Prognostic Significance of Plasma Neutrophil Extracellular Trap Levels in Patients with Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Analysis of Circulating NETs in Plasma
2.3. Measurement of Soluble Immune Mediators in Plasma
2.4. RNA Sequencing in Peripheral Blood Mononuclear Cells
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Significant Association of Pretreatment NET Levels with OS in ICI-Treated Patients with NSCLC
3.3. Significant Association of Pretreatment NET Levels with PFS in ICI-Treated Patients with NSCLC
3.4. Significant Association of Posttreatment NET Levels with OS and PFS in ICI-Treated Patients with NSCLC
3.5. No Prognostic Significance of Changes in NET Levels after Treatment in ICI-Treated Patients with NSCLC
3.6. Prognostic Significance of Pretreatment NET Levels in Subgroups of ICI-Treated Patients with NSCLC
3.7. Relationships between the Pretreatment NET Levels and Other Soluble Immune Mediators in Plasma and Gene Expression in PBMCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; et al. Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 497–530. [Google Scholar] [CrossRef]
- Rizvi, N.A.; Mazieres, J.; Planchard, D.; Stinchcombe, T.E.; Dy, G.K.; Antonia, S.J.; Horn, L.; Lena, H.; Minenza, E.; Mennecier, B.; et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): A phase 2, single-arm trial. Lancet Oncol. 2015, 16, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Gettinger, S.N.; Horn, L.; Gandhi, L.; Spigel, D.R.; Antonia, S.J.; Rizvi, N.A.; Powderly, J.D.; Heist, R.S.; Carvajal, R.D.; Jackman, D.M.; et al. Overall Survival and Long-Term Safety of Nivolumab (Anti-Programmed Death 1 Antibody, BMS-936558, ONO-4538) in Patients with Previously Treated Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2015, 33, 2004–2012. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Perez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Grant, M.J.; Herbst, R.S.; Goldberg, S.B. Selecting the optimal immunotherapy regimen in driver-negative metastatic NSCLC. Nat. Rev. Clin. Oncol. 2021, 18, 625–644. [Google Scholar] [CrossRef]
- Rebuzzi, S.E.; Prelaj, A.; Friedlaender, A.; Cortellini, A.; Addeo, A.; Genova, C.; Naqash, A.R.; Auclin, E.; Mezquita, L.; Banna, G.L.; et al. Prognostic scores including peripheral blood-derived inflammatory indices in patients with advanced non-small-cell lung cancer treated with immune checkpoint inhibitors. Crit. Rev. Oncol. Hematol. 2022, 179, 103806. [Google Scholar] [CrossRef] [PubMed]
- Aloe, C.; Wang, H.; Vlahos, R.; Irving, L.; Steinfort, D.; Bozinovski, S. Emerging and multifaceted role of neutrophils in lung cancer. Transl. Lung Cancer Res. 2021, 10, 2806–2818. [Google Scholar] [CrossRef]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Adrover, J.M.; McDowell, S.A.C.; He, X.Y.; Quail, D.F.; Egeblad, M. NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell 2023, 41, 505–526. [Google Scholar] [CrossRef] [PubMed]
- Demkow, U. Neutrophil Extracellular Traps (NETs) in Cancer Invasion, Evasion and Metastasis. Cancers 2021, 13, 4495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, L.; Dai, Q.; Shang, B.; Xiao, T.; Di, X.; Zhang, K.; Feng, L.; Shou, J.; Wang, Y. A signature for pan-cancer prognosis based on neutrophil extracellular traps. J. Immunother. Cancer 2022, 10, e004210. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, Y.; Ma, C.; Sun, H.; Wei, X.; Li, M.; Wei, W.; Zhang, F.; Yang, F.; Wang, H.; et al. Diagnostic, Therapeutic Predictive, and Prognostic Value of Neutrophil Extracellular Traps in Patients with Gastric Adenocarcinoma. Front. Oncol. 2020, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Masucci, M.T.; Minopoli, M.; Del Vecchio, S.; Carriero, M.V. The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Front. Immunol. 2020, 11, 1749. [Google Scholar] [CrossRef] [PubMed]
- Teijeira, A.; Garasa, S.; Gato, M.; Alfaro, C.; Migueliz, I.; Cirella, A.; de Andrea, C.; Ochoa, M.C.; Otano, I.; Etxeberria, I.; et al. CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity. Immunity 2020, 52, 856–871.e8. [Google Scholar] [CrossRef]
- Zhang, Y.; Chandra, V.; Riquelme Sanchez, E.; Dutta, P.; Quesada, P.R.; Rakoski, A.; Zoltan, M.; Arora, N.; Baydogan, S.; Horne, W.; et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J. Exp. Med. 2020, 217, e20191354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Y.; Onuma, A.; He, J.; Wang, H.; Xia, Y.; Lal, R.; Cheng, X.; Kasumova, G.; Hu, Z.; et al. Neutrophils Extracellular Traps Inhibition Improves PD-1 Blockade Immunotherapy in Colorectal Cancer. Cancers 2021, 13, 5333. [Google Scholar] [CrossRef]
- Kaltenmeier, C.; Yazdani, H.O.; Morder, K.; Geller, D.A.; Simmons, R.L.; Tohme, S. Neutrophil Extracellular Traps Promote T Cell Exhaustion in the Tumor Microenvironment. Front. Immunol. 2021, 12, 785222. [Google Scholar]
- Han, A.X.; Long, B.Y.; Li, C.Y.; Huang, D.D.; Xiong, E.Q.; Li, F.J.; Wu, G.L.; Liu, Q.; Yang, G.B.; Hu, H.Y. Machine learning framework develops neutrophil extracellular traps model for clinical outcome and immunotherapy response in lung adenocarcinoma. Apoptosis 2024, 29, 1090–1108. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, H.; Zhang, L.; Wu, Y.; Wen, Y.; Weng, X.; Chen, Q.; Liu, W. Elevated levels of neutrophil related chemokine citrullinat-ed histone H3, interleukin-8 and C-reaction protein in patients with immune checkpoint inhibitor therapy: Predictive bi-omarkers for response to treatment. Cancer Cell Int. 2023, 23, 167. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Shu, T.; Zhang, H.; Huang, N.; Ren, J.; Lin, L.; Wu, J.; Wang, Y.; Huang, Z.; Bin, J.; et al. A combined model of serum neutrophil ex-tracellular traps, CD8+ T cells, and tumor proportion score provides better prediction of PD-1 inhibitor efficacy in patients with NSCLC. FEBS J. 2024, 291, 3403–3416. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Soneson, C.; Love, M.I.; Robinson, M.D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Research 2015, 4, 1521. [Google Scholar] [CrossRef]
- Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol. Biol. 2018, 1711, 243–259. [Google Scholar] [PubMed]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Leng, G.; Leng, P. dentification and validation of molecular subtype and prognostic signature for lung adenocarcinoma based on neutrophil extracellular traps. Pathol. Oncol. Res. 2023, 18, 1610899. [Google Scholar] [CrossRef]
- Xing, L.; Wu, S.; Xue, S.; Li, X. A Novel Neutrophil Extracellular Trap Signature Predicts Patient Chemotherapy Resistance and Prognosis in Lung Adenocarcinoma. Mol. Biotechnol. 2024. [Google Scholar] [CrossRef]
- Xin, H.; Lai, Q.; Zhou, Y.; He, J.; Song, Y.; Liao, M.; Sun, J.; Li, M.; Zhang, M.; Liang, W.; et al. Noninvasive evaluation of neutrophil extra-cellular traps signature predicts clinical outcomes and immunotherapy response in hepatocellular carcinoma. Front. Immunol. 2023, 13, 1134521. [Google Scholar]
- Xu, Q.; Ying, H.; Xie, C.; Lin, R.; Huang, Y.; Zhu, R.; Liao, Y.; Zeng, Y.; Yu, F. Characterization of neutrophil extracellular traps related gene pair for predicting prognosis in hepatocellular carcinoma. J. Gene Med. 2023, 25, e3551. [Google Scholar] [CrossRef]
- Zhao, J.; Xie, X. Prediction of prognosis and immunotherapy response in breast cancer based on neutrophil extracellular traps-related classification. Front. Mol. Biosci. 2023, 10, 1165776. [Google Scholar] [CrossRef]
- Feng, C.; Li, Y.; Tai, Y.; Zhang, W.; Wang, H.; Lian, S.; Jin-Si-Han, E.E.; Liu, Y.; Li, X.; Chen, Q.; et al. A neutrophil extracellular traps-related classification predicts prognosis and response to immunotherapy in colon cancer. Sci. Rep. 2023, 13, 19297. [Google Scholar] [CrossRef]
- Albrengues, J.; Shields, M.A.; Ng, D.; Park, C.G.; Ambrico, A.; Poindexter, M.E.; Upadhyay, P.; Uyeminami, D.L.; Pommier, A.; Kuttner, V.; et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018, 361, eaao4227. [Google Scholar] [CrossRef]
- Park, J.; Wysocki, R.W.; Amoozgar, Z.; Maiorino, L.; Fein, M.R.; Jorns, J.; Schott, A.F.; Kinugasa-Katayama, Y.; Lee, Y.; Won, N.H.; et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 2016, 8, 361ra138. [Google Scholar] [CrossRef]
- Xiao, Y.; Cong, M.; Li, J.; He, D.; Wu, Q.; Tian, P.; Wang, Y.; Yang, S.; Liang, C.; Liang, Y.; et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell 2021, 39, 423–437.e7. [Google Scholar] [CrossRef]
- Cools-Lartigue, J.; Spicer, J.; McDonald, B.; Gowing, S.; Chow, S.; Giannias, B.; Bourdeau, F.; Kubes, P.; Ferri, L. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Investig. 2013, 123, 3446–3458. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Q.; Zhang, X.; Liu, X.; Zhou, B.; Chen, J.; Huang, D.; Li, J.; Li, H.; Chen, F.; et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 2020, 583, 133–138. [Google Scholar] [CrossRef]
- De Andrea, C.E.; Ochoa, M.C.; Villalba-Esparza, M.; Teijeira, A.; Schalper, K.A.; Abengozar-Muela, M.; Eguren-Santamaria, I.; Sainz, C.; Sanchez-Gregorio, S.; Garasa, S.; et al. Heterogenous presence of neutrophil extracellular traps in human solid tumours is partially dependent on IL-8. J. Pathol. 2021, 255, 190–201. [Google Scholar] [CrossRef]
- Teijeira, A.; Garasa, S.; Ochoa, M.C.; Villalba, M.; Olivera, I.; Cirella, A.; Eguren-Santamaria, I.; Berraondo, P.; Schalper, K.A.; de Andrea, C.E.; et al. IL8, Neutrophils, and NETs in a Collusion against Cancer Immunity and Immunotherapy. Clin. Cancer Res. 2021, 27, 2383–2393. [Google Scholar] [CrossRef]
- Li, B.; Liu, Y.; Hu, T.; Zhang, Y.; Zhang, C.; Li, T.; Wang, C.; Dong, Z.; Novakovic, V.A.; Hu, T.; et al. Neutrophil extracellular traps enhance procoagulant activity in patients with oral squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 2019, 145, 1695–1707. [Google Scholar] [CrossRef] [PubMed]
- Thalin, C.; Lundstrom, S.; Seignez, C.; Daleskog, M.; Lundstrom, A.; Henriksson, P.; Helleday, T.; Phillipson, M.; Wallen, H.; Demers, M. Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS ONE 2018, 13, e0191231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yi, H.; Chen, J.; Li, H.; Luo, Y.; Cheng, T.; Yang, H.; Jiang, Z.; Pan, C. Neutrophil Extracellular Traps Facilitate A549 Cell Invasion and Migration in a Macrophage-Maintained Inflammatory Microenvironment. Biomed. Res. Int. 2022, 2022, 8316525. [Google Scholar] [CrossRef] [PubMed]
- Schalper, K.A.; Carleton, M.; Zhou, M.; Chen, T.; Feng, Y.; Huang, S.P.; Walsh, A.M.; Baxi, V.; Pandya, D.; Baradet, T.; et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat. Med. 2020, 26, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Yuen, K.C.; Liu, L.F.; Gupta, V.; Madireddi, S.; Keerthivasan, S.; Li, C.; Rishipathak, D.; Williams, P.; Kadel, E.E., 3rd; Koeppen, H.; et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 2020, 26, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Keegan, A.; Ricciuti, B.; Garden, P.; Cohen, L.; Nishihara, R.; Adeni, A.; Paweletz, C.; Supplee, J.; Janne, P.A.; Severgnini, M.; et al. Plasma IL-6 changes correlate to PD-1 inhibitor responses in NSCLC. J. Immunother. Cancer 2020, 8, e000678. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yang, L.; Xu, H.; Zheng, S.; Wang, Z.; Wang, S.; Yang, Y.; Zhang, S.; Feng, X.; Sun, N.; et al. Systematic analysis of IL-6 as a predictive biomarker and desensitizer of immunotherapy responses in patients with non-small cell lung cancer. BMC Med. 2022, 20, 187. [Google Scholar]
- Jaillon, S.; Peri, G.; Delneste, Y.; Frémaux, I.; Doni, A.; Moalli, F.; Garlanda, C.; Romani, L.; Gascan, H.; Bellocchio, S.; et al. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. J. Exp. Med. 2007, 204, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Rizo, V.; Martínez-Guzmán, M.A.; Iñiguez-Gutierrez, L.; García-Orozco, A.; Alvarado-Navarro, A.; Fafutis-Morris, M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front. Immunol. 2017, 8, 81. [Google Scholar] [CrossRef]
- Blazkova, J.; Gupta, S.; Liu, Y.; Gaudilliere, B.; Ganio, E.A.; Bolen, C.R.; Saar-Dover, R.; Fragiadakis, G.K.; Angst, M.S.; Hasni, S.; et al. Multicenter Systems Analysis of Human Blood Reveals Immature Neutrophils in Males and During Pregnancy. J. Immunol. 2017, 198, 2479–2488. [Google Scholar] [CrossRef]
Factor | Patient (n = 185) |
---|---|
Sex, n (%) | |
Male | 141 (76.2) |
Female | 44 (23.8) |
Age (years), median (range) | 69 (37–96) |
PS, n (%) | |
0 | 66 (35.7) |
1–2 | 119 (64.3) |
Smoking history, n (%) | |
No | 33 (17.8) |
Yes | 152 (82.2) |
Driver gene mutation (EGFR, ARK, ROS1), n (%) | |
No | 158 (85.4) |
Yes | 27 (14.6) |
Histology, n (%) | |
Adenocarcinoma | 112 (60.6) |
Squamous | 55 (29.7) |
Others | 18 (9.7) |
Clinical stage, n (%) | |
III, IV | 137 (74.1) |
Recurrence | 48 (25.9) |
PD-L1 level, n (%) | |
<50% | 93 (56.7) |
≥50% | 71 (43.3) |
ICI type, n (%) | |
Anti-PD-1 Ab (Nivolumab, Pembrolizumab) | 148 (80.0) |
Anti-PD-L1 Ab (Atezolizumab) | 37 (20.0) |
Concurrent chemotherapy, n (%) | |
No | 120 (64.9) |
Yes | 65 (35.1) |
Treatment line, n (%) | |
1 | 92 (49.7) |
≥2 | 93 (50.3) |
WBC (103/μL), median (range) | 6.9 (2.7–36.0) |
Plt (104/μL), median (range) | 25.2 (5.5–59.6) |
ALB (mg/dL), median (range) | 3.5 (1.8–4.8) |
LDH (U/L), median (range) | 207 (121–3069) |
CRP (mg/dL), median (range) | 0.94 (0.01–20.00) |
NETs (ng/mL), median (range) | 7.04 (0.13–103.45) |
postNETs (ng/mL), median (range) | 4.82 (0.37–90.76) [n = 165] |
ΔNETs (ng/mL), median (range) | −1.23 (−92.61–49.16) [n = 165] |
Factor | Univariate | Multivariate | ||
---|---|---|---|---|
p-Value | HR (95% CI) | p-Value | HR (95% CI) | |
Sex | ||||
female vs. male | 0.150 | 1.382 (0.889–2.149) | ||
Age (years) | 0.503 | 1.008 (0.985–1.031) | ||
PS | ||||
1–2 vs. 0 | 0.003 | 1.995 (1.263–3.151) | 0.208 | 1.434 (0.818–2.513) |
Smoking history | ||||
Yes vs. No | 0.033 | 0.600 (0.375–0.960) | 0.975 | 0.991 (0.574–1.712) |
Driver gene mutation | ||||
Yes vs. No | 0.756 | 0.908 (0.495–1.667) | ||
Histology | ||||
Squamous vs. Adenocarcinoma | 0.772 | 1.070 (0.678–1.687) | ||
Others vs. Squamous | 0.656 | 0.836 (0.379–1.841) | ||
Others vs. Adenocarcinoma | 0.661 | 0.921 (0.636–1.332) | ||
Clinical stage | ||||
Recurrence vs. III, IV | 0.779 | 0.936 (0.592–1.481) | ||
PD-L1 level | ||||
≥50% vs. <50% | 0.035 | 0.612 (0.388–0.966) | 0.039 | 0.589 (0.351–0.975) |
ICI type | ||||
Anti-PD-L1 Ab vs. Anti-PD-1 Ab | 0.918 | 1.026 (0.626–1.681) | ||
Concurrent chemotherapy | ||||
Yes vs. No | 0.019 | 0.563 (0.349–0.908) | 0.243 | 0.677 (0.351–1.304) |
Treatment line | ||||
≥2 vs. 1 | 0.025 | 1.602 (1.061–2.418) | 0.102 | 1.544 (0.917–2.599) |
WBC (103/μL) | 0.088 | 1.031 (0.996–1.067) | ||
Plt (104/μL) | 0.629 | 1.005 (0.986–1.024) | ||
ALB (mg/dL) | <0.001 | 0.387 (0.273–0.550) | 0.002 | 0.397 (0.224–0.705) |
LDH (U/L) | 0.006 | 1.001 (1.000–1.002) | 0.151 | 1.000 (1.000–1.001) |
CRP (mg/dL) | 0.024 | 1.044 (1.006–1.084) | 0.239 | 0.959 (0.894–1.028) |
NETs (ng/mL) | <0.001 | 1.656 (1.388–1.975) | <0.001 | 1.702 (1.356–2.137) |
ΔNETs (ng/mL) | 0.539 | 0.995 (0.978–1.005) |
Factor | Univariate | Multivariate | ||
---|---|---|---|---|
p-Value | HR (95% CI) | p-Value | HR (95% CI) | |
Sex | ||||
female vs. male | 0.041 | 1.457 (1.015–2.092) | 0.278 | 1.345 (0.787–2.301) |
Age (years) | 0.798 | 1.002 (0.984–1.021) | ||
PS | ||||
1–2 vs. 0 | 0.403 | 1.157 (0.822–1.628) | ||
Smoking history | ||||
Yes vs. No | 0.020 | 0.626 (0.422–0.929) | 0.606 | 1.174 (0.638–2.159) |
Driver gene mutation | ||||
Yes vs. No | 0.090 | 1.453 (0.944–2.236) | ||
Histology | ||||
Squamous vs. Adenocarcinoma | 0.485 | 0.878 (0.608–1.266) | ||
Others vs. Squamous | 0.305 | 0.705 (0.362–1.375) | ||
Others vs. Adenocarcinoma | 0.113 | 0.776 (0.568–1.062) | ||
Clinical stage | ||||
Recurrence vs. III, IV | 0.936 | 1.015 (0.699–1.475) | ||
PD-L1 level | ||||
≥50% vs. <50% | 0.008 | 0.620 (0.435–0.884) | 0.002 | 0.539 (0.367–0.792) |
ICI type | ||||
Anti-PD-L1 Ab vs. Anti-PD-1 Ab | 0.431 | 1.167 (0.795–1.714) | ||
Concurrent chemotherapy | ||||
Yes vs. No | 0.015 | 0.651 (0.461–0.919) | 0.050 | 0.637 (0.405–1.001) |
Treatment line | ||||
≥2 vs. 1 | 0.016 | 1.492 (1.077–2.065) | 0.097 | 1.443 (0.935–2.227) |
WBC (103/μL) | 0.457 | 1.013 (0.979–1.047) | ||
Plt (104/μL) | 0.177 | 0.989 (0.974–1.005) | ||
ALB (mg/dL) | 0.007 | 0.678 (0.511–0.899) | 0.096 | 0.742 (0.522–1.054) |
LDH (U/L) | 0.253 | 1.000 (1.000–1.001) | ||
CRP (mg/dL) | 0.433 | 1.013 (0.981–1.046) | ||
NETs (ng/mL) | <0.001 | 1.381 (1.194–1.597) | <0.001 | 1.566 (1.323–1.855) |
ΔNETs (ng/mL) | 0.621 | 0.997 (0.985–1.009) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horaguchi, S.; Nakahara, Y.; Igarashi, Y.; Kouro, T.; Wei, F.; Murotani, K.; Udagawa, S.; Higashijima, N.; Matsuo, N.; Murakami, S.; et al. Prognostic Significance of Plasma Neutrophil Extracellular Trap Levels in Patients with Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Biomedicines 2024, 12, 1831. https://doi.org/10.3390/biomedicines12081831
Horaguchi S, Nakahara Y, Igarashi Y, Kouro T, Wei F, Murotani K, Udagawa S, Higashijima N, Matsuo N, Murakami S, et al. Prognostic Significance of Plasma Neutrophil Extracellular Trap Levels in Patients with Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Biomedicines. 2024; 12(8):1831. https://doi.org/10.3390/biomedicines12081831
Chicago/Turabian StyleHoraguchi, Shun, Yoshiro Nakahara, Yuka Igarashi, Taku Kouro, Feifei Wei, Kenta Murotani, Seiichi Udagawa, Naoko Higashijima, Norikazu Matsuo, Shuji Murakami, and et al. 2024. "Prognostic Significance of Plasma Neutrophil Extracellular Trap Levels in Patients with Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors" Biomedicines 12, no. 8: 1831. https://doi.org/10.3390/biomedicines12081831
APA StyleHoraguchi, S., Nakahara, Y., Igarashi, Y., Kouro, T., Wei, F., Murotani, K., Udagawa, S., Higashijima, N., Matsuo, N., Murakami, S., Kato, T., Kondo, T., Xiang, H., Kasajima, R., Himuro, H., Tsuji, K., Mano, Y., Komahashi, M., Miyagi, Y., ... Sasada, T. (2024). Prognostic Significance of Plasma Neutrophil Extracellular Trap Levels in Patients with Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Biomedicines, 12(8), 1831. https://doi.org/10.3390/biomedicines12081831