Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare
Abstract
:1. Introduction
2. Multi-Omics Layering: Considering a Realistic Hierarchy of Testing and Sample Collection Frequency/Timing in Precision Medicine
3. Creating Omics-Informed Health Indices: Meaningful Offerings for Patients and Providers
4. Digital Twins for Precision Medicine: Pioneering Personalized Health Insights
5. Leveraging Blockchain Technology for Effective Multi-Omics Data Management
- Access Control: The entity sets up a private/consortium blockchain network and invites trusted participants, such as healthcare providers, medical professionals, and researchers, to join the network. Access to the blockchain is controlled through authentication and authorization mechanisms, ensuring that only authorized users can participate in the network.
- Data Privacy and Security: Test results and sensitive patient information are stored in encrypted form on the blockchain, ensuring that only authorized users can access and view the data. Additionally, the blockchain’s immutable nature ensures that data cannot be altered or tampered with once recorded, enhancing data integrity.
- Recording Test Results: Test results are recorded as transactions on the private blockchain. Each test result transaction contains relevant information, such as the patient’s identity (protected by cryptographic keys), the test type, the timestamp, and the results themselves.
- Data Sharing and Consent Management: Authorized participants can access and share test results with the patients or other healthcare providers involved in the patient’s care. Patients can provide consent for sharing their test results, and the blockchain’s transparency allows them to track who accessed their data and when.
- Auditing and Compliance: This enables the real-time auditing of test results and data access, providing an immutable record of all transactions on the network. This feature helps the laboratory testing company to maintain compliance with data protection regulations and healthcare industry standards.
- Interoperability: Private/consortium blockchains can be designed to be interoperable with existing healthcare systems and databases, facilitating seamless integration of laboratory test results into electronic health records or other medical records systems used by healthcare providers.
- Smart Contracts: This enables the utilization of smart contracts, which are self-executing contracts with predefined rules and conditions. Smart contracts can automate certain processes within the laboratory testing workflow, such as sending notifications to patients or healthcare providers when test results are ready, or triggering specific actions based on predefined criteria.
- Data Tokenization: The patient’s deidentified data is tokenized, which means it is converted into a unique digital token on the private blockchain. The token could contain information about the type of data being shared, the duration of access, and any restrictions or conditions set by the patient.
- Token Exchange: When an outside entity wants to access the patient’s data, they must request the corresponding tokens from the patient. This request could be made through a smart contract on the blockchain, which automates the exchange process.
- Patient Consent: The patient reviews the request and decides whether to grant or deny permission to the outside entity. If they agree, they transfer the required tokens to the requesting entity.
- Data Access: Once the outside entity possesses the necessary tokens, they can use them to access the patient’s deidentified data on the private blockchain. The data can be shared securely and transparently, with the patient’s permission recorded on the blockchain.
- Token Validation: The blockchain ensures that the tokens are genuine and valid for the specific data access requested. This validation mechanism prevents unauthorized access to the patient’s data.
- Data Usage Tracking: The blockchain can track how the tokens are used, providing an auditable record of data access and usage. This transparency enhances data governance and accountability.
6. Prospects and Directions for Multi-Omics in Precision Medicine
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-Omics Data Integration, Interpretation, and Its Application. Bioinform. Biol. Insights 2020, 14, 1177932219899051. [Google Scholar] [CrossRef]
- Multi-Omics for Health and Disease (Multi-Omics). Available online: https://www.genome.gov/research-funding/Funded-Programs-Projects/Multi-Omics-for-Health-and-Disease (accessed on 2 August 2023).
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-Omics Approaches to Disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Hood, L.; Flores, M. A Personal View on Systems Medicine and the Emergence of Proactive P4 Medicine: Predictive, Preventive, Personalized and Participatory. New Biotechnol. 2012, 29, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.M.S.-F.; Contrepois, K.; Moneghetti, K.J.; Zhou, W.; Mishra, T.; Mataraso, S.; Dagan-Rosenfeld, O.; Ganz, A.B.; Dunn, J.; Hornburg, D.; et al. A Longitudinal Big Data Approach for Precision Health. Nat. Med. 2019, 25, 792–804. [Google Scholar] [CrossRef]
- Collins, F.S.; Harold, V. A New Initiative on Precision Medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef]
- Zolg, J.W.; Langen, H. How Industry Is Approaching the Search for New Diagnostic Markers and Biomarkers*. Mol. Cell. Proteom. 2004, 3, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, J.; Wang, X.; Zhu, J.; Liu, Q.; Shi, Z.; Chambers, M.C.; Zimmerman, L.J.; Shaddox, K.F.; Kim, S.; et al. Proteogenomic Characterization of Human Colon and Rectal Cancer. Nature 2014, 513, 382–387. [Google Scholar] [CrossRef]
- Qattous, H.; Azzeh, M.; Ibrahim, R.; Al-Ghafer, I.A.; Sorkhy, M.A.; Alkhateeb, A. PaCMAP-Embedded Convolutional Neural Network for Multi-Omics Data Integration. Heliyon 2024, 10, e23195. [Google Scholar] [CrossRef]
- Camacho, D.M.; Collins, K.M.; Powers, R.K.; Costello, J.C.; Collins, J.J. Next-Generation Machine Learning for Biological Networks. Cell 2018, 173, 1581–1592. [Google Scholar] [CrossRef]
- Agbo, C.C.; Mahmoud, Q.H.; Eklund, J.M. Blockchain Technology in Healthcare: A Systematic Review. Healthcare 2019, 7, 56. [Google Scholar] [CrossRef]
- Chen, R.; Mias, G.I.; Li-Pook-Than, J.; Jiang, L.; Lam, H.Y.K.; Chen, R.; Miriami, E.; Karczewski, K.J.; Hariharan, M.; Dewey, F.E.; et al. Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes. Cell 2012, 148, 1293–1307. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Afshar, Y.; Ma, F.; Quach, A.; Jeong, A.; Sunshine, H.L.; Freitas, V.; Jami-Alahmadi, Y.; Helaers, R.; Li, X.; Pellegrini, M.; et al. Transcriptional Drifts Associated with Environmental Changes in Endothelial Cells. eLife 2023, 12, e81370. [Google Scholar] [CrossRef] [PubMed]
- Bloom, C.I.; Graham, C.M.; Berry, M.P.R.; Wilkinson, K.A.; Oni, T.; Rozakeas, F.; Xu, Z.; Rossello-Urgell, J.; Chaussabel, D.; Banchereau, J.; et al. Detectable Changes in The Blood Transcriptome Are Present after Two Weeks of Antituberculosis Therapy. PLoS ONE 2012, 7, e46191. [Google Scholar] [CrossRef] [PubMed]
- Mohr, A.E.; Reiss, R.A.; Beaudet, M.; Sena, J.; Naik, J.S.; Walker, B.R.; Sweazea, K.L. Short-Term High Fat Diet Alters Genes Associated with Metabolic and Vascular Dysfunction during Adolescence in Rats: A Pilot Study. PeerJ 2021, 9, e11714. [Google Scholar] [CrossRef] [PubMed]
- Kervezee, L.; Cuesta, M.; Cermakian, N.; Boivin, D.B. Simulated Night Shift Work Induces Circadian Misalignment of the Human Peripheral Blood Mononuclear Cell Transcriptome. Proc. Natl. Acad. Sci. USA 2018, 115, 5540–5545. [Google Scholar] [CrossRef] [PubMed]
- Baranzini, S.E.; Mousavi, P.; Rio, J.; Caillier, S.J.; Stillman, A.; Villoslada, P.; Wyatt, M.M.; Comabella, M.; Greller, L.D.; Somogyi, R.; et al. Transcription-Based Prediction of Response to IFNβ Using Supervised Computational Methods. PLoS Biol. 2005, 3, e2. [Google Scholar] [CrossRef]
- Goertsches, R.H.; Hecker, M.; Koczan, D.; Serrano-Fernandez, P.; Moeller, S.; Thiesen, H.-J.; Zettl, U.K. Long-Term Genome-Wide Blood RNA Expression Profiles Yield Novel Molecular Response Candidates for IFN--1b Treatment in Relapsing Remitting MS. Pharmacogenomics 2010, 11, 147–161. [Google Scholar] [CrossRef]
- Darmanis, S.; Sloan, S.A.; Zhang, Y.; Enge, M.; Caneda, C.; Shuer, L.M.; Gephart, M.G.H.; Barres, B.A.; Quake, S.R. A Survey of Human Brain Transcriptome Diversity at the Single Cell Level. Proc. Natl. Acad. Sci. USA 2015, 112, 7285–7290. [Google Scholar] [CrossRef]
- Casamassimi, A.; Federico, A.; Rienzo, M.; Esposito, S.; Ciccodicola, A. Transcriptome Profiling in Human Diseases: New Advances and Perspectives. Int. J. Mol. Sci. 2017, 18, 1652. [Google Scholar] [CrossRef]
- Bar-Joseph, Z.; Gitter, A.; Simon, I. Studying and Modelling Dynamic Biological Processes Using Time-Series Gene Expression Data. Nat. Rev. Genet. 2012, 13, 552–564. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, C.; Kia, D.A.; Vandrovcova, J.; Hardy, J.; Wood, N.W.; Lewis, P.A.; Ferrari, R. Genome, Transcriptome and Proteome: The Rise of Omics Data and Their Integration in Biomedical Sciences. Brief. Bioinform. 2016, 19, bbw114. [Google Scholar] [CrossRef] [PubMed]
- Martens, L. Bioinformatics for Comparative Proteomics. Methods Mol. Biol. 2010, 694, 213–227. [Google Scholar] [CrossRef]
- Bagwan, N.; Ali, H.H.E.; Lundby, A. Proteome-Wide Profiling and Mapping of Post Translational Modifications in Human Hearts. Sci. Rep. 2021, 11, 2184. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.; Jensen, O.N. Proteomic Analysis of Post-Translational Modifications. Nat. Biotechnol. 2003, 21, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Hanash, S. Disease Proteomics. Nature 2003, 422, 226–232. [Google Scholar] [CrossRef]
- Calligaris, D.; Villard, C.; Lafitte, D. Advances in Top-down Proteomics for Disease Biomarker Discovery. J. Proteom. 2011, 74, 920–934. [Google Scholar] [CrossRef]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass Spectrometry-based Metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef]
- Gowda, G.N.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-Based Methods for Early Disease Diagnostics. Expert Rev. Mol. Diagn. 2008, 8, 617–633. [Google Scholar] [CrossRef]
- Bujak, R.; Struck-Lewicka, W.; Markuszewski, M.J.; Kaliszan, R. Metabolomics for Laboratory Diagnostics. J. Pharm. Biomed. Anal. 2015, 113, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Shoaib, M.; Yin, T.; Nayyar, G.; Shinozaki, K.; Stevens, J.F.; Becker, L.B.; Kim, J. Tissue-Specific Metabolic Profiles After Prolonged Cardiac Arrest Reveal Brain Metabolome Dysfunction Predominantly After Resuscitation. J. Am. Hear. Assoc. 2019, 8, e012809. [Google Scholar] [CrossRef] [PubMed]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef]
- Khanna, S.; Tosh, P.K. A Clinician’s Primer on the Role of the Microbiome in Human Health and Disease. Mayo Clin. Proc. 2014, 89, 107–114. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature 2013, 505, 559–563. [Google Scholar] [CrossRef]
- Mohr, A.E.; Jasbi, P.; Wyst, K.B.V.; van Woerden, I.; Shi, X.; Gu, H.; Whisner, C.M.; Bruening, M. Association of Food Insecurity on Gut Microbiome and Metabolome Profiles in a Diverse College-Based Sample. Sci. Rep. 2022, 12, 14358. [Google Scholar] [CrossRef] [PubMed]
- Mohr, A.E.; Jasbi, P.; Bowes, D.A.; Dirks, B.; Whisner, C.M.; Arciero, K.M.; Poe, M.; Gu, H.; Gumpricht, E.; Sweazea, K.L.; et al. Exploratory Analysis of One versus Two-Day Intermittent Fasting Protocols on the Gut Microbiome and Plasma Metabolome in Adults with Overweight/Obesity. Front. Nutr. 2022, 9, 1036080. [Google Scholar] [CrossRef] [PubMed]
- Dorrestein, P.C.; Mazmanian, S.K.; Knight, R. Finding the Missing Links among Metabolites, Microbes, and the Host. Immunity 2014, 40, 824–832. [Google Scholar] [CrossRef]
- Walker, A.W.; Hoyles, L. Human Microbiome Myths and Misconceptions. Nat. Microbiol. 2023, 8, 1392–1396. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A Core Gut Microbiome in Obese and Lean Twins. Nature 2008, 457, 480–484. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Igartua, C.; Davenport, E.R.; Gilad, Y.; Nicolae, D.L.; Pinto, J.; Ober, C. Host Genetic Variation in Mucosal Immunity Pathways Influences the Upper Airway Microbiome. Microbiome 2017, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, T.L.; Künstner, A.; Kennedy, J.J.; Fang, Q.; Asarian, L.; Culp-Hill, R.; D’Alessandro, A.; Teuscher, C.; Busch, H.; Krementsov, D.N. Interactions between Host Genetics and Gut Microbiota Determine Susceptibility to CNS Autoimmunity. Proc. Natl. Acad. Sci. USA 2020, 117, 27516–27527. [Google Scholar] [CrossRef] [PubMed]
- Mohr, A.E.; Crawford, M.; Jasbi, P.; Fessler, S.; Sweazea, K.L. Lipopolysaccharide and the Gut Microbiota: Considering Structural Variation. Febs. Lett. 2022, 596, 849–875. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Zhang, H.; Li, Q.; Ma, G.; Chen, Z.; Ji, X.; Li, C.; Zhang, A. Integrated Microbiome, Metabolome, and Proteome Analysis Identifies a Novel Interplay among Commensal Bacteria, Metabolites and Candidate Targets in Non-small Cell Lung Cancer. Clin. Transl. Med. 2022, 12, e947. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Gui, S.; Zeng, B.; Pu, J.; Zheng, P.; Zeng, L.; Luo, Y.; Wu, Y.; Zhou, C.; et al. Proteomics Analysis of the Gut–Brain Axis in a Gut Microbiota-Dysbiosis Model of Depression. Transl. Psychiatry 2021, 11, 568. [Google Scholar] [CrossRef]
- Mottawea, W.; Chiang, C.-K.; Mühlbauer, M.; Starr, A.E.; Butcher, J.; Abujamel, T.; Deeke, S.A.; Brandel, A.; Zhou, H.; Shokralla, S.; et al. Altered Intestinal Microbiota–Host Mitochondria Crosstalk in New Onset Crohn’s Disease. Nat. Commun. 2016, 7, 13419. [Google Scholar] [CrossRef] [PubMed]
- Lichtman, J.S.; Ferreyra, J.A.; Ng, K.M.; Smits, S.A.; Sonnenburg, J.L.; Elias, J.E. Host-Microbiota Interactions in the Pathogenesis of Antibiotic-Associated Diseases. Cell Rep. 2016, 14, 1049–1061. [Google Scholar] [CrossRef]
- Ge, X.; Pan, J.; Liu, Y.; Wang, H.; Zhou, W.; Wang, X. Intestinal Crosstalk between Microbiota and Serotonin and Its Impact on Gut Motility. Curr. Pharm. Biotechnol. 2018, 19, 190–195. [Google Scholar] [CrossRef]
- Jones, B.V.; Begley, M.; Hill, C.; Gahan, C.G.M.; Marchesi, J.R. Functional and Comparative Metagenomic Analysis of Bile Salt Hydrolase Activity in the Human Gut Microbiome. Proc. Natl. Acad. Sci. USA 2008, 105, 13580–13585. [Google Scholar] [CrossRef]
- Joyce, S.A.; MacSharry, J.; Casey, P.G.; Kinsella, M.; Murphy, E.F.; Shanahan, F.; Hill, C.; Gahan, C.G.M. Regulation of Host Weight Gain and Lipid Metabolism by Bacterial Bile Acid Modification in the Gut. Proc. Natl. Acad. Sci. USA 2014, 111, 7421–7426. [Google Scholar] [CrossRef] [PubMed]
- Jasbi, P.; Mohr, A.E.; Shi, X.; Mahmood, T.; Zhu, Q.; Bruening, M.; Gu, H.; Whisner, C. Microbiome and Metabolome Profiles of High Screen Time in a Cohort of Healthy College Students. Sci. Rep. 2022, 12, 3452. [Google Scholar] [CrossRef] [PubMed]
- Shashikadze, B.; Valla, L.; Lombardo, S.D.; Prehn, C.; Haid, M.; Riols, F.; Stöckl, J.B.; Elkhateib, R.; Renner, S.; Rathkolb, B.; et al. Maternal Hyperglycemia Induces Alterations in Hepatic Amino Acid, Glucose and Lipid Metabolism of Neonatal Offspring: Multi-Omics Insights from a Diabetic Pig Model. Mol. Metab. 2023, 75, 101768. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, X.; Qu, X.; Zhu, P.; Wo, F.; Xu, X.; Jin, J.; He, Q.; Wu, J. Integration of Metabolomics and Peptidomics Reveals Distinct Molecular Landscape of Human Diabetic Kidney Disease. Theranostics 2023, 13, 3188–3203. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, T.; Stearns, J.C.; Shanmuganathan, M.; Azab, S.M.; Anand, S.S.; Thabane, L.; Beyene, J.; Williams, N.C.; Morrison, K.M.; Teo, K.K.; et al. Integrative Multiomics Analysis of Infant Gut Microbiome and Serum Metabolome Reveals Key Molecular Biomarkers of Early Onset Childhood Obesity. Heliyon 2023, 9, e16651. [Google Scholar] [CrossRef] [PubMed]
- Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within Humans. Science 2011, 332, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Quince, C.; Faith, J.J.; McHardy, A.C.; Yatsunenko, T.; Niazi, F.; Affourtit, J.; Egholm, M.; Henrissat, B.; Knight, R.; et al. Organismal, Genetic, and Transcriptional Variation in the Deeply Sequenced Gut Microbiomes of Identical Twins. Proc. Nat. Acad. Sci. USA 2010, 107, 7503–7508. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Krautkramer, K.A.; Fan, J.; Bäckhed, F. Gut Microbial Metabolites as Multi-Kingdom Intermediates. Nat. Rev. Microbiol. 2021, 19, 77–94. [Google Scholar] [CrossRef]
- Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef]
- Jin, R.; Willment, A.; Patel, S.S.; Sun, X.; Song, M.; Mannery, Y.O.; Kosters, A.; McClain, C.J.; Vos, M.B. Fructose Induced Endotoxemia in Pediatric Nonalcoholic Fatty Liver Disease. Int. J. Hepatol. 2014, 2014, 560620. [Google Scholar] [CrossRef]
- Zhang, S.; Qian, Y.; Li, Q.; Xu, X.; Li, X.; Wang, C.; Cai, H.; Zhu, J.; Yu, Y. Metabolic and Neural Mechanisms Underlying the Associations Between Gut Bacteroides and Cognition: A Large-Scale Functional Network Connectivity Study. Front. Neurosci. 2021, 15, 750704. [Google Scholar] [CrossRef]
- Cani, P.D. Severe Obesity and Gut Microbiota: Does Bariatric Surgery Really Reset the System? Gut 2019, 68, 5. [Google Scholar] [CrossRef]
- Duvallet, C.; Gibbons, S.M.; Gurry, T.; Irizarry, R.A.; Alm, E.J. Meta-Analysis of Gut Microbiome Studies Identifies Disease-Specific and Shared Responses. Nat. Commun. 2017, 8, 1784. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Wu, G.D.; Albenberg, L.; Tomov, V.T. Gut Microbiota and IBD: Causation or Correlation? Nat. Rev. Gastroenterol. 2017, 14, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Mohr, A.E. Resiliency and Individuality Influence the Gut Microbiome through Nutritional and Feeding Behavior Pressures. Ph.D. Thesis, Arizona State University, Tempe, Arizona, 2022. [Google Scholar]
- Thosar, S.S.; Butler, M.P.; Shea, S.A. Role of the Circadian System in Cardiovascular Disease. J. Clin. Investig. 2018, 128, 2157–2167. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.J.; Bolli, G.B.; Cryer, P.E.; Gerich, J.E. Pathogenesis of the Dawn Phenomenon in Patients with Insulin-Dependent Diabetes Mellitus—Accelerated Glucose Production and Impaired Glucose Utilization Due to Nocturnal Surges in Growth Hormone Secretion. N. Engl. J. Med. 1985, 312, 1473–1479. [Google Scholar] [CrossRef]
- Sun, S.; Ma, S.; Cai, Y.; Wang, S.; Ren, J.; Yang, Y.; Ping, J.; Wang, X.; Zhang, Y.; Yan, H.; et al. A Single-Cell Transcriptomic Atlas of Exercise-Induced Anti-Inflammatory and Geroprotective Effects across the Body. Innovation 2023, 4, 100380. [Google Scholar] [CrossRef]
- Hurley, J.M.; Jankowski, M.S.; los Santos, H.D.; Crowell, A.M.; Fordyce, S.B.; Zucker, J.D.; Kumar, N.; Purvine, S.O.; Robinson, E.W.; Shukla, A.; et al. Circadian Proteomic Analysis Uncovers Mechanisms of Post-Transcriptional Regulation in Metabolic Pathways. Cell Syst. 2018, 7, 613–626.e5. [Google Scholar] [CrossRef]
- Takahashi, J.S. Transcriptional Architecture of the Mammalian Circadian Clock. Nat. Rev. Genet. 2017, 18, 164–179. [Google Scholar] [CrossRef]
- Zhang, R.; Lahens, N.F.; Ballance, H.I.; Hughes, M.E.; Hogenesch, J.B. A Circadian Gene Expression Atlas in Mammals: Implications for Biology and Medicine. Proc. Natl. Acad. Sci. USA 2014, 111, 16219–16224. [Google Scholar] [CrossRef]
- Cremer, T.; Cremer, M.; Hübner, B.; Strickfaden, H.; Smeets, D.; Popken, J.; Sterr, M.; Markaki, Y.; Rippe, K.; Cremer, C. The 4D Nucleome: Evidence for a Dynamic Nuclear Landscape Based on Co-aligned Active and Inactive Nuclear Compartments. FEBS Lett. 2015, 589, 2931–2943. [Google Scholar] [CrossRef] [PubMed]
- Nahmias, Y.; Androulakis, I.P. Circadian Effects of Drug Responses. Annu. Rev. Biomed. Eng. 2021, 23, 203–224. [Google Scholar] [CrossRef] [PubMed]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.; Lyall, L.M.; Ward, J.; Strawbridge, R.J.; Cullen, B.; Graham, N.; Niedzwiedz, C.L.; Johnston, K.J.A.; MacKay, D.; Biello, S.M.; et al. Genome-Wide Association Study of Circadian Rhythmicity in 71,500 UK Biobank Participants and Polygenic Association with Mood Instability. EBioMedicine 2018, 35, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.E.; Lane, J.M.; Wood, A.R.; van Hees, V.T.; Tyrrell, J.; Beaumont, R.N.; Jeffries, A.R.; Dashti, H.S.; Hillsdon, M.; Ruth, K.S.; et al. Genome-Wide Association Analyses of Chronotype in 697,828 Individuals Provides Insights into Circadian Rhythms. Nat. Commun. 2019, 10, 343. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, H. Automated Feature Extraction from Population Wearable Device Data Identified Novel Loci Associated with Sleep and Circadian Rhythms. PLoS Genet. 2020, 16, e1009089. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Anand, S.T.; Ebell, M.H.; Vena, J.E.; Robb, S.W. Circadian Disrupting Exposures and Breast Cancer Risk: A Meta-Analysis. Int. Arch. Occup. Environ. Health 2015, 88, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Padilla, J.; Osman, N.M.; Bissig-Choisat, B.; Grimm, S.L.; Qin, X.; Major, A.M.; Yang, L.; Lopez-Terrada, D.; Coarfa, C.; Li, F.; et al. Circadian Dysfunction Induces NAFLD-Related Human Liver Cancer in a Mouse Model. J. Hepatol. 2024, 80, 282–292. [Google Scholar] [CrossRef]
- Li, P.; Gao, L.; Gaba, A.; Yu, L.; Cui, L.; Fan, W.; Lim, A.S.P.; Bennett, D.A.; Buchman, A.S.; Hu, K. Circadian Disturbances in Alzheimer’s Disease Progression: A Prospective Observational Cohort Study of Community-Based Older Adults. Lancet Health Longev. 2020, 1, e96–e105. [Google Scholar] [CrossRef]
- Ma, L.; Liu, J.; Deng, M.; Zhou, L.; Zhang, Q.; Xiao, X. Metabolomics Analysis of Serum and Urine in Type 1 Diabetes Patients with Different Time in Range Derived from Continuous Glucose Monitoring. Diabetol. Metab. Syndr. 2024, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Yokus, M.A.; Songkakul, T.; Pozdin, V.A.; Bozkurt, A.; Daniele, M.A. Wearable Multiplexed Biosensor System toward Continuous Monitoring of Metabolites. Biosens. Bioelectron. 2020, 153, 112038. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Losada, P.; Freisa, M.; Poujouly, C.; Gamby, J. An Integrated Multiple Electrochemical MiRNA Sensing System Embedded into a Microfluidic Chip. Biosensors 2022, 12, 145. [Google Scholar] [CrossRef] [PubMed]
- Vinitha, S.S.; Royea, R.; Buckman, K.J.; Benardis, M.; Holmes, J.; Fletcher, R.L.; EYK, N.; Acharya, U.R.; Ellenhorn, J.D.I. An Introduction to the Cyrcadia Breast Monitor: A Wearable Breast Health Monitoring Device. Comput. Methods Programs Biomed. 2020, 197, 105758. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Lasalde-Ramírez, J.A.; Mahato, K.; Wang, J.; Gao, W. Wearable Chemical Sensors for Biomarker Discovery in the Omics Era. Nat. Rev. Chem. 2022, 6, 899–915. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.B. From Personalised Nutrition to Precision Medicine: The Rise of Consumer Genomics and Digital Health. Proc. Nutr. Soc. 2020, 79, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Benson, M. Digital Twins for Predictive, Preventive Personalized, and Participatory Treatment of Immune-Mediated Diseases. Arter. Thromb. Vasc. Biol. 2023, 43, 410–416. [Google Scholar] [CrossRef]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial Intelligence in Healthcare: Transforming the Practice of Medicine. Futur. Health J. 2021, 8, e188–e194. [Google Scholar] [CrossRef]
- Area, I.; Fernández, F.J.; Nieto, J.J.; Tojo, F.A.F. Concept and Solution of Digital Twin Based on a Stieltjes Differential Equation. Math. Methods Appl. Sci. 2022, 45, 7451–7465. [Google Scholar] [CrossRef]
- Quinn, T.P.; Senadeera, M.; Jacobs, S.; Coghlan, S.; Le, V. Trust and Medical AI: The Challenges We Face and the Expertise Needed to Overcome Them. J. Am. Med. Inform. Assoc. 2020, 28, 890–894. [Google Scholar] [CrossRef]
- Libbrecht, M.W.; Noble, W.S. Machine Learning Applications in Genetics and Genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A Guide to Deep Learning in Healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, L.; Xu, Y.; Yang, J. Machine Learning Meets Omics: Applications and Perspectives. Brief. Bioinform. 2021, 23, bbab460. [Google Scholar] [CrossRef]
- He, X.; Liu, X.; Zuo, F.; Shi, H.; Jing, J. Artificial Intelligence-Based Multi-Omics Analysis Fuels Cancer Precision Medicine. Semin. Cancer Biol. 2023, 88, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Misra, B.B.; Langefeld, C.; Olivier, M.; Cox, L.A. Integrated Omics: Tools, Advances and Future Approaches. J. Mol. Endocrinol. 2019, 62, R21–R45. [Google Scholar] [CrossRef] [PubMed]
- Feldner-Busztin, D.; Nisantzis, P.F.; Edmunds, S.J.; Boza, G.; Racimo, F.; Gopalakrishnan, S.; Limborg, M.T.; Lahti, L.; de Polavieja, G.G. Dealing with Dimensionality: The Application of Machine Learning to Multi-Omics Data. Bioinformatics 2023, 39, btad021. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-T.; Zeng, T. Computational Systems Biology, Methods and Protocols. Methods Mol. Biol. 2018, 1754, 109–135. [Google Scholar] [CrossRef]
- Gligorijević, V.; Pržulj, N. Methods for Biological Data Integration: Perspectives and Challenges. J. R. Soc. Interface 2015, 12, 20150571. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Poulos, R.C.; Liu, J.; Zhong, Q. Machine Learning for Multi-Omics Data Integration in Cancer. iScience 2022, 25, 103798. [Google Scholar] [CrossRef]
- Argelaguet, R.; Velten, B.; Arnol, D.; Dietrich, S.; Zenz, T.; Marioni, J.C.; Buettner, F.; Huber, W.; Stegle, O. Multi-Omics Factor Analysis—A Framework for Unsupervised Integration of Multi-omics Data Sets. Mol. Syst. Biol. 2018, 14, e8124. [Google Scholar] [CrossRef]
- Rohart, F.; Gautier, B.; Singh, A.; Cao, K.-A.L. MixOmics: An R Package for ‘omics Feature Selection and Multiple Data Integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef] [PubMed]
- Morton, J.T.; Aksenov, A.A.; Nothias, L.F.; Foulds, J.R.; Quinn, R.A.; Badri, M.H.; Swenson, T.L.; Goethem, M.W.V.; Northen, T.R.; Vazquez-Baeza, Y.; et al. Learning Representations of Microbe–Metabolite Interactions. Nat. Methods 2019, 16, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, K.; Holmes, S.P. Latent Variable Modeling for the Microbiome. Biostatistics 2018, 20, 599–614. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Zeleznik, O.A.; Thallinger, G.G.; Kuster, B.; Gholami, A.M.; Culhane, A.C. Dimension Reduction Techniques for the Integrative Analysis of Multi-Omics Data. Brief. Bioinform. 2016, 17, 628–641. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Mezlini, A.M.; Demir, F.; Fiume, M.; Tu, Z.; Brudno, M.; Haibe-Kains, B.; Goldenberg, A. Similarity Network Fusion for Aggregating Data Types on a Genomic Scale. Nat. Methods 2014, 11, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Perez, D.; Lugo-Martinez, J.; Bourguignon, N.; Mathee, K.; Lerner, B.; Bar-Joseph, Z.; Narasimhan, G. Dynamic Bayesian Networks for Integrating Multi-Omics Time Series Microbiome Data. mSystems 2021, 6, e01105-20. [Google Scholar] [CrossRef] [PubMed]
- Bruhn, S.; Fang, Y.; Barrenäs, F.; Gustafsson, M.; Zhang, H.; Konstantinell, A.; Krönke, A.; Sönnichsen, B.; Bresnick, A.; Dulyaninova, N.; et al. A Generally Applicable Translational Strategy Identifies S100A4 as a Candidate Gene in Allergy. Sci. Transl. Med. 2014, 6, 218ra4. [Google Scholar] [CrossRef] [PubMed]
- Ordish, J.; Mitchell, C.; Murfet, H.; Brigden, T.; Hall, A. Black Box Medicine and Transparency (Executive Summary); PHG Foundation (University of Cambridge): Cambridge, UK, 2020. [Google Scholar]
- Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling Polypharmacy Side Effects with Graph Convolutional Networks. Bioinformatics 2018, 34, i457–i466. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Shao, W.; Huang, Z.; Tang, H.; Zhang, J.; Ding, Z.; Huang, K. MOGONET Integrates Multi-Omics Data Using Graph Convolutional Networks Allowing Patient Classification and Biomarker Identification. Nat. Commun. 2021, 12, 3445. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, Q.; Luo, C.; Wu, Y.; Bu, D.; Qi, X.; Luo, Y.; Zhao, Y. DeepOmix: A Scalable and Interpretable Multi-Omics Deep Learning Framework and Application in Cancer Survival Analysis. Comput. Struct. Biotechnol. J. 2021, 19, 2719–2725. [Google Scholar] [CrossRef]
- Chen, S.; Zang, Y.; Xu, B.; Lu, B.; Ma, R.; Miao, P.; Chen, B. An Unsupervised Deep Learning-Based Model Using Multiomics Data to Predict Prognosis of Patients with Stomach Adenocarcinoma. Comput. Math. Methods Med. 2022, 2022, 5844846. [Google Scholar] [CrossRef]
- Choi, J.M.; Chae, H. MoBRCA-Net: A Breast Cancer Subtype Classification Framework Based on Multi-Omics Attention Neural Networks. BMC Bioinform. 2023, 24, 169. [Google Scholar] [CrossRef] [PubMed]
- Loers, J.U.; Vermeirssen, V. SUBATOMIC: A SUbgraph BAsed MulTi-OMIcs Clustering Framework to Analyze Integrated Multi-Edge Networks. BMC Bioinform. 2022, 23, 363. [Google Scholar] [CrossRef]
- Sidak, D.; Schwarzerová, J.; Weckwerth, W.; Waldherr, S. Interpretable Machine Learning Methods for Predictions in Systems Biology from Omics Data. Front. Mol. Biosci. 2022, 9, 926623. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, Methods, and Applications in Interpretable Machine Learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.-L.; Gulbahce, N.; Loscalzo, J. Network Medicine: A Network-Based Approach to Human Disease. Nat. Rev. Genet. 2011, 12, 56–68. [Google Scholar] [CrossRef]
- Barricelli, B.R.; Casiraghi, E.; Fogli, D. A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications. IEEE Access 2019, 7, 167653–167671. [Google Scholar] [CrossRef]
- Jimenez, J.I.; Jahankhani, H.; Kendzierskyj, S. Digital Twin Technologies and Smart Cities; Internet of Things; Springer: Cham, Switzerland, 2019; pp. 79–92. [Google Scholar] [CrossRef]
- Szarfman, A.; Levine, J.G.; Tonning, J.M.; Weichold, F.; Bloom, J.C.; Soreth, J.M.; Geanacopoulos, M.; Callahan, L.; Spotnitz, M.; Ryan, Q.; et al. Recommendations for Achieving Interoperable and Shareable Medical Data in the USA. Commun. Med. 2022, 2, 86. [Google Scholar] [CrossRef] [PubMed]
- Shao, G.; Helu, M. Framework for a Digital Twin in Manufacturing: Scope and Requirements. Manuf. Lett. 2020, 24, 105–107. [Google Scholar] [CrossRef]
- Shamanna, P.; Saboo, B.; Damodharan, S.; Mohammed, J.; Mohamed, M.; Poon, T.; Kleinman, N.; Thajudeen, M. Reducing HbA1c in Type 2 Diabetes Using Digital Twin Technology-Enabled Precision Nutrition: A Retrospective Analysis. Diabetes Ther. 2020, 11, 2703–2714. [Google Scholar] [CrossRef]
- Silfvergren, O.; Simonsson, C.; Ekstedt, M.; Lundberg, P.; Gennemark, P.; Cedersund, G. Digital Twin Predicting Diet Response before and after Long-Term Fasting. PLOS Comput. Biol. 2022, 18, e1010469. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; National Academy of Engineering; Division on Earth and Life Studies; Division on Engineering and Physical Sciences; Board on Life Sciences; Board on Atmospheric Sciences and Climate; Computer Science and Telecommunications Board; Board on Mathematical Sciences and Analytics. Opportunities and Challenges for Digital Twins in Biomedical Re-search. In Proceedings of a Workshop—In Brief; Casola, L., Ed.; National Academies Press (US): Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Malsagova, K.; Kopylov, A.; Stepanov, A.; Butkova, T.; Izotov, A.; Kaysheva, A. Dried Blood Spot in Laboratory: Directions and Prospects. Diagnostics 2020, 10, 248. [Google Scholar] [CrossRef] [PubMed]
- Bellagambi, F.G.; Lomonaco, T.; Salvo, P.; Vivaldi, F.; Hangouët, M.; Ghimenti, S.; Biagini, D.; Francesco, F.D.; Fuoco, R.; Errachid, A. Saliva Sampling: Methods and Devices. An Overview. TrAC Trends Anal. Chem. 2020, 124, 115781. [Google Scholar] [CrossRef]
- Kurian, S.M.; Gordon, S.; Barrick, B.; Dadlani, M.N.; Fanelli, B.; Cornell, J.B.; Head, S.R.; Marsh, C.L.; Case, J. Feasibility and Comparison Study of Fecal Sample Collection Methods in Healthy Volunteers and Solid Organ Transplant Recipients Using 16S RRNA and Metagenomics Approaches. Biopreserv. Biobank. 2020, 18, 425–440. [Google Scholar] [CrossRef] [PubMed]
- Björnsson, B.; Borrebaeck, C.; Elander, N.; Gasslander, T.; Gawel, D.R.; Gustafsson, M.; Jörnsten, R.; Lee, E.J.; Li, X.; Lilja, S.; et al. Digital Twins to Personalize Medicine. Genome Med. 2019, 12, 4. [Google Scholar] [CrossRef]
- Aldamaeen, O.; Rashideh, W.; Obidallah, W.J. Toward Patient-Centric Healthcare Systems: Key Requirements and Framework for Personal Health Records Based on Blockchain Technology. Appl. Sci. 2023, 13, 7697. [Google Scholar] [CrossRef]
- Hasan, H.R.; Salah, K.; Jayaraman, R.; Omar, M.; Yaqoob, I.; Pesic, S.; Taylor, T.; Boscovic, D. A Blockchain-Based Approach for the Creation of Digital Twins. IEEE Access 2020, 8, 34113–34126. [Google Scholar] [CrossRef]
- Khezr, S.; Moniruzzaman, M.; Yassine, A.; Benlamri, R. Blockchain Technology in Healthcare: A Comprehensive Review and Directions for Future Research. Appl. Sci. 2019, 9, 1736. [Google Scholar] [CrossRef]
- Christidis, K.; Devetsikiotis, M. Blockchains and Smart Contracts for the Internet of Things. IEEE Access 2016, 4, 2292–2303. [Google Scholar] [CrossRef]
- Macrinici, D.; Cartofeanu, C.; Gao, S. Smart Contract Applications within Blockchain Technology: A Systematic Mapping Study. Telemat. Inform. 2018, 35, 2337–2354. [Google Scholar] [CrossRef]
- Pawar, P.; Parolia, N.; Shinde, S.; Edoh, T.O.; Singh, M. EHealthChain—A Blockchain-Based Personal Health Information Management System. Ann. Telecommun. 2022, 77, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Gürsoy, G.; Bjornson, R.; Green, M.E.; Gerstein, M. Using Blockchain to Log Genome Dataset Access: Efficient Storage and Query. BMC Med. Genom. 2020, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Singh, M. Blockchain Technology for Industry 4.0, Secure, Decentralized, Distributed and Trusted Industry Environment; Blockchain Technologies; Springer Nature: Singapore, 2020; pp. 59–72. [Google Scholar] [CrossRef]
- Gordon, W.J.; Catalini, C. Blockchain Technology for Healthcare: Facilitating the Transition to Patient-Driven Interoperability. Comput. Struct. Biotechnol. J. 2018, 16, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Schmidt, D.C.; White, J.; Lenz, G. Blockchain Technology Use Cases in Healthcare. Adv. Comput. 2018, 111, 1–41. [Google Scholar] [CrossRef]
- Glicksberg, B.S.; Burns, S.; Currie, R.; Griffin, A.; Wang, Z.J.; Haussler, D.; Goldstein, T.; Collisson, E. Blockchain-Authenticated Sharing of Genomic and Clinical Outcomes Data of Patients with Cancer: A Prospective Cohort Study. J. Med. Internet Res. 2020, 22, e16810. [Google Scholar] [CrossRef]
- Meijer, C.; Uh, H.-W.; Bouhaddani, S. el Digital Twins in Healthcare: Methodological Challenges and Opportunities. J. Pers. Med. 2023, 13, 1522. [Google Scholar] [CrossRef]
- Strengthening Clinical Laboratories. Available online: https://www.cdc.gov/csels/dls/strengthening-clinical-labs.html (accessed on 3 August 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohr, A.E.; Ortega-Santos, C.P.; Whisner, C.M.; Klein-Seetharaman, J.; Jasbi, P. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines 2024, 12, 1496. https://doi.org/10.3390/biomedicines12071496
Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines. 2024; 12(7):1496. https://doi.org/10.3390/biomedicines12071496
Chicago/Turabian StyleMohr, Alex E., Carmen P. Ortega-Santos, Corrie M. Whisner, Judith Klein-Seetharaman, and Paniz Jasbi. 2024. "Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare" Biomedicines 12, no. 7: 1496. https://doi.org/10.3390/biomedicines12071496
APA StyleMohr, A. E., Ortega-Santos, C. P., Whisner, C. M., Klein-Seetharaman, J., & Jasbi, P. (2024). Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines, 12(7), 1496. https://doi.org/10.3390/biomedicines12071496