
Alopecia (Grade ≤ 2) | 39 (49%) | 87 (58.0%) | - | - |
Elevated CK (Grade 3–4) | 5 (6%) | 20 (13.3%) | - | - |
Elevated lipase (Grade 3–4) | 5 (6%) | - | - | - |
Pneumonia (Serious) | 2 (3%) | - | - | - |
Elevated CK (Serious) | - | 6 (4.0%) | - | - |
Treatment | Indication | FDA Approval | Clinical Trial Results | Common Adverse Effects |
---|---|---|---|---|
Vismodegib | 1st line | 2012 | ORR: 74.2% DCR: 90.9% MPFS: 15.9 months | Muscle spasms Alopecia Dysgeusia Fatigue Abnormal weight loss Taste disorder |
Sonidegib | 1st line | 2015 | Variable based on dose—See Table 1 | Muscle spasms Alopecia Dysgeusia |
Treatment | Indication | FDA Approval | Clinical Trial Results | Common Adverse Effects | |
---|---|---|---|---|---|
Vismodegib | 1st line | 2012 | ORR: 74.2% DCR: 90.9% MPFS: 15.9 months | Muscle spasms Alopecia Dysgeusia Fatigue Abnormal weight loss Taste disorder | |
Sonidegib | 1st line | 2015 | Variable based on dose—See Table 1 | Muscle spasms Alopecia Dysgeusia | |
Cemiplimab | 1st line | 2018 (advanced/metastatic cSCC) | laSCC | mSCC | Diarrhea Fatigue Rash Hypertension Pneumonia Hepatitis |
RR: 50% | RR: 47% | ||||
Pembrolizumab | 1st line | 2020 | laSCC | R/T | Pruritus Fatigue Asthenia Rash Diarrhea Hypothyroidism Nausea |
ORR: 50% MPFS: not yet reached OS: not reached | ORR: 35.2% MPFS: 5.7 months OS: 23.8 months | ||||
Nivolumab | Off label use | Not yet approved for cSCC (Off-label use) | at 17.6 months ORR: 58.3% | Hypothyroidism Pruritus Fatigue Lymphopenia Arthralgia Rash |
NCT Number | Phase | Study Title | Conditions | Interventions | Primary and Secondary Endpoints |
---|---|---|---|---|---|
NCT05267626 | II | Study of AU-007, A Monoclonal Antibody That Binds to IL-2 and Inhibits IL-2Rα Binding, in Patients With Unresectable Locally Advanced or Metastatic Cancer | Metastatic cancer (non-melanoma skin cancer) | DRUG: AU-007|DRUG: Aldesleukin | Safety |
NCT03775525 | I/Ib | Study Evaluating GZ17-6.02 in Patients With Advanced Solid Tumors or in Combination With Capecitabine in Metastatic Hormone Receptor Positive Breast Cancer | cSCC and BCC | DRUG: GZ17-6.02|DRUG: Capecitabine | DLTs |
NCT05592626 | I/II | A Study of a Selective T Cell Receptor (TCR) Targeting, Bifunctional Antibody-fusion Molecule STAR0602 in Participants With Advanced Solid Tumors | Metastatic Carcinomas | DRUG: STAR0602 | Dose Escalation, ORR, DOR |
NCT04913220 | I/II | A Study of SAR444245 Combined With Cemiplimab for the Treatment of Participants With Various Advanced Skin Cancers (Pegathor Skin 201) | cSCC | DRUG: THOR-707|DRUG: Cemiplimab | ORR, DLTs |
NCT05086692 | I/II | A Beta-only IL-2 ImmunoTherapY Study | BCC CsCC MCC | DRUG: MDNA11|DRUG: Pembrolizumab | DLTs |
NCT04812535 | II | Non-comparative Study of IFX-1 Alone or IFX-1 + Pembrolizumab in Patients With Locally Advanced or Metastatic cSCC. | cSCC | DRUG: IFX-1|DRUG: IFX-1 + pembrolizumab combination therapy | ORR, DLTs |
NCT06041802 | II | A Study of MK-3475A (Pembrolizumab Formulated With MK-5180) in Japanese Participants With Recurrent or Metastatic Cutaneous Squamous Cell Carcinoma (R/M cSCC) or Locally Advanced (LA) Unresectable cSCC (MK-3475A-E39) | cSCC | BIOLOGICAL: MK-3475A | ORR, DOR |
NCT02955290 | I/II | CIMAvax Vaccine, Nivolumab, and Pembrolizumab in Treating Patients With Advanced Non-small Cell Lung Cancer or Squamous Head and Neck Cancer | cSCC | OTHER: Laboratory Biomarker Analysis|BIOLOGICAL: Nivolumab|BIOLOGICAL: Pembrolizumab|BIOLOGICAL: Recombinant Human EGF-rP64K/Montanide ISA 51 Vaccine | ORR, DOR, DCR, OS |
NCT04799054 | I/II | A Study of TransCon TLR7/8 Agonist With or Without Pembrolizumab in Patients With Advanced or Metastatic Solid Tumors | cSCC | DRUG: TransCon TLR7/8 Agonist|DRUG: Pembrolizumab | Safety, ORR |
NCT03944941 | II | Avelumab With or Without Cetuximab in Treating Patients With Advanced Skin Squamous Cell Cancer | cSCC | DRUG: Avelumab|DRUG: Cetuximab | PFS, ORR, OS |
NCT05620134 | I/II | Study of JK08 in Patients With Unresectable Locally Advanced or Metastatic Cancer | cSCC | DRUG: JK08|DRUG: Pembrolizumab | DLTs, Safety |
NCT05238363 | II | HLX07 in Locally Advanced or Metastatic Cutaneous Squamous Cell Carcinoma (CSCC) | cSCC | DRUG: HLX07 | PFS, ORR, OS, DOR |
NCT06270706 | I | PLN-101095 in Adults With Advanced or Metastatic Solid Tumors | Metastatic Solid Tumors | DRUG: PLN-101095|DRUG: Pembrolizumab | DLTs |
NCT02268747 | II | Dacomitinib Treatment of Skin Squamous Cell Cancer | cSCC | DRUG: Dacomitinib | DCR, OS, PFS |
NCT02721732 | II | Pembrolizumab in Treating Patients With Rare Tumors That Cannot Be Removed by Surgery or Are Metastatic | cSCC | OTHER: Laboratory Biomarker Analysis|BIOLOGICAL: Pembrolizumab|OTHER: Questionnaire Administration | ORR, OS, DCR, DOR |
NCT02964559 | II | Pembrolizumab in Patients With Locally Advanced or Metastatic Skin Cancer | cSCC | BIOLOGICAL: Pembrolizumab | PFS, OS |
NCT05970497 | I | A Study Assessing KB707 for the Treatment of Locally Advanced or Metastatic Solid Tumors | cSCC BCC | BIOLOGICAL: KB707 | DLTs, Safety, ORR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attal, Z.G.; Shalata, W.; Soklakova, A.; Tourkey, L.; Shalata, S.; Abu Saleh, O.; Abu Salamah, F.; Alatawneh, I.; Yakobson, A. Advanced and Metastatic Non-Melanoma Skin Cancer: Epidemiology, Risk Factors, Clinical Features, and Treatment Options. Biomedicines 2024, 12, 1448. https://doi.org/10.3390/biomedicines12071448
Attal ZG, Shalata W, Soklakova A, Tourkey L, Shalata S, Abu Saleh O, Abu Salamah F, Alatawneh I, Yakobson A. Advanced and Metastatic Non-Melanoma Skin Cancer: Epidemiology, Risk Factors, Clinical Features, and Treatment Options. Biomedicines. 2024; 12(7):1448. https://doi.org/10.3390/biomedicines12071448
Chicago/Turabian StyleAttal, Zoe Gabrielle, Walid Shalata, Arina Soklakova, Lena Tourkey, Sondos Shalata, Omar Abu Saleh, Fahed Abu Salamah, Ibrahim Alatawneh, and Alexander Yakobson. 2024. "Advanced and Metastatic Non-Melanoma Skin Cancer: Epidemiology, Risk Factors, Clinical Features, and Treatment Options" Biomedicines 12, no. 7: 1448. https://doi.org/10.3390/biomedicines12071448
APA StyleAttal, Z. G., Shalata, W., Soklakova, A., Tourkey, L., Shalata, S., Abu Saleh, O., Abu Salamah, F., Alatawneh, I., & Yakobson, A. (2024). Advanced and Metastatic Non-Melanoma Skin Cancer: Epidemiology, Risk Factors, Clinical Features, and Treatment Options. Biomedicines, 12(7), 1448. https://doi.org/10.3390/biomedicines12071448