Anti-Inflammatory and Cancer-Preventive Potential of Chamomile (Matricaria chamomilla L.): A Comprehensive In Silico and In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phytochemical Analysis, Virtual Drug Screening, and Molecular Docking
2.2. Microscale Thermophoresis
2.3. Cell Culture
2.4. NF-κB Reporter Assay
2.5. Mitochondrial Membrane Potential Assay
2.6. ROS Detection
2.7. Growth Inhibition Assays
2.8. Immunofluorescence Microscopy of α-Tubulin
2.9. Molecular Interaction with α- and β-Tubulins
2.10. Cell Cycle Analysis
2.11. Cell Death Detection
2.12. Western Blotting
2.13. Quantitative Real-Time RT-PCR
2.14. Statistical Analysis
3. Results
3.1. Molecular Docking In Silico
3.2. Microscale Thermophoresis
3.3. NF-κB Reporter Assay
3.4. Assessment of Oxidative Stress
3.5. Measurement of the Mitochondrial Membrane Potential
3.6. Cytotoxicity and Oncobiogram Analyses
3.7. Inhibition of α-Tubulin by Lupeol and Quercetin as Detected through Confocal Immunofluorescence Microscopy
3.8. Binding of Lupeol and Quercetin to α-Tubulin as Detected through Molecular Docking
3.9. Cell Cycle Analysis
3.10. Drug Resistance Profiling of Lupeol and Quercetin
3.11. Cytotoxicity Assays for Lupeol and Quercetin
3.12. Cell Death Detection
3.13. Western Blotting
3.14. Quantitative Real-Time RT-PCR
3.15. Proteome Analysis
3.16. Kaplan–Meier Survival Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piotrowski, I.; Kulcenty, K.; Suchorska, W. Interplay between Inflammation and Cancer. Rep. Pract. Oncol. Radiother. 2020, 25, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Karin, M.; Sun, B. Targeting Cancer-Promoting Inflammation-Have Anti-Inflammatory Therapies Come of Age? Nat. Rev. Clin. Oncol. 2021, 18, 261–279. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Newman, D.J. Plants as a Source of Anti-Cancer Agents. J. Ethnopharmacol. 2005, 100, 72–79. [Google Scholar] [CrossRef]
- Graham, J.G.; Quinn, M.L.; Fabricant, D.S.; Farnsworth, N.R. Plants Used against Cancer—An Extension of the Work of Jonathan Hartwell. J. Ethnopharmacol. 2000, 73, 347–377. [Google Scholar] [CrossRef]
- Dong, S.; Guo, X.; Han, F.; He, Z.; Wang, Y. Emerging Role of Natural Products in Cancer Immunotherapy. Acta Pharm. Sin. B 2021, 12, 1163–1185. [Google Scholar] [CrossRef] [PubMed]
- Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; et al. Targeting Cancer Signaling Pathways by Natural Products: Exploring Promising Anti-Cancer Agents. Biomed. Pharmacother. 2022, 150, 113054. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Erdogan Orhan, I.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Foa, R.; Norton, L.; Seidman, A.D. Taxol (Paclitaxel): A Novel Anti-Microtubule Agent with Remarkable Anti-Neoplastic Activity. Int. J. Clin. Lab. Res. 1994, 24, 6–14. [Google Scholar] [CrossRef]
- Efferth, T.; Oesch, F. The Immunosuppressive Activity of Artemisinin-Type Drugs towards Inflammatory and Autoimmune Diseases. Med. Res. Rev. 2021, 41, 3023–3061. [Google Scholar] [CrossRef]
- Khan, N.; Afsahul Kalam, M.; Tauseef Alam, M.; Anam Ul Haq, S.; Showket, W.; Dar, Z.A.; Rafiq, N.; Mushtaq, W.; Amin Rafeeqi, T.; Yunis Dar, M.; et al. SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP). Int. Publ. J. Cancer 2023, 14, 490–504. [Google Scholar] [CrossRef]
- Drif, A.I.; Avula, B.; Khan, I.A.; Efferth, T. COX2-Inhibitory and Cytotoxic Activities of Phytoconstituents of Matricaria chamomilla L. Appl. Sci. 2023, 13, 8935. [Google Scholar] [CrossRef]
- Al-Dabbagh, B.; Elhaty, I.A.; Elhaw, M.; Murali, C.; Al Mansoori, A.; Awad, B.; Amin, A. Antioxidant and Anticancer Activities of Chamomile (Matricaria recutita L.). BMC Res. Notes 2019, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Narumiya, S. Prostaglandins and Chronic Inflammation. Trends Pharmacol. Sci. 2012, 33, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Oeckinghaus, A.; Ghosh, S. The NF-KappaB Family of Transcription Factors and Its Regulation. Cold Spring Harb. Perspect. Biol. 2009, 1, a000034. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, T. The Nuclear Factor NF-KappaB Pathway in Inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, G.; Wang, V.Y.F.; Huang, D.B.; Fusco, A. NF-ΚB Regulation: Lessons from Structures. Immunol. Rev. 2012, 246, 36–58. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.C.; Huang, R.; Sakamuru, S.; Shukla, S.J.; Attene-Ramos, M.S.; Shinn, P.; Van Leer, D.; Leister, W.; Austin, C.P.; Xia, M. Identification of Known Drugs That Act as Inhibitors of NF-κB Signaling and Their Mechanism of Action. Biochem. Pharmacol. 2010, 79, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Kadioglu, O.; Khalid, H.; Sugimoto, Y.; Efferth, T. Activity of the Dietary Flavonoid, Apigenin, against Multidrug-Resistant Tumor Cells as Determined by Pharmacogenomics and Molecular Docking. J. Nutr. Biochem. 2015, 26, 44–56. [Google Scholar] [CrossRef]
- Adham, A.N.; Abdelfatah, S.; Naqishbandi, A.M.; Mahmoud, N.; Efferth, T. Cytotoxicity of Apigenin toward Multiple Myeloma Cell Lines and Suppression of INOS and COX-2 Expression in STAT1-Transfected HEK293 Cells. Phytomedicine 2021, 80, 153371. [Google Scholar] [CrossRef]
- Jacobs, M.D.; Harrison, S.C. Structure of an IκBα/NF-ΚB Complex. Cell 1998, 95, 749–758. [Google Scholar] [CrossRef] [PubMed]
- RCSB PDB—1NFI: I-KAPPA-B-ALPHA/NF-KAPPA-B COMPLEX. Available online: https://www.rcsb.org/structure/1NFI (accessed on 1 October 2023).
- UCSF Chimera Home Page. Available online: https://www.cgl.ucsf.edu/chimera/ (accessed on 30 March 2023).
- Supianto, A.A.; Nurdiansyah, R.; Weng, C.W.; Zilvan, V.; Yuwana, R.S.; Arisal, A.; Pardede, H.F.; Lee, M.M.; Huang, C.H.; Ng, K.L. Cluster-Based Text Mining for Extracting Drug Candidates for the Prevention of COVID-19 from the Biomedical Literature. J. Taibah Univ. Med. Sci. 2023, 18, 787–801. [Google Scholar] [CrossRef] [PubMed]
- PyRx (Version 0.8). Available online: https://pyrx.sourceforge.io/ (accessed on 31 March 2023).
- Search|Scripps Research. Available online: https://www.scripps.edu/search/?s=autodocktools (accessed on 31 March 2023).
- Morris, G.M.; Goodsell, D.S.; Pique, M.E.; Huey, R.; Forli, S.; Hart, W.E.; Halliday, S.; Belew, R.; Olson, A.J. User Guide AutoDock Version 4.2 Updated for Version 4.2.6 Automated Docking of Flexible Ligands to Flexible Receptors. 1991. Available online: https://autodock.scripps.edu/wp-content/uploads/sites/56/2021/10/AutoDock4.2.6_UserGuide.pdf (accessed on 31 March 2023).
- AutoDock. Available online: https://autodock.scripps.edu/ (accessed on 31 March 2023).
- Chen, F.E.; Ghosh, G. Regulation of DNA Binding by Rel/NF-ΚB Transcription Factors: Structural Views. Oncogene 1999, 18, 6845–6852. [Google Scholar] [CrossRef] [PubMed]
- Free Download: BIOVIA Discovery Studio Visualizer—Dassault Systèmes. Available online: https://discover.3ds.com/discovery-studio-visualizer-download (accessed on 30 March 2023).
- PRODUCT INFORMATION Contents and Storage. Available online: https://www.invivogen.com/hek-blue-detection (accessed on 1 October 2023).
- InvivoGen QUANTI-BlueTM Solution|Data Sheet|InvivoGen. Available online: https://www.invivogen.com/reporter-cells (accessed on 1 October 2023).
- JC-1 Mitochondrial Membrane Potential Assay Kit|Cayman Chemical. Available online: https://www.caymanchem.com/product/10009172/jc-1-mitochondrial-membrane-potential-assay-kit (accessed on 1 October 2023).
- TABLE OF CONTENTS GENERAL INFORMATION 3 Materials Supplied 3 Safety Data 4 Precautions 4 If You Have Problems 4 Storage and Stability. Available online: https://cdn.caymanchem.com/cdn/insert/10009172.pdf (accessed on 1 October 2023).
- Sivandzade, F.; Bhalerao, A.; Cucullo, L. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dyeas a Sensitive Fluorescent Probe. Bio-Protocol 2019, 9, e3128. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-F.; Efferth, T. Miltirone Induces G2/M Cell Cycle Arrest and Apoptosis in CCRF-CEM Acute Lymphoblastic Leukemia Cells. J. Nat. Prod. 2015, 78, 1339–1347. [Google Scholar] [CrossRef]
- Zhou, M.; Boulos, J.C.; Klauck, S.M.; Efferth, T.; Zhou, M.; Boulos, J.C.; Efferth, T.; Klauck, S.M. The Cardiac Glycoside ZINC253504760 Induces Parthanatos-Type Cell Death and G2/M Arrest via Downregulation of MEK1/2 Phosphorylation in Leukemia Cells. Cell Biol. Toxicol. 2023, 39, 2971–2997. [Google Scholar] [CrossRef]
- Monga, M.; Sausville, E.A. Developmental Therapeutics Program at the NCI: Molecular Target and Drug Discovery Process. Leukemia 2002, 16, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, R.H. The NCI60 Human Tumour Cell Line Anticancer Drug Screen. Nat. Rev. Cancer 2006, 6, 813–823. [Google Scholar] [CrossRef]
- Developmental Therapeutics Program (DTP). Available online: https://dtp.cancer.gov/ (accessed on 20 November 2023).
- Zhou, M.; Boulos, J.C.; Omer, E.A.; Klauck, S.M.; Efferth, T. Modes of Action of a Novel C-MYC Inhibiting 1,2,4-Oxadiazole Derivative in Leukemia and Breast Cancer Cells. Molecules 2023, 28, 5658. [Google Scholar] [CrossRef]
- Boulos, J.C.; Chatterjee, M.; Shan, L.; Efferth, T. In Silico, In Vitro, and In Vivo Investigations on Adapalene as Repurposed Third Generation Retinoid against Multiple Myeloma and Leukemia. Cancers 2023, 15, 4136. [Google Scholar] [CrossRef]
- Dennis, R.A.; Trappe, T.A.; Simpson, P.; Carroll, C.; Huang, B.E.; Nagarajan, R.; Bearden, E.; Gurley, C.; Duff, G.W.; Evans, W.J.; et al. Interleukin-1 Polymorphisms Are Associated with the Inflammatory Response in Human Muscle to Acute Resistance Exercise. J. Physiol. 2004, 560, 617–626. [Google Scholar] [CrossRef]
- Mahmoud, N.; Saeed, M.E.M.; Sugimoto, Y.; Klauck, S.M.; Greten, H.J.; Efferth, T.; Mahmoud, N.; Saeed, M.E.M.; Sugimoto, Y.; Klauck, S.M.; et al. Cytotoxicity of Nimbolide towards Multidrug-Resistant Tumor Cells and Hypersensitivity via Cellular Metabolic Modulation. Oncotarget 2018, 9, 35762–35779. [Google Scholar] [CrossRef]
- Schefe, J.H.; Lehmann, K.E.; Buschmann, I.R.; Unger, T.; Funke-Kaiser, H. Quantitative Real-Time RT-PCR Data Analysis: Current Concepts and the Novel “Gene Expression’s C T Difference” Formula. J. Mol. Med. 2006, 84, 901–910. [Google Scholar] [CrossRef]
- Lánczky, A.; Győrffy, B. Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation. J. Med. Internet Res. 2021, 23, e27633. [Google Scholar] [CrossRef]
- Győrffy, B. Discovery and Ranking of the Most Robust Prognostic Biomarkers in Serous Ovarian Cancer. Geroscience 2023, 45, 1889–1898. [Google Scholar] [CrossRef]
- Menyhart, O.; Weltz, B.; Gyorffy, B. Multipletesting.Com: A Tool for Life Science Researchers for Multiple Hypothesis Testing Correction. PLoS ONE 2021, 16, e0245824. [Google Scholar] [CrossRef]
- Kaplan-Meier Plotter. Available online: https://kmplot.com/analysis/ (accessed on 20 November 2023).
- Seo, E.J.; Dawood, M.; Hult, A.K.; Olsson, M.L.; Efferth, T. Network Pharmacology of Triptolide in Cancer Cells: Implications for Transcription Factor Binding. Investig. New Drugs 2021, 39, 1523–1537. [Google Scholar] [CrossRef]
- Ko, E.-Y.; Cho, S.-H.; Kwon, S.-H.; Eom, C.-Y.; Seon Jeong, M.; Lee, W.; Kim, S.-Y.; Heo, S.-J.; Ahn, G.; Pa Lee, K.; et al. The Roles of NF-KB and ROS in Regulation of pro-Inflammatory Mediators of Inflammation Induction in LPS-Stimulated Zebrafish Embryos. Fish Shellfish Immunol. 2017, 68, 525–529. [Google Scholar] [CrossRef]
- Mitochondrial Dysfunction and Inflammatory Responses|Encyclopedia MDPI. Available online: https://encyclopedia.pub/entry/8923 (accessed on 13 October 2023).
- Albensi, B.C. What Is Nuclear Factor Kappa B (NF-ΚB) Doing in and to the Mitochondrion? Front. Cell Dev. Biol. 2019, 7, 470308. [Google Scholar] [CrossRef]
- Ohshima, H.; Tatemichi, M.; Sawa, T. Chemical Basis of Inflammation-Induced Carcinogenesis. Arch. Biochem. Biophys. 2003, 417, 3–11. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.; Zu, Y.; Fu, Y.; Liang, L.; Luo, M.; Wang, W.; Efferth, T. Antioxidant Properties, Superoxide Dismutase and Glutathione Reductase Activities in HepG2 Cells with a Fungal Endophyte Producing Apigenin from Pigeon Pea [Cajanus cajan (L.) Millsp.]. Food Res. Int. 2012, 49, 147–152. [Google Scholar] [CrossRef]
- Kuete, V.; Efferth, T. Molecular Determinants of Cancer Cell Sensitivity and Resistance towards the Sesquiterpene Farnesol. Pharmazie 2013, 68, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, T.; Greten, H.J.; Efferth, T. Molecular Determinants of the Response of Tumor Cells to Boswellic Acids. Pharmaceuticals 2011, 4, 1171–1182. [Google Scholar] [CrossRef]
- Efferth, T.; Koch, E. Complex Interactions between Phytochemicals. The Multi-Target Therapeutic Concept of Phytotherapy. Curr. Drug Targets 2010, 12, 122–132. [Google Scholar] [CrossRef]
- Muhammad, N.; Usmani, D.; Tarique, M.; Naz, H.; Ashraf, M.; Raliya, R.; Tabrez, S.; Zughaibi, T.A.; Alsaieedi, A.; Hakeem, I.J.; et al. The Role of Natural Products and Their Multitargeted Approach to Treat Solid Cancer. Cells 2022, 11, 2209. [Google Scholar] [CrossRef]
- Dimitrakopoulos, F.I.D.; Kottorou, A.E.; Kalofonou, M.; Kalofonos, H.P. The Fire within: NF-KB Involvement in Non-Small Cell Lung Cancer. Cancer Res. 2020, 80, 4025–4036. [Google Scholar] [CrossRef]
- Gardiner, P. Chamomile (Matricaria recutita, Anthemis nobilis). In Longwood Herbal Task Force and the Center for Holistic Pediatric Education and Research; 1999; pp. 1–21. Available online: https://tratamientocelular.com/papers/cmran.pdf (accessed on 11 October 2022).
- Dai, Y.L.; Li, Y.; Wang, Q.; Niu, F.J.; Li, K.W.; Wang, Y.Y.; Wang, J.; Zhou, C.Z.; Gao, L.N. Chamomile: A Review of Its Traditional Uses, Chemical Constituents, Pharmacological Activities and Quality Control Studies. Molecules 2023, 28, 133. [Google Scholar] [CrossRef]
- Petronilho, S.; Maraschin, M.; Coimbra, M.A.; Rocha, S.M. In Vitro and in Vivo Studies of Natural Products: A Challenge for Their Valuation. The Case Study of Chamomile (Matricaria recutita L.). Ind. Crop. Prod. 2012, 40, 1–12. [Google Scholar] [CrossRef]
- De Cicco, P.; Ercolano, G.; Sirignano, C.; Rubino, V.; Rigano, D.; Ianaro, A.; Formisano, C. Chamomile Essential Oils Exert Anti-Inflammatory Effects Involving Human and Murine Macrophages: Evidence to Support a Therapeutic Action. J. Ethnopharmacol. 2023, 311, 116391. [Google Scholar] [CrossRef]
- Vissiennon, C.; Hammoud, D.; Rodewald, S.; Fester, K.; Goos, K.H.; Nieber, K.; Arnhold, J. Chamomile Flower, Myrrh, and Coffee Charcoal, Components of a Traditional Herbal Medicinal Product, Diminish Proinflammatory Activation in Human Macrophages. Planta Med. 2017, 83, 846–854. [Google Scholar] [CrossRef]
- Zadam, M.H.; Ahmida, M.; Djaber, N.; Ounaceur, L.S.; Sekiou, O.; Taibi, F.; Bencheikh, R.; Chouala, K.; Boudjema, K.; Tichati, L.; et al. In-Vivo Anti-Inflammatory Effects of Roman Chamomile (Chamaemelum nobile) Aqueous Extracts Collected from the National Park of El-Kala (North-East, Algeria). Cell. Mol. Biol. 2023, 69, 245–254. [Google Scholar] [CrossRef]
- Martins, M.D.; Marques, M.M.; Bussadori, S.K.; Martins, M.A.T.; Pavesi, V.C.S.; Mesquita-Ferrari, R.A.; Fernandes, K.P.S. Comparative Analysis between Chamomilla Recutita and Corticosteroids on Wound Healing. An in Vitro and in Vivo Study. Phytother. Res. 2009, 23, 274–278. [Google Scholar] [CrossRef]
- Elhadad, M.A.; El-Negoumy, E.; Taalab, M.R.; Ibrahim, R.S.; Elsaka, R.O. The Effect of Topical Chamomile in the Prevention of Chemotherapy-Induced Oral Mucositis: A Randomized Clinical Trial. Oral Dis. 2022, 28, 164–172. [Google Scholar] [CrossRef]
- Shoara, R.; Hashempur, M.H.; Ashraf, A.; Salehi, A.; Dehshahri, S.; Habibagahi, Z. Efficacy and Safety of Topical Matricaria chamomilla L. (Chamomile) Oil for Knee Osteoarthritis: A Randomized Controlled Clinical Trial. Complement. Ther. Clin. Pract. 2015, 21, 181–187. [Google Scholar] [CrossRef]
- Srivastava, J.K.; Shankar, E.; Gupta, S. Chamomile: A Herbal Medicine of the Past with a Bright Future (Review). Mol. Med. Rep. 2010, 3, 895–901. [Google Scholar]
- Maleki, M.; Mardani, A.; Manouchehri, M.; Ashghali Farahani, M.; Vaismoradi, M.; Glarcher, M. Effect of Chamomile on the Complications of Cancer: A Systematic Review. Integr. Cancer Ther. 2023, 22, 15347354231164600. [Google Scholar] [CrossRef]
- Thalluri, G.; Srinu, P. Role of Chamomile in Cancer Treat-Ment. J. Pathol. Clin. Med. Res. 2018, 1, 1. [Google Scholar]
- Srivastava, J.K.; Gupta, S. Antiproliferative and Apoptotic Effects of Chamomile Extract in Various Human Cancer Cells. J. Agric. Food Chem. 2007, 55, 9470–9478. [Google Scholar] [CrossRef]
- Sak, K.; Nguyen, T.H.; Ho, D.; Do, T.T.; Raal, A.; Thao, T. Cytotoxic Effect of Chamomile (Matricaria recutita) and Marigold (Calendula officinalis) Extracts on Human Melanoma SK-MEL-2 and Epidermoid Carcinoma KB Cells. Cogent. Med. 2017, 4, 1333218. [Google Scholar] [CrossRef]
- Shukla, S.; Gupta, S. Apigenin: A Promising Molecule for Cancer Prevention. Pharm. Res. 2010, 27, 962–978. [Google Scholar] [CrossRef]
- Patel, D.; Shukla, S.; Gupta, S. Apigenin and Cancer Chemoprevention: Progress, Potential and Promise (Review). Int. J. Oncol. 2007, 30, 233–245. [Google Scholar] [CrossRef]
- Lefort, É.C.; Blay, J. Apigenin and Its Impact on Gastrointestinal Cancers. Mol. Nutr. Food Res. 2013, 57, 126–144. [Google Scholar] [CrossRef]
- Shwaikh, A.K.; Hassan, A.J.; Rashid, K.H. Synergistic Immunosuppressive Activity of Chamomile Flower (Matricaria chamomilla L.) Extracts and Methotrexate in Vivo. Ann. Rom. Soc. Cell Biol. 2021, 25, 15386–15394. [Google Scholar]
- El Joumaa, M.M.; Taleb, R.I.; Rizk, S.; Borjac, J.M. Protective Effect of Matricaria chamomilla Extract against 1,2-Dimethylhydrazine-Induced Colorectal Cancer in Mice. J. Complement. Integr. Med. 2020, 17, 3. [Google Scholar] [CrossRef]
- Tousson, E.; El-Atrsh, A.; Elnahas, E.E.; Massoud, A.; Al-Zubaidi, M.; Yan, B. Ameliorative Effects of Spirulina and Chamomile Aqueous Extract against Mice Bearing Ehrlich Solid Tumor Induced Apoptosis. Asian Oncol. Res. J. 2019, 2, 1–17. [Google Scholar]
- Chadwick, D.; Goode, J. Novartis Foundation. In Cancer and Inflammation; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 047085510X. [Google Scholar]
- Ohnishi, S.; Ma, N.; Thanan, R.; Pinlaor, S.; Hammam, O.; Murata, M.; Kawanishi, S. DNA Damage in Inflammation-Related Carcinogenesis and Cancer Stem Cells. Oxidative Med. Cell. Longev. 2013, 2013, 387014. [Google Scholar] [CrossRef]
- Ben-Neriah, Y.; Karin, M. Inflammation Meets Cancer, with NF-ΚB as the Matchmaker. Nat. Immunol. 2011, 12, 715–723. [Google Scholar] [CrossRef]
- Neurath, M.F.; Becker, C.; Barbulescu, K. Role of NF-ΚB in Immune and Inflammatory Responses in the Gut. Gut 1998, 43, 856–860. [Google Scholar] [CrossRef]
- Biswas, D.K.; Shi, Q.; Baily, S.; Strickland, I.; Ghosh, S.; Pardee, A.B.; Iglehart, J.D. NF-κB Activation in Human Breast Cancer Specimens and Its Role in Cell Proliferation and Apoptosis. Proc. Natl. Acad. Sci. USA 2004, 101, 10137–10142. [Google Scholar] [CrossRef]
- Piva, R.; Belardo, G.; Santoro, M.G. NF-κB: A Stress-Regulated Switch for Cell Survival. Antioxid. Redox Signal. 2006, 8, 478–486. [Google Scholar] [CrossRef]
- Olivier, S.; Robe, P.; Bours, V. Can NF-κB Be a Target for Novel and Efficient Anti-Cancer Agents? Biochem. Pharmacol. 2006, 72, 1054–1068. [Google Scholar] [CrossRef]
- Chuang, S.E.; Yeh, P.Y.; Lu, Y.S.; Lai, G.M.; Liao, C.M.; Gao, M.; Cheng, A.L. Basal Levels and Patterns of Anticancer Drug-Induced Activation of Nuclear Factor-ΚB (NF-ΚB), and Its Attenuation by Tamoxifen, Dexamethasone, and Curcumin in Carcinoma Cells. Biochem. Pharmacol. 2002, 63, 1709–1716. [Google Scholar] [CrossRef]
- Efferth, T.; Volm, M. Multiple Resistance to Carcinogens and Xenobiotics: P-Glycoproteins as Universal Detoxifiers. Arch. Toxicol. 2017, 91, 2515–2538. [Google Scholar] [CrossRef]
- Aleksakhina, S.N.; Kashyap, A.; Imyanitov, E.N. Mechanisms of Acquired Tumor Drug Resistance. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2019, 1872, 188310. [Google Scholar] [CrossRef]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer Drug Resistance: An Evolving Paradigm. Nat. Rev. Cancer 2013, 13, 714–726. [Google Scholar] [CrossRef]
- Xiu, Y.; Dong, Q.; Li, Q.; Boyce, B.; Xue, H.-H.; Zhao, C. Stabilization of NF-κB-inducing kinase suppresses MLL-AF9-induced acute myeloid leukemia. Cell Rep. 2018, 22, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.; Carvalho, G.; Fabre, C.; Grosjean, J.; Fenaux, P.; Kroemer, G. Targeting NF-ΚB in Hematologic Malignancies. Cell Death Differ. 2006, 13, 748–758. [Google Scholar] [CrossRef]
- Zhou, J.; Chooi, J.-Y.; Ching, Y.Q.; Quah, J.Y.; Toh, S.H.-M.; Ng, Y.; Tan, T.Z.; Chng, W.-J. NF-ΚB Promotes the Stem-like Properties of Leukemia Cells by Activation of LIN28B. World J. Stem Cells 2018, 10, 34–42. [Google Scholar] [CrossRef]
- Dong, Q.M.; Ling, C.; Chen, X.; Zhao, L.I. Inhibition of Tumor Necrosis Factor-α Enhances Apoptosis Induced by Nuclear Factor-ΚB Inhibition in Leukemia Cells. Oncol. Lett. 2015, 10, 3793–3798. Available online: https://www.spandidos-publications.com/10.3892/ol.2015.3786# (accessed on 17 March 2024). [CrossRef]
- Morgan, M.J.; Liu, Z.G. Crosstalk of Reactive Oxygen Species and NF-ΚB Signaling. Cell Res. 2010, 21, 103–115. [Google Scholar] [CrossRef]
- Sul, O.J.; Ra, S.W. Quercetin Prevents LPS-Induced Oxidative Stress and Inflammation by Modulating NOX2/ROS/NF-KB in Lung Epithelial Cells. Molecules 2021, 26, 6949. [Google Scholar] [CrossRef]
- Plaetzer, K.; Kiesslich, T.; Oberdanner, C.B.; Krammer, B. Apoptosis Following Photodynamic Tumor Therapy: Induction, Mechanisms and Detection. Curr. Pharm. Des. 2005, 11, 1151–1165. [Google Scholar] [CrossRef]
- Yu, W.; Tu, Y.; Long, Z.; Liu, J.; Kong, D.; Peng, J.; Wu, H.; Zheng, G.; Zhao, J.; Chen, Y.; et al. Reactive Oxygen Species Bridge the Gap between Chronic Inflammation and Tumor Development. Oxidative Med. Cell. Longev. 2022, 2022, 2606928. [Google Scholar] [CrossRef]
- Gupta, K.; Panda, D. Perturbation of Microtubule Polymerization by Quercetin through Tubulin Binding: A Novel Mechanism of Its Antiproliferative Activity. Biochemistry 2002, 41, 13029–13038. [Google Scholar] [CrossRef]
- Saleem, M.; Murtaza, I.; Witkowsky, O.; Kohl, A.M.; Maddodi, N. Lupeol Triterpene, a Novel Diet-Based Microtubule Targeting Agent: Disrupts Survivin/CFLIP Activation in Prostate Cancer Cells. Biochem. Biophys. Res. Commun. 2009, 388, 576–582. [Google Scholar] [CrossRef]
- Che, S.; Wu, S.; Yu, P. Lupeol Induces Autophagy and Apoptosis with Reduced Cancer Stem-like Properties in Retinoblastoma via Phosphoinositide 3-Kinase/Protein Kinase B/Mammalian Target of Rapamycin Inhibition. J. Pharm. Pharmacol. 2022, 74, 208–215. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, B.; Yin, S.; Xie, S.; Huang, K.; Wang, J.; Yang, W.; Liu, H.; Zhang, G.; Liu, X.; et al. Quercetin Induces Autophagy-Associated Death in HL-60 Cells through CaMKKβ/AMPK/MTOR Signal Pathway: Quercetin Induces Autophagic Cell Death in AML. Acta Biochim. Biophys. Sin. 2022, 54, 1244. [Google Scholar] [CrossRef]
- Banerjee, S.; Hwang, D.J.; Li, W.; Miller, D.D. Current Advances of Tubulin Inhibitors in Nanoparticle Drug Delivery and Vascular Disruption/Angiogenesis. Molecules 2016, 21, 1468. [Google Scholar] [CrossRef]
- Jackman, R.W.; Rhoads, M.G.; Cornwell, E.; Kandarian, S.C. Microtubule-Mediated NF-ΚB Activation in the TNF-α Signaling Pathway. Exp. Cell Res. 2009, 315, 3242–3249. [Google Scholar] [CrossRef]
- Rosette, C.; Karin, M. Cytoskeletal Control of Gene Expression: Depolymerization of Microtubules Activates NF-Kappa B. J. Cell Biol. 1995, 128, 1111–1119. [Google Scholar] [CrossRef]
- Nydam, T.; McIntyre, R.; Moore, E.; Escobar, G.; Hamiel, C.; Gamboni-Robertson, F.; McLaughlin, N.; Banerjee, A. Microtubule disruption inhibits TNFα-induced NF-κB nuclear translocation independent of IκB degradation. Shock 2006, 25, 18. [Google Scholar] [CrossRef]
- Kraus, R.F.; Gruber, M.A. Neutrophils—From Bone Marrow to First-Line Defense of the Innate Immune System. Front. Immunol. 2021, 12, 767175. [Google Scholar] [CrossRef] [PubMed]
- Van Bruggen, S.; Jarrot, P.A.; Thomas, E.; Sheehy, C.E.; Silva, C.M.S.; Hsu, A.Y.; Cunin, P.; Nigrovic, P.A.; Gomes, E.R.; Luo, H.R.; et al. NLRP3 Is Essential for Neutrophil Polarization and Chemotaxis in Response to Leukotriene B4 Gradient. Proc. Natl. Acad. Sci. USA 2023, 120, e2303814120. [Google Scholar] [CrossRef] [PubMed]
- Wang, V.; Pober, J.S.; Manes, T.D. Transendothelial Migration of Human B Cells: Chemokine versus Antigen. J. Immunol. 2023, 211, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Vissenaekens, H.; Criel, H.; Grootaert, C.; Raes, K.; Smagghe, G.; Van Camp, J. Flavonoids and Cellular Stress: A Complex Interplay Affecting Human Health. Crit. Rev. Food Sci. Nutr. 2022, 62, 8535–8566. [Google Scholar] [CrossRef] [PubMed]
- Kurzrock, R. Cytokine Deregulation in Cancer. Biomed. Pharmacother. 2001, 55, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, K.; Czarnecka, A.M.; Escudier, B.; Lian, F.; Szczylik, C. Interleukin-6 as an Emerging Regulator of Renal Cell Cancer. Urol. Oncol. 2015, 33, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Chih-Hsin Yang, J.; Dubinett, S.M. The Role of Interleukin 1β in the Pathogenesis of Lung Cancer. JTO Clin. Res. Rep. 2020, 1, 100001. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, G.G.; Keen, C.L.; Oteiza, P.I. Microtubules Are Required for NF-KappaB Nuclear Translocation in Neuroblastoma IMR-32 Cells: Modulation by Zinc. J. Neurochem. 2006, 99, 402–415. [Google Scholar] [CrossRef]
- Shrum, C.K.; Defrancisco, D.; Meffert, M.K. Stimulated Nuclear Translocation of NF-KappaB and Shuttling Differentially Depend on Dynein and the Dynactin Complex. Proc. Natl. Acad. Sci. USA 2009, 106, 2647–2652. [Google Scholar] [CrossRef]
- Rai, A.; Kapoor, S.; Singh, S.; Chatterji, B.P.; Panda, D. Transcription Factor NF-ΚB Associates with Microtubules and Stimulates Apoptosis in Response to Suppression of Microtubule Dynamics in MCF-7 Cells. Biochem. Pharmacol. 2015, 93, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Efferth, T.; Konkimalla, V.B.; Wang, Y.F.; Sauerbrey, A.; Meinhardt, S.; Zintl, F.; Mattern, J.; Volm, M. Prediction of Broad Spectrum Resistance of Tumors towards Anticancer Drugs. Clin. Cancer Res. 2008, 14, 2405–2412. [Google Scholar] [CrossRef] [PubMed]
- Haghiac, M.; Walle, T. Quercetin Induces Necrosis and Apoptosis in SCC-9 Oral Cancer Cells. Nutr. Cancer 2005, 53, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, L.; Orazizadeh, M.; Niazvand, F.; Abbaspour, M.R.; Mansouri, E.; Khodadadi, A. Quercetin Induces Apoptosis and Necroptosis in MCF-7 Breast Cancer Cells. Bratisl. Lek. Listy 2017, 118, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Min, T.R.; Park, H.J.; Ha, K.T.; Chi, G.Y.; Choi, Y.H.; Park, S.H. Suppression of EGFR/STAT3 Activity by Lupeol Contributes to the Induction of the Apoptosis of Human Non-small Cell Lung Cancer Cells. Int. J. Oncol. 2019, 55, 320–330. [Google Scholar] [CrossRef]
- Khan, K.; Javed, Z.; Sadia, H.; Sharifi-Rad, J.; Cho, W.C.; Luparello, C. Quercetin and MicroRNA Interplay in Apoptosis Regulation in Ovarian Cancer. Curr. Pharm. Des. 2021, 27, 2328–2336. [Google Scholar] [CrossRef]
- Lomphithak, T.; Jaikla, P.; Sae-Fung, A.; Sonkaew, S.; Jitkaew, S. Natural Flavonoids Quercetin and Kaempferol Targeting G2/M Cell Cycle-Related Genes and Synergize with Smac Mimetic LCL-161 to Induce Necroptosis in Cholangiocarcinoma Cells. Nutrients 2023, 15, 3090. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.Y.; Ju, W.S.; Kim, K.; Kim, J.; Yu, J.O.; Ryu, J.-S.; Kim, J.-S.; Lee, H.-A.; Koo, D.-B.; Choo, Y.-K. Quercetin Induces Mitochondrial Apoptosis and Downregulates Ganglioside GD3 Expression in Melanoma Cells. Int. J. Mol. Sci. 2024, 25, 5146. [Google Scholar] [CrossRef]
- Müllauer, L.; Gruber, P.; Sebinger, D.; Buch, J.; Wohlfart, S.; Chott, A. Mutations in Apoptosis Genes: A Pathogenetic Factor for Human Disease. Mutat. Res. Rev. Mutat. Res. 2001, 488, 211–231. [Google Scholar] [CrossRef]
- Ghavami, S.; Hashemi, M.; Ande, S.R.; Yeganeh, B.; Xiao, W.; Eshraghi, M.; Bus, C.J.; Kadkhoda, K.; Wiechec, E.; Halayko, A.J.; et al. Apoptosis and Cancer: Mutations within Caspase Genes. J. Med. Genet. 2009, 46, 497–510. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Stojanov, P.; Mermel, C.H.; Robinson, J.T.; Garraway, L.A.; Golub, T.R.; Meyerson, M.; Gabriel, S.B.; Lander, E.S.; Getz, G. Discovery and Saturation Analysis of Cancer Genes across 21 Tumour Types. Nature 2014, 505, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Bodaar, K.; Yamagata, N.; Barthe, A.; Landrigan, J.; Chonghaile, T.N.; Burns, M.; Stevenson, K.E.; Devidas, M.; Loh, M.L.; Hunger, S.P.; et al. JAK3 Mutations and Mitochondrial Apoptosis Resistance in T-Cell Acute Lymphoblastic Leukemia. Leukemia 2022, 36, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Guidicelli, G.; Chaigne-Delalande, B.; Dilhuydy, M.S.; Pinson, B.; Mahfouf, W.; Pasquet, J.M.; Mahon, F.X.; Pourquier, P.; Moreau, J.F.; Legembre, P. The Necrotic Signal Induced by Mycophenolic Acid Overcomes Apoptosis-Resistance in Tumor Cells. PLoS ONE 2009, 4, e5493. [Google Scholar] [CrossRef] [PubMed]
- Wright, P. Targeting Vesicle Trafficking: An Important Approach to Cancer Chemotherapy. Recent Pat. Anti-Cancer Drug Discov. 2008, 3, 137–147. [Google Scholar] [CrossRef]
- Gargalionis, A.N.; Karamouzis, M.V.; Adamopoulos, C.; Papavassiliou, A.G. Protein Trafficking in Colorectal Carcinogenesis-Targeting and Bypassing Resistance to Currently Applied Treatments. Carcinogenesis 2015, 36, 607–615. [Google Scholar] [CrossRef]
- Bushweller, J.H. Targeting Transcription Factors in Cancer—From Undruggable to Reality. Nat. Rev. Cancer 2019, 19, 611–624. [Google Scholar] [CrossRef]
- Fabbri, L.; Chakraborty, A.; Robert, C.; Vagner, S. The Plasticity of MRNA Translation during Cancer Progression and Therapy Resistance. Nat. Rev. Cancer 2021, 21, 558–577. [Google Scholar] [CrossRef]
- da Costa, A.A.B.A.; Chowdhury, D.; Shapiro, G.I.; D’Andrea, A.D.; Konstantinopoulos, P.A. Targeting Replication Stress in Cancer Therapy. Nat. Rev. Drug Discov. 2023, 22, 38–58. [Google Scholar] [CrossRef]
- Zhang, F.L.; Li, D.Q. Targeting Chromatin-Remodeling Factors in Cancer Cells: Promising Molecules in Cancer Therapy. Int. J. Mol. Sci. 2022, 23, 12815. [Google Scholar] [CrossRef]
- Potapova, T.; Gorbsky, G.J. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. Biology 2017, 6, 12. [Google Scholar] [CrossRef]
- Sarkar, S.; Sahoo, P.K.; Mahata, S.; Pal, R.; Ghosh, D.; Mistry, T.; Ghosh, S.; Bera, T.; Nasare, V.D. Mitotic Checkpoint Defects: En Route to Cancer and Drug Resistance. Chromosome Res. 2021, 29, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Jinushi, M. Immune Regulation of Therapy-Resistant Niches: Emerging Targets for Improving Anticancer Drug Responses. Cancer Metastasis Rev. 2014, 33, 737–745. [Google Scholar] [CrossRef]
- Liu, Y.M.; Chen, H.L.; Lee, H.Y.; Liou, J.P. Tubulin Inhibitors: A Patent Review. Expert Opin. Ther. Pat. 2014, 24, 69–88. [Google Scholar] [CrossRef]
- Cress, A.E.; Dalton, W.S. Multiple Drug Resistance and Intermediate Filaments. Cancer Metastasis Rev. 1996, 15, 499–506. [Google Scholar] [CrossRef]
- Satelli, A.; Li, S. Vimentin in Cancer and Its Potential as a Molecular Target for Cancer Therapy. Cell Mol. Life Sci. 2011, 68, 3033–3046. [Google Scholar] [CrossRef]
- Shimizu, T.; Fujii, T.; Sakai, H. The Relationship Between Actin Cytoskeleton and Membrane Transporters in Cisplatin Resistance of Cancer Cells. Front. Cell Dev. Biol. 2020, 8, 597835. [Google Scholar] [CrossRef]
- Wallace, D.C. Mitochondria and Cancer. Nat. Rev. Cancer 2012, 12, 685–698. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, J.; Kumar, R.; Inigo, J.; Yadava, N.; Chandra, D. Mitochondrial Stress Response and Cancer. Trends Cancer 2020, 6, 688–701. [Google Scholar] [CrossRef]
- Jin, P.; Jiang, J.; Zhou, L.; Huang, Z.; Nice, E.C.; Huang, C.; Fu, L. Mitochondrial Adaptation in Cancer Drug Resistance: Prevalence, Mechanisms, and Management. J. Hematol. Oncol. 2022, 15, 97. [Google Scholar] [CrossRef]
- Volm, M.; Efferth, T. Prediction of Cancer Drug Resistance and Implications for Personalized Medicine. Front. Oncol. 2015, 5, 282. [Google Scholar] [CrossRef]
- Meyers, M.B.; Shen, W.P.V.; Spengler, B.A.; Ciccarone, V.; O’Brien, J.P.; Donner, D.B.; Furth, M.E.; Biedler, J.L. Increased Epidermal Growth Factor Receptor in Multidrug-Resistant Human Neuroblastoma Cells. J. Cell Biochem. 1988, 38, 87–97. [Google Scholar] [CrossRef]
- Halder, S.; Basu, S.; Lall, S.P.; Ganti, A.K.; Batra, S.K.; Seshacharyulu, P. Targeting the EGFR Signaling Pathway in Cancer Therapy: What’s New in 2023? Expert Opin. Ther. Targets 2023, 27, 305–324. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H.Y.; Lin, L.T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P.; et al. Broad Targeting of Resistance to Apoptosis in Cancer. Semin. Cancer Biol. 2015, 35, S78–S103. [Google Scholar] [CrossRef]
- Yan, G.; Elbadawi, M.; Efferth, T. Multiple Cell Death Modalities and Their Key Features. World Acad. Sci. J. 2020, 2, 39–48. Available online: https://www.spandidos-publications.com//10.3892/wasj.2020.40 (accessed on 7 June 2024). [CrossRef]
- Li, Y.J.; Lei, Y.H.; Yao, N.; Wang, C.R.; Hu, N.; Ye, W.C.; Zhang, D.M.; Chen, Z.S. Autophagy and Multidrug Resistance in Cancer. Chin. J. Cancer 2017, 36, 52. [Google Scholar] [CrossRef]
- Tong, X.; Tang, R.; Xiao, M.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Targeting Cell Death Pathways for Cancer Therapy: Recent Developments in Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis Research. J. Hematol. Oncol. 2022, 15, 174. [Google Scholar] [CrossRef] [PubMed]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the Role of ABC Transporters in Multidrug-Resistant Cancer. Nat. Rev. Cancer 2018, 18, 452–464. [Google Scholar] [CrossRef]
- Puris, E.; Fricker, G.; Gynther, M. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy. Pharmaceutics 2023, 15, 364. [Google Scholar] [CrossRef]
- Zhao, J.; Li, M.; Xu, J.; Cheng, W. The Modulation of Ion Channels in Cancer Chemo-Resistance. Front. Oncol. 2022, 12, 945896. [Google Scholar] [CrossRef]
- Efferth, T.; Saeed, M.E.M.; Kadioglu, O.; Seo, E.J.; Shirooie, S.; Mbaveng, A.T.; Nabavi, S.M.; Kuete, V. Collateral Sensitivity of Natural Products in Drug-Resistant Cancer Cells. Biotechnol. Adv. 2020, 38, 107342. [Google Scholar] [CrossRef]
- Dickreuter, E.; Cordes, N. The Cancer Cell Adhesion Resistome: Mechanisms, Targeting and Translational Approaches. Biol. Chem. 2017, 398, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, Z.; Gogler-Pigłowska, A.; Sojka, D.R.; Scieglinska, D. The Role of Heat Shock Proteins in Cisplatin Resistance. Anti-Cancer Agents Med. Chem. 2018, 18, 2093–2109. [Google Scholar] [CrossRef]
- Saini, J.; Sharma, P.K. Clinical, Prognostic and Therapeutic Significance of Heat Shock Proteins in Cancer. Curr. Drug Targets 2018, 19, 1478–1490. [Google Scholar] [CrossRef] [PubMed]
- Basset, C.A.; Conway de Macario, E.; Leone, L.G.; Macario, A.J.L.; Leone, A. The Chaperone System in Cancer Therapies: Hsp90. J. Mol. Histol. 2023, 54, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiang, W.; Du, Y.; Zhu, D.; Zhang, J.; Fang, C.; Yan, F.; Chen, Z.S. Targeting Feedback Activation of Signaling Transduction Pathways to Overcome Drug Resistance in Cancer. Drug Resist. Updates 2022, 65, 100884. [Google Scholar] [CrossRef] [PubMed]
- Bharathiraja, P.; Yadav, P.; Sajid, A.; Ambudkar, S.V.; Prasad, N.R. Natural Medicinal Compounds Target Signal Transduction Pathways to Overcome ABC Drug Efflux Transporter-Mediated Multidrug Resistance in Cancer. Drug Resist. Updates 2023, 71, 101004. [Google Scholar] [CrossRef] [PubMed]
- Bou Antoun, N.; Chioni, A.M. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int. J. Mol. Sci. 2023, 24, 12222. [Google Scholar] [CrossRef] [PubMed]
- Poornima, P.; Kumar, J.D.; Zhao, Q.; Blunder, M.; Efferth, T. Network Pharmacology of Cancer: From Understanding of Complex Interactomes to the Design of Multi-Target Specific Therapeutics from Nature. Pharmacol. Res. 2016, 111, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Lecca, P.; Re, A. Network-Oriented Approaches to Anticancer Drug Response. Methods Mol. Biol. 2017, 1513, 101–117. [Google Scholar] [CrossRef]
- Luo, S.; Huang, M.; Lu, X.; Zhang, M.; Xiong, H.; Tan, X.; Deng, X.; Zhang, W.; Ma, X.; Zeng, J.; et al. Optimized Therapeutic Potential of Yinchenhao Decoction for Cholestatic Hepatitis by Combined Network Meta-Analysis and Network Pharmacology. Phytomedicine 2024, 129, 155573. [Google Scholar] [CrossRef]
- Hientz, K.; Mohr, A.; Bhakta-Guha, D.; Efferth, T. The Role of P53 in Cancer Drug Resistance and Targeted Chemotherapy. Oncotarget 2017, 8, 8921–8946. [Google Scholar] [CrossRef] [PubMed]
- Motegi, A.; Masutani, M.; Yoshioka, K.I.; Bessho, T. Aberrations in DNA Repair Pathways in Cancer and Therapeutic Significances. Semin. Cancer Biol. 2019, 58, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Fruehauf, J.P.; Trapp, V. Reactive Oxygen Species: An Achilles’ Heel of Melanoma? Expert Rev. Anticancer Ther. 2008, 8, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
Compounds | LBE (kcal/mol) | pKi (μM) | Pharmacophores |
β-Amyrin | −8.70 ± <0.01 | 0.42 ± <0.01 | GLU222, ASP223, ILE224, GLU225, PHE239, PRO275 |
Lupeol | −7.59 ± 0.01 | 2.72 ± 0.05 | LYS28, GLU222, ASP223, ILE224, GLU225, PHE239, GLN241, PRO275 |
β-Sitosterol | −7.53 ± 0.10 | 3.06 ± 0.47 | LYS28, GLU222, ASP223, ILE224, GLU225, PHE239, GLN241, PRO275 |
Luteolin-7-O-glucoside | −6.95 ± 0.03 | 8.05 ± 0.53 | LYs28, ARG30, GLU222, ASP223, ILE224, GLU225, GLY237, SER238, PHE239, GLN241, PRO275, SER276 |
Daucosterol | −6.90 ± 0.11 | 8.79 ± 1.70 | HIS181, GLN220, LYS221, GLU222, ALA242, VAL244, ARG246, GLN247 |
β-Eudesmol | −6.70 ± 0.01 | 12.23 ± 0.15 | LYS221, GLU222, ILE224, GLU225, VAL226, ARG236, GLY237, SER238, PHE239, GLN241, PRO275 |
(−)-Epicatechin | −6.41 ± 0.04 | 20.01 ± 1.40 | GLU222, ASP223, ILE224, GLU225, PHE239, PRO275 |
Myricetin | −6.32 ± 0.17 | 23.87 ± 7.32 | THR71, ARG73, GLU101, ASN139, PRO140, GLN142, GLN162, VAL163, THR164, PRO177 |
(+)-Catechin | −6.28 ± 0.02 | 25.16 ± 0.95 | GLN29, VAL219, GLN220, LYS221, VAL224, ARG246, GLN247 |
Quercetin hydrate | −6.15 ± 0.01 | 31.17 ± 0.19 | VAL219, GLN220, LYS221, VAL244, ARG246, GLN247 |
Luteolin | −6.14 ± 0.02 | 32.14 ± 0.15 | HIS181, GLN220, LYS221, GLU222, HIS245, ARG246 |
Kaempferol | −6.10 ± 0.01 | 34.24 ± 0.70 | VAL219, GLN220, LYS221, VAL244, ARG246, GLN247 |
Bisabelol oxide B | −6.03 ± 0.01 | 38.18 ± 0.21 | GLN220, LYS221, VAL244, HIS245, ARG246, GLN247 |
Chlorogenic acid | −6.01 ± 0.12 | 39.73 ± 7.82 | GLN29, PHE184, LYS218, VAL219, GLN220, LYS221, VAL244, GLN247 |
Apigenin | −5.91 ± 0.00 | 46.78 ± 0.12 | GLN29, GLN220, LYS221, GLU222, VAL244, HIS245, ARG246, GLN247 |
A-Bisabolol | −5.85 ± 0.03 | 51.77 ± 2.68 | GLU222, ASP223, ILE224, GLU225, VAL226, ARG236, GLY237, SER238, PHE239, GLN241, PRO275 |
Guaiazulene | −5.75 ± <0.01 | 61.15 ± 0.10 | GLU222, ILE224, GLU225, VAL226, ARG236, GLY237, PHE239, SER240, GLN241, PRO275 |
Quercitrin | −5.66 ± 0.06 | 70.71 ± 7.19 | VAL219, GLN220, LYS221, GLU222, VAL244, ARG246, GLN247 |
Caffeic acid | −5.64 ± 0.05 | 73.56 ± 5.42 | VAL219, GLN220, LYS221, GLU222, VAL244, ARG246, GLN247 |
Bisabolol oxide A | −5.37 ± <0.01 | 116.55 ± 0.01 | VAL219, GLN220, LYS221, ALA242, VAL244, HIS245, ARG246, GLN247 |
Chamazulene | −5.32 ± <0.01 | 126.69 ± 0.26 | GLU222, ASP223, ILE224, ARG236, PHE239, SER240, GLN241, PRO275 |
Bisabolone oxide A | −5.12 ± 0.01 | 175.23 ± 0.16 | GLU222, ASP223, ILE224, GLU225, VAL226, ARG236, GLY237, SER238, PHE239, PRO275 |
Syringic acid | −4.96 ± 0.01 | 232.16 ± 2.85 | ILE23, ILE24, GLU25, GLN26, GLU49, ARG50, LYS221, GLU222 |
Farnesol | −4.68 ± 0.02 | 374.02 ± 10.22 | GLN29, GL220, LYS221, GLU222, ALA242, VAL244, ARG246, GLN247 |
Gentisic acid | −4.48 ± 0.01 | 518.79 ± 9.09 | ILE24, GLU25, GLN26, ARG50, LYS221, GLU222 |
(+)-Terpinen-4-ol | −4.14 ± 0.01 | 925.85 ± 10.48 | VAL219, GLN220, LYS221, GLU222, VAL244, GLN247 |
P-Cymene | −4.14 ± <0.01 | 929.21 ± 0.34 | LYS221, ILE224, GLU225, ARG236, GLY237, PHE239, GLN241 |
Citronellol | −4.10 ± <0.01 | 990.93 ± 1.02 | LYS221, GLU222, ILE224, GLU225, VAL226, ARG236, GLY237, SER238, PHE239, GLN241 |
Grid Box | Compounds | LBE (kcal/mol) | pKi (mM) | Pharmacophores |
---|---|---|---|---|
Colchicine grid box | Colchicine | −7.01 ± 0.14 | 0.007 ± <0.01 | α: LEU248, LYS254, LYS352 β: GLN11, ASN101, GLY142, GLY143, GLY144, THR145, GLU183, ASN206, TYR224 |
Lupeol | −4.48 ± 0.08 | 0.520 ± 0.07 | α: LEU248, LYS254, LYS352 β: GLN11, GLU71, ASP98, ALA99, ALA100, ASN101, GLY142, GLY143, GLY144, THR145, THR179, GLU183 | |
Quercetin | −4.72 ± 0.15 | 0.352 ± 0.08 | α: GLN247, LEU248, LYS254, LYS352 β: GLN11, ALA12, ASP69, GLU71, ALA99, ALA100, ASN101, GLY144, THR145, THR179, ALA180 | |
Paclitaxel grid box | Paclitaxel | −7.37 ± 0.25 | 0.004 ± <0.01 | α: LEU217, HIS229, LEU230, ALA233, SER236, PHE272, ALA273, PRO274, LEU275, THR276, SER277, ARG278, ARG320, PRO360, ARG369, LEU371 |
Lupeol | −7.12 ± 0.01 | 0.006 ± <0.01 | α: THR276, GLN281, ARG284, LEU286, LEU371, LYS372 | |
Quercetin | −5.99 ± 0.29 | 0.045 ± 0.02 | α: LEU217, PRO274, LEU275, THR276, SER277, ARG278, GLN281, LEU286, LEU371, LYS372 | |
Vincristine grid box | Vincristine | −8.42 ± 0.15 | 0.001 ± <0.01 | α: GLN11, CYS12, GLN15, ASN101, SER140, GLY142, GLY143, VAL172, PRO173, SER174, ASP179, THR180, ASN206, TYR224, ASN228 |
Lupeol | −8.62 ± 0.04 | 0.001 ± <0.01 | α: GLY10, GLY11, SER140, GLY142, GLY143, VAL171, VAL172, PRO173, SER174, VAL177, ASP179, GLU183, ASN206, TYR210, TYR224 | |
Quercetin | −6.77 ± 0.06 | 0.011 ± <0.01 | α: CYS12, GLN15, GLY142, VAL172, PRO173, SER174, VAL177, ASP179, GLU183, ASN206, GLU207 |
Lupeol | Quercetin | Control Drug | ||
---|---|---|---|---|
(log10IC50, M) | (log10IC50, M) | (log10IC50, M) | ||
ABCB1 Expression | Epirubicin | |||
7q21 (Chromosomal | r-value | 0.160 | 0.128 | * 0.447 |
Locus of ABCB1 Gene) | p-value | 0.121 | 0.203 | * 3.55 × 10−4 |
ABCB1 Expression | r-value | −0.132 | −0.631 | * 0.533 |
(Microarray) | p-value | 0.159 | 0.339 | * 6.82 × 10−6 |
ABCB1 Expression | r-value | 0.027 | −0.033 | * 0.410 |
(RT-PCR) | p-value | 0.425 | 0.413 | * 1.54 × 10−3 |
ABCB5 Expression | Maytansine | |||
ABCB5 Expression | r-value | −0.050 | 0.207 | * 0.454 |
(Microarray) | p-value | 0.353 | 0.086 | * 6.67 × 10−4 |
ABCB5 Expression | r-value | −0.027 | *0.306 | * 0.402 |
(RT-PCR) | p-value | 0.420 | *0.021 | * 0.0026 |
ABCC1 Expression | Vinblastine | |||
DNA Gene | r-value | 0.059 | −0.067 | * 0.429 |
Copy Number | p-value | 0.329 | 0.331 | * 0.001 |
ABCC1 Expression | r-value | 0.040 | −0.213 | * 0.398 |
(Microarray) | p-value | 0.383 | 0.082 | * 0.003 |
ABCC1 Expression | r-value | −0.023 | −0.118 | 0.299 |
(RT-PCR) | p-value | 0.436 | 0.207 | * 0.036 |
ABCG2 Expression | Pancratistatin | |||
ABCG2 Expression | r-value | 0.105 | −0.038 | * 0.329 |
(Microarray) | p-value | 0.219 | 0.402 | * 0.006 |
ABCG2 Expression | r-value | 0.010 | −0.040 | * 0.346 |
(Western Blotting) | p-value | 0.229 | 0.3982 | * 0.004 |
EGFR Expression | Erlotinib | |||
EGFR Gene | r-value | 0.049 | −0.037 | −0.245 |
Copy Number | p-value | 0.357 | 0.404 | * 0.029 |
EGFR Expression | r-value | −0.034 | −0.068 | * −0.458 |
(Microarray) | p-value | 0.399 | 0.328 | * 1.15 × 10−4 |
EGFR Expression | r-value | −0.101 | 0.049 | * −0.379 |
(PCR Slot Blot) | p-value | 0.227 | 0.358 | * 0.002 |
EGFR Expression | r-value | −0.190 | 0.015 | * −0.376 |
(Protein Array) | p-value | 0.077 | 0.461 | * 0.001 |
N-/K-/H-RAS Mutations | Melphalan | |||
TP53 Mutation | r-value | −0.034 | 0.134 | * 0.367 |
(cDNA Sequencing) | p-value | 0.399 | 0.190 | * 0002 |
TP53 Mutation | 5-Fluorouracil | |||
TP53 Mutation | r-value | −0.036 | 0.395 | * −0.502 |
(cDNA Sequencing) | p-value | −0.015 | 0.277 | * 3.50 × 10−5 |
TP53 Function | r-value | 0.050 | −0.079 | * −0.436 |
(Yeast Functional Assay) | p-value | 0.360 | 0.311 | * 5.49 × 10−4 |
WT1 Expression | Ifosfamide | |||
WT1 Expression | r-value | −0.046 | −0.103 | * −0.316 |
(Microarray) | p-value | 0.365 | 0.250 | * 0.007 |
GSTP1 Expression | Etoposide | |||
GSTP1 Expression | r-value | −0.012 | −0.012 | 0.399 |
(Microarray) | p-value | 0.468 | 0.468 | * 9.58 × 10−4 |
GST Expression | r-value | *0.302 | 0.028 | 0.509 |
(Northern Blot) | p-value | *0.010 | 0.427 | * 2.24 × 10−5 |
HSP90 Expression | Geldanamycin | |||
HSP90 Expression | r-value | −0.055 | −0.045 | * −0.392 |
(Microarray) | p-value | 0.342 | 0.384 | * 0.001 |
Proliferation | 5-Fluorouracil | |||
(Cell Doubling) | r-value | −0.185 | 0.076 | * 0.627 |
p-value | 0.084 | 0.313 | * 7.14 × 10−6 |
Functional Categories | Protein Symbols (Lupeol Analysis) | Protein Symbols (Quercetin Analysis) |
---|---|---|
General metabolism | ALDH4A1, ECH1, HSD17B12, TECR | ACO2, ACOT7, GAPDHS, GGH |
Protein and vesicle trafficking | AP1G1, LMAN2, PLIN3, RAB5B, SEC62, VAPB | COPG1, DYNC1LI1, STX7, VAPB |
DNA/RNA metabolism | EIF5, FHL1, NAP1L1, STAU1, SUV39H2 | DYNC1LI1, EIF3J, EXOSC1, PDCD5, PRPF38A, RALY, TRIP13, ZC3H11A |
Cell Adhesion | EPCAM, LGALS3, TLN1 | MCAM |
Chaperones and protein degradation | ERP44, PFDN1 | CCS, UBQLN2 |
Cytoskeleton | FLNC, MSN, STAU1, TPM4 | CAPG, DNM2, CAPN1 |
Immune function | ANXA1, FSTL1, LGALS3, LGALS3BP, MGST3, RAB5B, TLN1 | YARS |
Signal transduction | HOMER2, RABL3, YWHAZ | CAPN1, PPP5C, RQCD1 |
Cell proliferation and differentiation | DBN1, PDAP1 | PDCD5, PPP5C, RQCD1 |
Cell death | BCL2L13, LGALS3, MLKL | PDCD5, RAB32 |
Tumor suppressor | TAGLN | |
Ion channels and drug transporters | CLIC4, SLC25A1, SLC30A1 | |
Mitochondrial function | ACO2, ATP5F1, CHCHD3, CHCHD6, MFN1, MRPS30, MTX2, RAB32, SAMM50 | |
Melanosome biogenesis and function | MLANA, PMEL, RAB32 | |
Drug metabolism | POR | |
Others | CHCHD6, HEXA, VAMP3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drif, A.I.; Yücer, R.; Damiescu, R.; Ali, N.T.; Abu Hagar, T.H.; Avula, B.; Khan, I.A.; Efferth, T. Anti-Inflammatory and Cancer-Preventive Potential of Chamomile (Matricaria chamomilla L.): A Comprehensive In Silico and In Vitro Study. Biomedicines 2024, 12, 1484. https://doi.org/10.3390/biomedicines12071484
Drif AI, Yücer R, Damiescu R, Ali NT, Abu Hagar TH, Avula B, Khan IA, Efferth T. Anti-Inflammatory and Cancer-Preventive Potential of Chamomile (Matricaria chamomilla L.): A Comprehensive In Silico and In Vitro Study. Biomedicines. 2024; 12(7):1484. https://doi.org/10.3390/biomedicines12071484
Chicago/Turabian StyleDrif, Assia I., Rümeysa Yücer, Roxana Damiescu, Nadeen T. Ali, Tobias H. Abu Hagar, Bharati Avula, Ikhlas A. Khan, and Thomas Efferth. 2024. "Anti-Inflammatory and Cancer-Preventive Potential of Chamomile (Matricaria chamomilla L.): A Comprehensive In Silico and In Vitro Study" Biomedicines 12, no. 7: 1484. https://doi.org/10.3390/biomedicines12071484
APA StyleDrif, A. I., Yücer, R., Damiescu, R., Ali, N. T., Abu Hagar, T. H., Avula, B., Khan, I. A., & Efferth, T. (2024). Anti-Inflammatory and Cancer-Preventive Potential of Chamomile (Matricaria chamomilla L.): A Comprehensive In Silico and In Vitro Study. Biomedicines, 12(7), 1484. https://doi.org/10.3390/biomedicines12071484