Association between the Exposure to Phthalates and the Risk of Endometriosis: An Updated Review
Abstract
:1. Introduction
2. Endometriosis
2.1. Pathophysiology
2.2. Clinical Symptoms and Diagnosis
3. Phthalates
3.1. Physical and Chemical Properties
3.2. Exposure
3.3. Metabolism
3.4. Biomonitoring
4. Phthalates Effects in Endometriosis
Epidemiological Studies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bonavina, G.; Taylor, H.S. Endometriosis-associated infertility: From pathophysiology to tailored treatment. Front. Endocrinol. 2022, 13, 1020827. [Google Scholar] [CrossRef]
- Giudice, L.C.; Kao, L.C. Endometriosis. Lancet 2004, 364, 1789–1799. [Google Scholar] [CrossRef] [PubMed]
- Zondervan, K.T.; Becker, C.M.; Missmer, S.A. Endometriosis. N. Engl. J. Med. 2020, 382, 1244–1256. [Google Scholar] [CrossRef]
- Shafrir, A.L.; Farland, L.V.; Shah, D.K.; Harris, H.R.; Kvaskoff, M.; Zondervan, K.; Missmer, S.A. Risk for and consequences of endometriosis: A critical epidemiologic review. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 51, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bulletti, C.; Coccia, M.E.; Battistoni, S.; Borini, A. Endometriosis and infertility. J. Assist. Reprod. Genet. 2010, 27, 441–447. [Google Scholar] [CrossRef]
- Chaman-Ara, K.; Bahrami, M.A.; Bahrami, E. Endometriosis Psychological Aspects: A Literature Review. J. Endometr. Pelvic Pain Disord. 2017, 9, 105–111. [Google Scholar] [CrossRef]
- Parazzini, F.; Esposito, G.; Tozzi, L.; Noli, S.; Bianchi, S. Epidemiology of endometriosis and its comorbidities. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 209, 3–7. [Google Scholar] [CrossRef]
- Wieczorek, K.; Szczesna, D.; Jurewicz, J. Environmental Exposure to Non-Persistent Endocrine Disrupting Chemicals and Endometriosis: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 5608. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, H.; Kannan, K. A Review of Biomonitoring of Phthalate Exposures. Toxics 2019, 7, 21. [Google Scholar] [CrossRef]
- Heudorf, U.; Mersch-Sundermann, V.; Angerer, J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health 2007, 210, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Mariana, M.; Feiteiro, J.; Verde, I.; Cairrao, E. The effects of phthalates in the cardiovascular and reproductive systems: A review. Environ. Int. 2016, 94, 758–776. [Google Scholar] [CrossRef] [PubMed]
- Kay, V.R.; Chambers, C.; Foster, W.G. Reproductive and developmental effects of phthalate diesters in females. Crit. Rev. Toxicol. 2013, 43, 200–219. [Google Scholar] [CrossRef]
- Monnin, N.; Fattet, A.J.; Koscinski, I. Endometriosis: Update of Pathophysiology, (Epi) Genetic and Environmental Involvement. Biomedicines 2023, 11, 978. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive, M. Endometriosis and infertility: A committee opinion. Fertil. Steril. 2012, 98, 591–598. [Google Scholar] [CrossRef]
- Signorile, P.G.; Viceconte, R.; Baldi, A. New Insights in Pathogenesis of Endometriosis. Front. Med. 2022, 9, 879015. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.J.; Horne, A.W.; Gibson, D.A.; Roberts, N.; Saunders, P.T.K. Endometriosis: Recent advances that could accelerate diagnosis and improve care. Trends Mol. Med. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Parasar, P.; Ozcan, P.; Terry, K.L. Endometriosis: Epidemiology, Diagnosis and Clinical Management. Curr. Obstet. Gynecol. Rep. 2017, 6, 34–41. [Google Scholar] [CrossRef]
- Canis, M.; Donnez, J.G.; Guzick, D.S.; Halme, J.K.; Rock, J.A.; Schenken, R.S.; Vernon, M.W. Revised American Society for Reproductive Medicine Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil. Steril. 1997, 67, 817–821. [Google Scholar] [CrossRef]
- Cosma, S.; Benedetto, C. Classification algorithm of patients with endometriosis: Proposal for tailored management. Adv. Clin. Exp. Med. 2020, 29, 615–622. [Google Scholar] [CrossRef]
- Vercellini, P.; Vigano, P.; Somigliana, E.; Fedele, L. Endometriosis: Pathogenesis and treatment. Nat. Rev. Endocrinol. 2014, 10, 261–275. [Google Scholar] [CrossRef]
- Bulun, S.E. Endometriosis. N. Engl. J. Med. 2009, 360, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Rahmioglu, N.; Nyholt, D.R.; Morris, A.P.; Missmer, S.A.; Montgomery, G.W.; Zondervan, K.T. Genetic variants underlying risk of endometriosis: Insights from meta-analysis of eight genome-wide association and replication datasets. Hum. Reprod. Update 2014, 20, 702–716. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Penarrubia, P.; Ruiz-Alcaraz, A.J.; Martinez-Esparza, M.; Marin, P.; Machado-Linde, F. Hypothetical roadmap towards endometriosis: Prenatal endocrine-disrupting chemical pollutant exposure, anogenital distance, gut-genital microbiota and subclinical infections. Hum. Reprod. Update 2020, 26, 214–246. [Google Scholar] [CrossRef]
- Smarr, M.M.; Kannan, K.; Buck Louis, G.M. Endocrine disrupting chemicals and endometriosis. Fertil. Steril. 2016, 106, 959–966. [Google Scholar] [CrossRef]
- Darba, J.; Marsa, A. Economic Implications of Endometriosis: A Review. Pharmacoeconomics 2022, 40, 1143–1158. [Google Scholar] [CrossRef]
- Keckstein, J.; Hoopmann, M.; Merz, E.; Grab, D.; Weichert, J.; Helmy-Bader, S.; Wolfler, M.; Bajka, M.; Mechsner, S.; Schafer, S.; et al. Expert opinion on the use of transvaginal sonography for presurgical staging and classification of endometriosis. Arch. Gynecol. Obstet. 2023, 307, 5–19. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, I.; Lorigo, M.; Cairrao, E. Update about the disrupting-effects of phthalates on the human reproductive system. Mol. Reprod. Dev. 2021, 88, 650–672. [Google Scholar] [CrossRef]
- Dutta, S.; Haggerty, D.K.; Rappolee, D.A.; Ruden, D.M. Phthalate Exposure and Long-Term Epigenomic Consequences: A Review. Front. Genet. 2020, 11, 405. [Google Scholar] [CrossRef]
- Benjamin, S.; Masai, E.; Kamimura, N.; Takahashi, K.; Anderson, R.C.; Faisal, P.A. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J. Hazard. Mater. 2017, 340, 360–383. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Guo, J.L.; Xue, J.C.; Bai, C.L.; Guo, Y. Phthalate metabolites: Characterization, toxicities, global distribution, and exposure assessment. Environ. Pollut. 2021, 291, 118106. [Google Scholar] [CrossRef] [PubMed]
- Tumu, K.; Vorst, K.; Curtzwiler, G. Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1337–1359. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health 2020, 17, 5655. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Kaur, R. A review on morpho-physiological traits of plants under phthalates stress and insights into their uptake and translocation. Plant Growth Regul. 2020, 91, 327–347. [Google Scholar] [CrossRef]
- Mariana, M.; Castelo-Branco, M.; Soares, A.M.; Cairrao, E. Phthalates’ exposure leads to an increasing concern on cardiovascular health. J. Hazard. Mater. 2023, 457, 131680. [Google Scholar] [CrossRef]
- Prasad, B. Phthalate pollution: Environmental fate and cumulative human exposure index using the multivariate analysis approach. Environ. Sci. Process Impacts 2021, 23, 389–399. [Google Scholar] [CrossRef]
- Preau, J.L., Jr.; Wong, L.Y.; Silva, M.J.; Needham, L.L.; Calafat, A.M. Variability over 1 week in the urinary concentrations of metabolites of diethyl phthalate and di(2-ethylhexyl) phthalate among eight adults: An observational study. Environ. Health Perspect. 2010, 118, 1748–1754. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, S.H.; Lee, H.W.; Chae, H.D.; Kim, C.H.; Kang, B.M. Increased viability of endometrial cells by in vitro treatment with di-(2-ethylhexyl) phthalate. Fertil. Steril. 2010, 94, 2413–2416. [Google Scholar] [CrossRef]
- Cho, Y.J.; Park, S.B.; Han, M. Di-(2-ethylhexyl)-phthalate induces oxidative stress in human endometrial stromal cells in vitro. Mol. Cell Endocrinol. 2015, 407, 9–17. [Google Scholar] [CrossRef]
- Kim, S.H.; Cho, S.; Ihm, H.J.; Oh, Y.S.; Heo, S.H.; Chun, S.; Im, H.; Chae, H.D.; Kim, C.H.; Kang, B.M. Possible Role of Phthalate in the Pathogenesis of Endometriosis: In Vitro, Animal, and Human Data. J. Clin. Endocrinol. Metab. 2015, 100, E1502–E1511. [Google Scholar] [CrossRef]
- Wang, X.; Shang, L.; Wang, J.; Wu, N.; Wang, S. Effect of phthalate esters on the secretion of prostaglandins (F2α and E2) and oxytocin in cultured bovine ovarian and endometrial cells. Domest. Anim. Endocrinol. 2010, 39, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, S.H. Exposure to Phthalate Esters and the Risk of Endometriosis. Dev. Reprod. 2020, 24, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Banu, S.K.; Arosh, J.A. Endocrine disruptors and endometriosis. Reprod. Toxicol. 2023, 115, 56–73. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zhang, H.; Chen, Y.J.; Chi, Y.L.; Dong, S. The Inflammation Response to DEHP through PPARgamma in Endometrial Cells. Int. J. Environ. Res. Public Health 2016, 13, 318. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, M.R.; Kim, J.H.; Cho, H.H. Aldo-keto reductase activity after diethylhexyl phthalate exposure in eutopic and ectopic endometrial cells. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 215, 215–219. [Google Scholar] [CrossRef]
- Kim, H.G.; Lim, Y.S.; Hwang, S.; Kim, H.Y.; Moon, Y.; Song, Y.J.; Na, Y.J.; Yoon, S. Di-(2-ethylhexyl) Phthalate Triggers Proliferation, Migration, Stemness, and Epithelial-Mesenchymal Transition in Human Endometrial and Endometriotic Epithelial Cells via the Transforming Growth Factor-beta/Smad Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 3938. [Google Scholar] [CrossRef]
- Cobellis, L.; Latini, G.; De Felice, C.; Razzi, S.; Paris, I.; Ruggieri, F.; Mazzeo, P.; Petraglia, F. High plasma concentrations of di-(2-ethylhexyl)-phthalate in women with endometriosis. Hum. Reprod. 2003, 18, 1512–1515. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.S.; Rozati, R.; Reddy, B.V.; Raman, N.V. Association of phthalate esters with endometriosis in Indian women. BJOG 2006, 113, 515–520. [Google Scholar] [CrossRef]
- Rozati, R.; Simha, B.; Bendi, N.; Sekhar, C. Evaluation of the Phthalate Esters in South Indian Women with Endometriosis. Int. J. Fertil. Steril. 2008, 1, 165–170. [Google Scholar]
- Reddy, B.S.; Rozati, R.; Reddy, S.; Kodampur, S.; Reddy, P.; Reddy, R. High plasma concentrations of polychlorinated biphenyls and phthalate esters in women with endometriosis: A prospective case control study. Fertil. Steril. 2006, 85, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Chun, S.; Jang, J.Y.; Chae, H.D.; Kim, C.H.; Kang, B.M. Increased plasma levels of phthalate esters in women with advanced-stage endometriosis: A prospective case-control study. Fertil. Steril. 2011, 95, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Sirohi, D.; Al Ramadhani, R.; Knibbs, L.D. Environmental exposures to endocrine disrupting chemicals (EDCs) and their role in endometriosis: A systematic literature review. Rev. Environ. Health 2021, 36, 101–115. [Google Scholar] [CrossRef]
- Nazir, S.; Usman, Z.; Imran, M.; Lone, K.P.; Ahmad, G. Women Diagnosed with Endometriosis Show High Serum Levels of Diethyl Hexyl Phthalate. J. Hum. Reprod. Sci. 2018, 11, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Pednekar, P.P.; Gajbhiye, R.K.; Patil, A.D.; Surve, S.V.; Datar, A.G.; Balsarkar, G.D.; Chuahan, A.R.; Vanage, G.R. Estimation of plasma levels of bisphenol-A & phthalates in fertile & infertile women by gas chromatography-mass spectrometry. Indian J. Med. Res. 2018, 148, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.C.; Tsai, E.M.; Li, W.F.; Liao, P.C.; Chung, M.C.; Wang, Y.H.; Wang, S.L. Association between phthalate exposure and glutathione-transferase M1 polymorphism in adenomyosis, leiomyoma and endometriosis. Hum. Reprod. 2010, 25, 986–994. [Google Scholar] [CrossRef]
- Chou, Y.C.; Chen, Y.C.; Chen, M.J.; Chang, C.W.; Lai, G.L.; Tzeng, C.R. Exposure to Mono-n-Butyl Phthalate in Women with Endometriosis and Its Association with the Biological Effects on Human Granulosa Cells. Int. J. Mol. Sci. 2020, 21, 1794. [Google Scholar] [CrossRef]
- Louis, G.M.B.; Peterson, C.M.; Chen, Z.; Croughan, M.; Sundaram, R.; Stanford, J.; Varner, M.W.; Kennedy, A.; Giudice, L.; Fujimoto, V.Y.; et al. Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil. Steril. 2013, 100, 162–169. [Google Scholar] [CrossRef]
- Sun, J.; Chen, B.; Zhang, L.Q.; Zhao, D.; Li, S.G. Phthalate ester concentrations in blood serum, urine and endometrial tissues of Chinese endometriosis patients. Int. J. Clin. Exp. Med. 2016, 9, 3808–3819. [Google Scholar]
- Upson, K.; Sathyanarayana, S.; De Roos, A.J.; Thompson, M.L.; Scholes, D.; Dills, R.; Holt, V.L. Phthalates and risk of endometriosis. Environ. Res. 2013, 126, 91–97. [Google Scholar] [CrossRef]
- Weuve, J.; Hauser, R.; Calafat, A.M.; Missmer, S.A.; Wise, L.A. Association of exposure to phthalates with endometriosis and uterine leiomyomata: Findings from NHANES, 1999–2004. Environ. Health Perspect 2010, 118, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Iwasaki, M.; Hanaoka, T.; Sasaki, H.; Tanaka, T.; Tsugane, S. Urinary phthalate monoesters and endometriosis in infertile Japanese women. Sci. Total Environ. 2009, 408, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Moreira Fernandez, M.A.; Cardeal, Z.L.; Carneiro, M.M.; Andre, L.C. Study of possible association between endometriosis and phthalate and bisphenol A by biomarkers analysis. J. Pharm. Biomed. Anal. 2019, 172, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, Y.; Ma, H.; Xu, Q.; Wu, X. Combined Exposure to Multiple Endocrine Disruptors and Uterine Leiomyomata and Endometriosis in US Women. Front. Endocrinol. 2021, 12, 726876. [Google Scholar] [CrossRef]
- EL-Desouky, N.A.; Elyamany, M.; Hanon, A.F.; Atef, A.; Issak, M.; Taha, S.H.N.; Hussein, R.F. Association of Phthalate Exposure with Endometriosis and Idiopathic Infertility in Egyptian Women. Open Access Maced. J. Med. Sci. 2022, 10, 1459–1467. [Google Scholar] [CrossRef]
- Cai, W.; Yang, J.; Liu, Y.; Bi, Y.; Wang, H. Association between Phthalate Metabolites and Risk of Endometriosis: A Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 3678. [Google Scholar] [CrossRef]
- Wen, X.; Xiong, Y.; Qu, X.; Jin, L.; Zhou, C.; Zhang, M.; Zhang, Y. The risk of endometriosis after exposure to endocrine-disrupting chemicals: A meta-analysis of 30 epidemiology studies. Gynecol. Endocrinol. 2019, 35, 645–650. [Google Scholar] [CrossRef]
- Conforti, A.; Carbone, L.; Simeon, V.; Chiodini, P.; Marrone, V.; Bagnulo, F.; Cariati, F.; Strina, I.; Alviggi, C. Unravelling the link between phthalate exposure and endometriosis in humans: A systematic review and meta-analysis of the literature. J. Assist. Reprod. Genet. 2021, 38, 2543–2557. [Google Scholar] [CrossRef]
- Caporossi, L.; Capanna, S.; Vigano, P.; Alteri, A.; Papaleo, B. From Environmental to Possible Occupational Exposure to Risk Factors: What Role Do They Play in the Etiology of Endometriosis? Int. J. Environ. Res. Public Health 2021, 18, 532. [Google Scholar] [CrossRef]
- Swaen, G.M.; Otter, R. Letter to the Editor: Phthalates and Endometriosis. J. Clin. Endocrinol. Metab. 2016, 101, L108–L109. [Google Scholar] [CrossRef]
Phthalate | Chemical Formula | Molecular Weight | Metabolites | |
---|---|---|---|---|
LMW | Dimethyl phthalate—DMP | C10H10O4 | 194.18 | Mono-methyl phthalate—MMP |
Diethyl phthalate—DEP | C12H14O4 | 222.24 | Mono-ethyl phthalate—MEP | |
Di-n-butyl phthalate—DBP | C16H22O4 | 278.34 | Mono-n-butyl phthalate—MBP Mono-(3-hydroxybutyl) phthalate—MHBP | |
Di-iso-butyl phthalate—DiBP | C16H22O4 | 278.34 | Mono-isobutyl phthalate—MiBP | |
Butylbenzyl phthalate—BBzP | C19H20O4 | 312.36 | Mono-benzyl phthalate—MBzP Mono-(3-carboxypropyl) phthalate—MCPP | |
HMW | Dicyclohexyl phthalate—DCHP | C20H26O4 | 330.42 | Mono-cyclohexyl phthalate—MCHP |
Di-2-ethylhexyl phthalate—DEHP | C24H38O4 | 390.56 | Mono-(2-ethylhexyl) phthalate—MEHP Mono-(2-ethyl-5-hydroxyhexyl) phthalate—MEHHP Mono-(2-ethyl-5-oxohexyl) phthalate—MEOHP Mono-(2-ethyl-5-carboxypentyl) phthalate—MECPP Mono-(2-carboxymethylhexyl) phthalate—MCMHP | |
Di(2-ethylhexyl) terephthalate—DEHTP | C24H38O4 | 390.56 | Mono-2-ethyl-5-carboxypentyl terephthalate—MECPTP | |
Di-n-octyl phthalate—DnOP | C24H38O4 | 390.56 | Mono-n-octyl phthalate—MnOP Mono-(3-carboxypropyl) phthalate—MCPP | |
Diisononyl phthalate—DiNP | C26H42O4 | 418.61 | Mono-isononyl phthalate—MiNP Mono-(carboxyisooctyl) phthalate—MCOP | |
Diisodecyl phthalate—DiDP | C28H46O4 | 446.66 | Mono-isodecyl phthalate—MiDP Mono-(carboxyisononyl) phthalate MCNP |
Author Year | Type of Study | No. of Cases/Control | Biological Sample | Metabolites | General Conclusions |
---|---|---|---|---|---|
Cobellis et al., 2003 [48] | Case–control | 35/24 | Blood samples Peritoneal fluid | DEHP, MEHP | DEHP levels were significantly higher in the serum of patients with endometriosis. MEHP levels were low and did not differ between the groups. |
Reddy et al., 2006 [49] | Case–control | 49/59 | Blood samples | BBzP, DEHP, DnBP, DnOP | Phthalate were found in all the samples from women with endometriosis. |
Reddy et al., 2006 [51] | Case–control | 85/135 | Blood samples | BBzP, DEHP, DnBP, DnOP | DnBP, BBzP, DnOP, and DEHP were higher in the endometriosis group and significantly correlated with the severity of endometriosis. |
Rozati et al., 2008 [50] | Case–control | 99/135 | Blood samples | BBzP, DnBP, DEHP, DEP, DMP | DMP, DnBP, BBzP, and DEHP levels were significantly higher in the serum of women with endometriosis and correlated with the severity of endometriosis. DEP was not detected in the study group or in the control group. |
Itoh et al., 2009 [62] | Case–control | 57/80 | Urine | MBzP, MEHHP, MEHP, MEOHP, MEP, MnBP | No significant association was found between the urinary concentration of phthalates and endometriosis. |
Huang et al., 2010 [56] | Case–control | 28/29 | Urine | MMP, MEP, MnBP, MBzP, MEOHP, MEHHP | MnBP levels were higher in women with endometriosis. |
Weuve et al., 2010 [61] | Transversal | 87/1020 | Urine | MBP, MBzP, MEHHP, MEHP, MEOHP, MEP | MBP levels were positively associated (nonsignificantly) with endometriosis. MEHP was inversely associated with endometriosis. |
Kim et al., 2011 [52] | Case–control | 97/169 | Blood samples | DEHP, MEHP | MEHP plasma levels were significantly higher in patients with advanced endometriosis. DEHP had a statistically weak association with endometriosis. |
Upson et al., 2013 [60] | Case–control | 92/195 | Urine | MEHP, MEHHP, MEOHP, MECPP, MBzP, MEP, MiBP, MnBP, DBP | DEHP metabolites, particularly MEHP, may be associated with decreased risk of endometriosis (strong association). MBzP and MEP may be associated with increased risk (no statistical significance). No significant association was found between endometriosis and other DEHP metabolites (MEHHP, MEOHP, or ΣDEHP). |
Buck Louis et al., 2013 [58] | Population cohort | 14/113 | Urine | MnBP, MBzP, MCHP, MCMHP, MCPP, MECPP, MEHHP, MEHP, MEOHP, MEP, MiBP, MMP, MNP, MOP | MnBP, MCMHP, MECPP, MEHP, MEHHP and MEOHP were significantly associated with endometriosis, with a twofold increase in odds. |
Operative cohort | 190/283 | MOP was associated with endometriosis when restricted to visualized and histological endometriosis. MEHP was associated with endometriosis when the comparison was restricted to women with a postoperative diagnosis of normal pelvis. | |||
Kim et al., 2015 [41] | Cohort | 55/33 | Urine | MBzP, MECPP, MEHHP, MEOHP, MBP | MEHHP, MEOHP and MECPP levels were significantly higher in women with endometriosis than in the control group. |
Sun et al., 2016 [59] | Case–control | 134/176 | Blood samples | DBP, DEP, DEHP | DBP and DEHP levels were higher in women with endometriosis. |
Urine | MMP, MEP, MiBP, MBP, MEHP, MEOHP, MEHHP, MECPP, MCMHP | MEP, MiBP, MBP, MEOHP, MEHHP, and MECPP levels were significantly lower in the case group. MEHP and ∑DEHP levels were significantly higher in the case group. | |||
130/n/a | Endometrial tissue | DnBP, DEP, DEHP | The detection rates of DBP and DEHP in pathological tissues were similar to those in plasma, but the concentrations in tissues were 4 and 14.4 times higher, respectively. | ||
Pednekar et al., 2018 [55] | Case–control | 11/34 | Blood samples | MMP, MBzP, MEHP, MEHHP | MBzP and MEHHP levels were higher in women with endometriosis. There was no difference in the levels of MMP and MEHP. |
Nazir et al., 2018 [54] | Case–control | 50/50 | Blood samples | DEHP | Higher levels of DEHP were associated with more advanced stages of endometriosis—III and IV. DEHP was not detected in the control group. |
Moreira Ferandez et al., 2019 [63] | Case–control | 30/22 | Urine | MMP, MiBP, MBP, MCHP, MNP, MOP, MBzP, MEHP | No association was found between phthalate metabolites and endometriosis. |
Chou et al., 2020 [57] | Case-control | 123/82 | Urine | MBP, MEHP, MBzP, MEOHP, MEHHP | MnBP levels were higher in the endometriosis group than in the controls. |
Zhang et al., 2021 [64] | Transversal | 77/1127 | Urine | MBP, MBzP, MCPP, MEHP, MEP, MiBP, | In a subanalysis that included only premenopausal women, MiBP and MBzP were positively associated with endometriosis. MEHP had an inverse association with endometriosis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, B.; Mariana, M.; Lorigo, M.; Oliani, D.; Ramalhinho, A.C.; Cairrao, E. Association between the Exposure to Phthalates and the Risk of Endometriosis: An Updated Review. Biomedicines 2024, 12, 1932. https://doi.org/10.3390/biomedicines12081932
Ribeiro B, Mariana M, Lorigo M, Oliani D, Ramalhinho AC, Cairrao E. Association between the Exposure to Phthalates and the Risk of Endometriosis: An Updated Review. Biomedicines. 2024; 12(8):1932. https://doi.org/10.3390/biomedicines12081932
Chicago/Turabian StyleRibeiro, Bárbara, Melissa Mariana, Margarida Lorigo, Denise Oliani, Ana Cristina Ramalhinho, and Elisa Cairrao. 2024. "Association between the Exposure to Phthalates and the Risk of Endometriosis: An Updated Review" Biomedicines 12, no. 8: 1932. https://doi.org/10.3390/biomedicines12081932
APA StyleRibeiro, B., Mariana, M., Lorigo, M., Oliani, D., Ramalhinho, A. C., & Cairrao, E. (2024). Association between the Exposure to Phthalates and the Risk of Endometriosis: An Updated Review. Biomedicines, 12(8), 1932. https://doi.org/10.3390/biomedicines12081932