Toxicity Associated with Pembrolizumab Monotherapy in Patients with Gastrointestinal Cancers: A Systematic Review of Clinical Trials
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Study Selection
2.2. Eligibility Criteria and End Points
2.3. Data Extraction, Data Synthesis, and Analysis
2.4. Statistical Analysis
3. Results
3.1. Selected Studies
3.1.1. Patient and Tumor Characteristics
3.1.2. Safety
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walsh, R.J.; Sundar, R.; Lim, J.S.J. Immune checkpoint inhibitor combinations—current and emerging strategies. Brit. J. Cancer 2023, 128, 1415–1417. [Google Scholar] [CrossRef] [PubMed]
- Khoja, L.; Butler, M.O.; Kang, S.P.; Ebbinghaus, S.; Joshua, A.M. Pembrolizumab. J. ImmunoTherapy Cancer 2015, 3, 36. [Google Scholar] [CrossRef]
- Andre, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Parish, M.; Peterson, C.; Ludwig, K.A.; Sriram, D.; Ruggeri, A.; Tolay, S.; Selfridge, J.E.; Bajor, D.L.; Mohamed, A.; et al. The efficacy and safety of neoadjuvant immunotherapy in patients with deficient mismatch repair/microsatellite instability–high (dMMR/MSI-H) localized and oligometastatic colon cancer: Data from the real world. J. Clin. Oncol. 2023, 41 (Suppl. S4), 105. [Google Scholar] [CrossRef]
- Diaz, L.A., Jr.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): Final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 2022, 23, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Eefsen, R.L.; Larsen, J.S.; Klarskov, L.L.; Altaf, R.; Høgdall, E.; Ingeholm, P.; Lykke, J.; Nielsen, D.L.; Pfeiffer, P.; Poulsen, L.; et al. Therapy with pembrolizumab in treatment-naïve patients with nonmetastatic, mismatch repair deficient colorectal cancer. Int. J. Cancer 2023, 152, 2145–2152. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Kawazoe, A.; Bai, Y.; Xu, J.; Lonardi, S.; Metges, J.P.; Yanez, P.; Wyrwicz, L.S.; Shen, L.; Ostapenko, Y.; et al. Pembrolizumab plus trastuzumab and chemotherapy for HER2-positive gastric or gastro-oesophageal junction adenocarcinoma: Interim analyses from the phase 3 KEYNOTE-811 randomised placebo-controlled trial. Lancet 2023, 402, 2197–2208. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Kim, T.W.; Cutsem, E.V.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability–High/Mismatch Repair–Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Ludford, K.; Ho, W.J.; Thomas, J.V.; Raghav, K.P.; Murphy, M.B.; Fleming, N.D.; Lee, M.S.; Smaglo, B.G.; You, Y.N.; Tillman, M.M.; et al. Neoadjuvant Pembrolizumab in Localized Microsatellite Instability High/Deficient Mismatch Repair Solid Tumors. J. Clin. Oncol. 2023, 41, JCO2201351. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Marcus, L.; Lemery, S.J.; Keegan, P.; Pazdur, R. FDA Approval Summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin. Cancer Res. 2019, 25, 13. [Google Scholar] [CrossRef] [PubMed]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Rha, S.Y.; Oh, D.-Y.; Yañez, P.; Bai, Y.; Ryu, M.-H.; Lee, J.; Rivera, F.; Alves, G.V.; Garrido, M.; Shiu, K.-K.; et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for HER2-negative advanced gastric cancer (KEYNOTE-859): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2023, 24, 1181–1195. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.-P.; Li, Z.; Kim, S.-B.; et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, L.B.; Salama, A.K.S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 2020, 70, 86–104. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Long, G.V.; Hamid, O.; Garon, E.B.; Herbst, R.S.; Andre, T.; Armand, P.; Bajorin, D.; Bellmunt, J.; Burtness, B.; et al. Safety profile of pembrolizumab monotherapy based on an aggregate safety evaluation of 8937 patients. Eur. J. Cancer 2024, 199, 113530. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, A.R.; McBride, A.; Slack, M.; Erstad, B.L.; Abraham, I. Potential Immune-Related Adverse Events Associated With Monotherapy and Combination Therapy of Ipilimumab, Nivolumab, and Pembrolizumab for Advanced Melanoma: A Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 91. [Google Scholar] [CrossRef]
- Nishino, M.; Giobbie-Hurder, A.; Hatabu, H.; Ramaiya, N.H.; Hodi, F.S. Incidence of Programmed Cell Death 1 Inhibitor-Related Pneumonitis in Patients With Advanced Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2016, 2, 1607–1616. [Google Scholar] [CrossRef]
- Sher, A.F.; Golshani, G.M.; Wu, S. Fatal Adverse Events Associated with Pembrolizumab in Cancer Patients: A Meta-Analysis. Cancer Investig. 2020, 38, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Udayakumar, S.; Parmar, A.; Leighl, N.B.; Everest, L.; Arciero, V.S.; Santos, S.D.; Rahmadian, A.; Doherty, M.K.; Chan, K.K.W. Pembrolizumab alone or with chemotherapy for metastatic non-small-cell lung cancer: A systematic review and network meta-analysis. Crit. Rev. Oncol./Hematol. 2022, 173, 103660. [Google Scholar] [CrossRef]
- Wang, W.; Lie, P.; Guo, M.; He, J. Risk of hepatotoxicity in cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis of published data. Int. J. Cancer 2017, 141, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yao, Z.; Bai, H.; Duan, J.; Wang, Z.; Wang, X.; Zhang, X.; Xu, J.; Fei, K.; Zhang, Z.; et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitor-based combination therapies in clinical trials: A systematic review and meta-analysis. Lancet Oncol. 2021, 22, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- O’Neil, B.H.; Wallmark, J.M.; Lorente, D.; Elez, E.; Raimbourg, J.; Gomez-Roca, C.; Ejadi, S.; Piha-Paul, S.A.; Stein, M.N.; Razak, A.R.A.; et al. Safety and antitumor activity of the anti–PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma. PLoS ONE 2017, 12, e0189848. [Google Scholar] [CrossRef] [PubMed]
- Ott, P.A.; Piha-Paul, S.A.; Munster, P.; Pishvaian, M.J.; van Brummelen, E.M.J.; Cohen, R.B.; Gomez-Roca, C.; Ejadi, S.; Stein, M.; Chan, E.; et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann. Oncol. 2017, 28, 1036–1041. [Google Scholar] [CrossRef]
- Doi, T.; Piha-Paul, S.A.; Jalal, S.I.; Saraf, S.; Lunceford, J.; Koshiji, M.; Bennouna, J. Safety and Antitumor Activity of the Anti–Programmed Death-1 Antibody Pembrolizumab in Patients With Advanced Esophageal Carcinoma. J. Clin. Oncol. 2018, 36, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.-P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients with Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Kang, Y.-K.; Catenacci, D.V.; Muro, K.; Fuchs, C.S.; Geva, R.; Hara, H.; Golan, T.; Garrido, M.; Jalal, S.I.; et al. Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: Results from the phase II nonrandomized KEYNOTE-059 study. Gastric Cancer 2019, 22, 828–837. [Google Scholar] [CrossRef]
- Shah, M.A.; Kojima, T.; Hochhauser, D.; Enzinger, P.; Raimbourg, J.; Hollebecque, A.; Lordick, F.; Kim, S.-B.; Tajika, M.; Kim, H.T.; et al. Efficacy and Safety of Pembrolizumab for Heavily Pretreated Patients With Advanced, Metastatic Adenocarcinoma or Squamous Cell Carcinoma of the Esophagus. JAMA Oncol. 2019, 5, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Kojima, T.; Shah, M.A.; Muro, K.; Francois, E.; Adenis, A.; Hsu, C.-H.; Doi, T.; Moriwaki, T.; Kim, S.-B.; Lee, S.-H.; et al. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab Versus Chemotherapy in Advanced Esophageal Cancer. J. Clin. Oncol. 2020, 38, 4138–4148. [Google Scholar] [CrossRef] [PubMed]
- Mehnert, J.M.; Bergsland, E.; O’Neil, B.H.; Santoro, A.; Schellens, J.H.M.; Cohen, R.B.; Doi, T.; Ott, P.A.; Pishvaian, M.J.; Puzanov, I.; et al. Pembrolizumab for the treatment of programmed death-ligand 1-positive advanced carcinoid or pancreatic neuroendocrine tumors: Results from the KEYNOTE-028 study. Cancer 2020, 126, 3021–3030. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Van Cutsem, E.; Bang, Y.-J.; Fuchs, C.; Wyrwicz, L.; Lee, K.-W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; et al. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients With First-line, Advanced Gastric Cancer. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef]
- Strosberg, J.R.; Mizuno, N.; Doi, T.; Grande, E.; Delord, J.-P.; Shapira-Frommer, R.; Bergsland, E.K.; Shah, M.H.; Fakih, M.; Takahashi, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results From the Phase II KEYNOTE-158 Study. Clin. Cancer Res. 2020, 26, 2124–2130. [Google Scholar] [CrossRef]
- Chung, H.C.; Kang, Y.K.; Chen, Z.; Bai, Y.; Ishak, W.Z.W.; Shim, B.Y.; Park, Y.L.; Koo, D.; Lu, J.; Xu, J.; et al. Pembrolizumab versus paclitaxel for previously treated advanced gastric or gastroesophageal junction cancer (KEYNOTE-063): A randomized, open-label, phase 3 trial in Asian patients. Cancer 2021, 128, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- de Klerk, L.K.; Patel, A.K.; Derks, S.; Pectasides, E.; Augustin, J.; Uduman, M.; Raman, N.; Akarca, F.G.; McCleary, N.J.; Cleary, J.M.; et al. Phase II study of pembrolizumab in refractory esophageal cancer with correlates of response and survival. J. ImmunoTherapy Cancer 2021, 9, e002472. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.S.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandala, M.; Ryu, M.-H.; Fornaro, L.; Olesinski, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab versus paclitaxel for previously treated PD-L1-positive advanced gastric or gastroesophageal junction cancer: 2-year update of the randomized phase 3 KEYNOTE-061 trial. Gastric Cancer 2021, 25, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.S.; Foster, N.R.; Overman, M.J.; Boland, P.M.; Kim, S.S.; Arrambide, K.A.; Jaszewski, B.L.; Bekaii-Saab, T.; Graham, R.P.; Welch, J.; et al. ZEBRA: A Multicenter Phase II Study of Pembrolizumab in Patients with Advanced Small-Bowel Adenocarcinoma. Clin. Cancer Res. 2021, 27, 3641–3648. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.H.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Updated efficacy and safety of KEYNOTE-224: A phase II study of pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib. Eur. J. Cancer 2022, 167, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Cassier, P.A.; Fakih, M.; Kao, S.; Nielsen, D.; Italiano, A.; Guren, T.K.; van Dongen, M.G.J.; Spencer, K.; Bariani, G.M.; et al. Pembrolizumab for previously treated advanced anal squamous cell carcinoma: Results from the non-randomised, multicohort, multicentre, phase 2 KEYNOTE-158 study. Lancet Gastroenterol. Hepatol. 2022, 7, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Verset, G.; Borbath, I.; Karwal, M.; Verslype, C.; Van Vlierberghe, H.; Kardosh, A.; Zagonel, V.; Stal, P.; Sarker, D.; Palmer, D.H.; et al. Pembrolizumab Monotherapy for Previously Untreated Advanced Hepatocellular Carcinoma: Data from the Open-Label, Phase II KEYNOTE-224 Trial. Clin. Cancer Res. 2022, 28, 2547–2554. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Chen, Z.; Fang, W.; Ren, Z.; Xu, R.; Ryoo, B.-Y.; Meng, Z.; Bai, Y.; Chen, X.; Liu, X.; et al. Pembrolizumab Versus Placebo as Second-Line Therapy in Patients From Asia With Advanced Hepatocellular Carcinoma: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2023, 41, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Bakacs, T.; Moss, R.W.; Kleef, R.; Szasz, M.A.; Anderson, C.C. Exploiting autoimmunity unleashed by low-dose immune checkpoint blockade to treat advanced cancer. Scand. J. Immunol. 2019, 90, e12821. [Google Scholar] [CrossRef] [PubMed]
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 2010, 236, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Gurney, H. How to calculate the dose of chemotherapy. Br. J. Cancer 2002, 86, 1297–1302. [Google Scholar] [CrossRef]
- Shulgin, B.; Kosinsky, Y.; Omelchenko, A.; Chu, L.; Mugundu, G.; Aksenov, S.; Pimentel, R.; DeYulia, G.; Kim, G.; Peskov, K.; et al. Dose dependence of treatment-related adverse events for immune checkpoint inhibitor therapies: A model-based meta-analysis. OncoImmunology 2020, 9, 1748982. [Google Scholar] [CrossRef]
- Eun, Y.; Kim, I.Y.; Sun, J.-M.; Lee, J.; Cha, H.-S.; Koh, E.-M.; Kim, H.; Lee, J. Risk factors for immune-related adverse events associated with anti-PD-1 pembrolizumab. Sci. Rep. 2019, 9, 14039. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef]
- Renner, A.; Burotto, M.; Rojas, C. Immune Checkpoint Inhibitor Dosing: Can We Go Lower Without Compromising Clinical Efficacy? J. Glob. Oncol. 2019, 5, 1–5. [Google Scholar] [CrossRef]
- Dubé-Pelletier, M.; Labbé, C.; Côté, J.; Pelletier-St-Pierre, A.-A. Pembrolizumab Every 6 Weeks Versus Every 3 Weeks in Advanced Non-Small Cell Lung Cancer. Oncologist 2023, 28, 969–977. [Google Scholar] [CrossRef]
- Higashiyama, R.I.; Yoshida, T.; Yagishita, S.; Ohuchi, M.; Sakiyama, N.; Torasawa, M.; Shirasawa, M.; Masuda, K.; Shinno, Y.; Matsumoto, Y.; et al. Safety Implications of Switching Pembrolizumab Dosage From 200 mg Every 3 Weeks to 400 mg Every 6 Weeks in Patients With Advanced NSCLC. J. Thorac. Oncol. 2022, 17, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- O’Byrne, K.; Popoff, E.; Badin, F.; Lee, A.; Yuan, Y.; Lozano-Ortega, G.; Eccles, L.J.; Varol, N.; Waser, N.; Penrod, J.R.; et al. Long-term comparative efficacy and safety of nivolumab plus ipilimumab relative to other first-line therapies for advanced non-small-cell lung cancer: A systematic literature review and network meta-analysis. Lung Cancer 2023, 177, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Guo, G.; Cai, X.; Yu, H.; Cai, Y.; Zhang, B.; Hong, S.; Zhang, L. Nivolumab plus ipilimumab versus pembrolizumab as chemotherapy-free, first-line treatment for PD-L1-positive non-small cell lung cancer. Clin. Transl. Med. 2020, 10, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Lenz, H.J.; Van Cutsem, E.; Luisa Limon, M.; Wong, K.Y.M.; Hendlisz, A.; Aglietta, M.; García-Alfonso, P.; Neyns, B.; Luppi, G.; Cardin, D.B.; et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J. Clin. Oncol. 2022, 40, 161–170. [Google Scholar] [CrossRef] [PubMed]
Study/Author, Year | Study Phase | n | Tumor Type | Dose | Line of Treatment |
---|---|---|---|---|---|
Le et al., 2015 [23] | 1 | 41 | 32 patients with Colorectal, 9 patients with non-colorectal cancer | 10 mg/kg q 2 wks | ≥2 |
Muro et al., 2016 [12] | 1b | 39 | Gastric cancer | 10 mg/kg q 2 wks | 1 |
O’Neil et al., 2017 [24] | 1b | 23 | Colorectal | 10 mg/kg q 2 wks | ≥2 |
Ott et al., 2017 [25] | 1b | 25 | Anal Carcinoma | 10 mg/kg q 2 wks | 2 |
Doi et al., 2018 [26] | 1b | 23 | Esophageal Carcinoma | 10 mg/kg q 2 wks | 3 |
Fuchs et al., 2018 [27] | 2 | 259 | Gastric/GEJ Cancer | 200 mg q 3 wks | 2 |
Bang et al., 2019 [28] | 2 | 31 | Gastric/GEJ Cancer | 200 mg q 3 wks | 1 |
Shah et al., 2019 [29] | 2 | 121 | Esophageal Carcinoma | 200 mg q 3 wks | 3 |
Andre et al., 2020 [3] | 3 | 153 | Colorectal | 200 mg q 3 wks | 1 |
Finn et al., 2020 [30] | 3 | 278 | HCC | 200 mg q 3 wks | 2 |
Kojima et al., 2020 [31] | 3 | 314 | Esophageal Carcinoma | 200 mg q 3 wks | 2 |
Le et al., 2020 [8] | 2 | 124 | Colorectal | 200 mg q 3 wks | 2 |
Marabelle et al., 2020 [10] | 2 | 233 | Non-colorectal (27 tumor types were represented, with endometrial, gastric, cholangiocarcinoma, and pancreatic cancers) | 200 mg q 3 wks | 2 |
Mehnert et al., 2020 [32] | 1 | 41 | Carcinoid/pancreatic NET | 10 mg/kg q 2 wks | 2 |
Shitara et al., 2020 [33] | 3 | 256 | Gastric/GEJ Cancer | 200 mg q 3 wks | 1 |
Strosberg et al., 2020 [34] | 2 | 107 | NETs of the lung, appendix, small intestine, colon, rectum, or pancreas | 200 mg q 3 wks | 2 |
Chung et al., 2021 [35] | 3 | 47 | Gastric/GEJ cancer | 200 mg q 3 wks | 2 |
De Klerk et al., 2021 [36] | 2 | 49 | Esophageal carcinoma | 200 mg q 3 wks | 2 |
Fuchs et al., 2021 [37] | 3 | 296 | Gastric/GEJ cancer | 200 mg q 3 wks | 2 |
Pedersen et al., 2021 [38] | 2 | 40 | Small-bowel adenocarcinoma | 200 mg q 3 wks | 2 |
Kudo et al., 2022 [39] | 2 | 104 | HCC | 200 mg q 3 wks | 2 |
Marabelle et al., 2022 [40] | 2 | 112 | Anal carcinoma | 200 mg q 3 wks | 3 |
Verset et al., 2022 [41] | 2 | 51 | HCC | 200 mg q 3 wks | 1 |
Ludford et al., 2023 [9] | 2 | 35 | Twenty-seven patients with colorectal cancer and eight patients with non-colorectal cancer | 200 mg q 3 wks | 1 |
Qin et. al, 2023 [42] | 3 | 299 | HCC | 200 mg q 3 wks | 2 |
Characteristic | Patients with GI Malignancy Receiving Pembrolizumab Monotherapy (n = 3101) |
---|---|
Age, median (range), years | 62 (53–68) |
Sex, No. (%) | |
Male | 2056 (66.3) |
Female | 938 (30.2) |
Other, not reported | 107 (3.5) |
ECOG performance status | |
0 | 1313 (42.3) |
1 | 1644 (53) |
2 | 4 (0.2) |
Other, not reported | 141 (4.5) |
Primary tumor location, No. (%) | |
Colorectal | 359 (11.6) |
Hepatocellular | 732 (23.6) |
Esophagogastric | 1435 (46.3) |
Other | 575 (18.5) |
Adverse Event by Organ System | N (Any Grade Events) | Any Grade (%) | N (Grade 3/4 Events) | Grade 3/4 (%) |
---|---|---|---|---|
Gastrointestinal | ||||
Diarrhea | 341 | 11.00% | 35 | 1.13% |
Anorexia | 243 | 7.84% | 16 | 0.52% 0.52% |
Nausea | 231 | 7.45% | 20 | 0.65% |
AST increase | 183 | 5.91% | 70 | 2.26% |
ALT increase | 151 | 4.87% | 40 | 1.29% |
Hyperbilirubinemia | 97 | 3.13% | 33 | 1.06% |
Constipation | 75 | 2.42% | 2 | 0.06% |
Vomiting | 69 | 2.23% | 4 | 0.13% |
Colitis | 56 | 1.81% | 21 | 0.68% |
Hepatitis | 41 | 1.32% | 27 | 0.87% |
Pancreatitis | 16 | 0.52% | 5 | 0.16% |
Dermatologic | ||||
Pruritus | 278 | 8.97% | 4 | 0.13% |
Rash | 207 | 6.68% | 12 | 0.39% |
Musculoskeletal | ||||
Arthralgia | 144 | 4.65% | 6 | 0.19% |
Myalgia | 26 | 0.84% | 3 | 0.10% |
Myositis | 14 | 0.45% | 3 | 0.10% |
Endocrine | ||||
Hypothyroidism | 279 | 9.00% | 4 | 0.13% |
Hyperthyroidism | 126 | 4.07% | 1 | 0.03% |
Adrenal insufficiency | 18 | 0.58% | 7 | 0.23% |
Hypophysitis | 13 | 0.42% | 4 | 0.13% |
Thyroiditis | 13 | 0.42% | 2 | 0.06% |
Type 1 DM | 9 | 0.29% | 5 | 0.16% |
Hyperglycemia | 9 | 0.29% | 3 | 0.10% |
Generalized | ||||
Fatigue | 497 | 16.04% | 48 | 1.55% |
Asthenia | 146 | 4.71% | 17 | 0.55% |
Infusion reaction | 28 | 0.90% | 0 | 0.00% |
Renal | ||||
Nephritis | 10 | 0.32% | 2 | 0.06% |
Pulmonary | ||||
Pneumonitis | 110 | 3.55% | 28 | 0.90% |
Cardiovascular | ||||
Myocarditis | 2 | 0.06% | 1 | 0.03% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naleid, N.; Mahipal, A.; Chakrabarti, S. Toxicity Associated with Pembrolizumab Monotherapy in Patients with Gastrointestinal Cancers: A Systematic Review of Clinical Trials. Biomedicines 2025, 13, 229. https://doi.org/10.3390/biomedicines13010229
Naleid N, Mahipal A, Chakrabarti S. Toxicity Associated with Pembrolizumab Monotherapy in Patients with Gastrointestinal Cancers: A Systematic Review of Clinical Trials. Biomedicines. 2025; 13(1):229. https://doi.org/10.3390/biomedicines13010229
Chicago/Turabian StyleNaleid, Nikolas, Amit Mahipal, and Sakti Chakrabarti. 2025. "Toxicity Associated with Pembrolizumab Monotherapy in Patients with Gastrointestinal Cancers: A Systematic Review of Clinical Trials" Biomedicines 13, no. 1: 229. https://doi.org/10.3390/biomedicines13010229
APA StyleNaleid, N., Mahipal, A., & Chakrabarti, S. (2025). Toxicity Associated with Pembrolizumab Monotherapy in Patients with Gastrointestinal Cancers: A Systematic Review of Clinical Trials. Biomedicines, 13(1), 229. https://doi.org/10.3390/biomedicines13010229