A High-Grade Glioma, Not Elsewhere Classified in an Older Adult with Discordant Genetic and Epigenetic Analyses
Abstract
:1. Introduction
2. Detailed Case Description
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATRX | alpha thalassemia/mental retardation syndrome X-linked |
BRAF | B-Raf proto-oncogene |
CDKN2A | cyclin-dependent kinase inhibitor 2A |
CNS | central nervous system |
EGFR | epidermal growth factor receptor |
FGFR1 | fibroblast growth factor receptor 1 |
GTR | gross total resection |
H3-3A | H3 histone family member 3 |
HGAP | high-grade astrocytoma with piloid features |
IDH | isocitrate dehydrogenase |
HGG | high-grade gliomas |
IHC | immunohistochemistry |
MAPK | mitogen-activated protein kinase |
MGMT | O6-methylguanine-DNA-methyltransferase |
NEC | not elsewhere classified |
NF1 | neurofibromatosis type 1 |
OS | overall survival |
PTEN | Phosphatase and TENsin homolog deleted on chromosome 10 |
RT | radiation therapy |
STR | subtotal resection |
TERT | telomerase reverse transcriptase |
WHO | World Health Organization |
References
- Capper, D.; Jones, D.T.W.; Sill, M.; Hovestadt, V.; Schrimpf, D.; Sturm, D.; Koelsche, C.; Sahm, F.; Chavez, L.; Reuss, D.E.; et al. DNA methylation-based classification of central nervous system tumours. Nature 2018, 555, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Capper, D.; Stichel, D.; Sahm, F.; Jones, D.T.W.; Schrimpf, D.; Sill, M.; Schmid, S.; Hovestadt, V.; Reuss, D.E.; Koelsche, C.; et al. Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: The Heidelberg experience. Acta Neuropathol. 2018, 136, 181–210. [Google Scholar] [CrossRef]
- Jaunmuktane, Z.; Capper, D.; Jones, D.T.W.; Schrimpf, D.; Sill, M.; Dutt, M.; Suraweera, N.; Pfister, S.M.; von Deimling, A.; Brandner, S. Methylation array profiling of adult brain tumours: Diagnostic outcomes in a large, single centre. Acta Neuropathol. Commun. 2019, 7, 24. [Google Scholar] [CrossRef]
- Tran, S.; Bielle, F. WHO 2021 and beyond: New types, molecular markers and tools for brain tumor classification. Curr. Opin. Oncol. 2022, 34, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Wenger, A.; Caren, H. Methylation Profiling in Diffuse Gliomas: Diagnostic Value and Considerations. Cancers 2022, 14, 5679. [Google Scholar] [CrossRef]
- Noushmehr, H.; Weisenberger, D.J.; Diefes, K.; Phillips, H.S.; Pujara, K.; Berman, B.P.; Pan, F.; Pelloski, C.E.; Sulman, E.P.; Bhat, K.P.; et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010, 17, 510–522. [Google Scholar] [CrossRef]
- Turcan, S.; Rohle, D.; Goenka, A.; Walsh, L.A.; Fang, F.; Yilmaz, E.; Campos, C.; Fabius, A.W.; Lu, C.; Ward, P.S.; et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012, 483, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, A.F.; Assenov, Y.; Martin-Subero, J.I.; Balint, B.; Siebert, R.; Taniguchi, H.; Yamamoto, H.; Hidalgo, M.; Tan, A.C.; Galm, O.; et al. A DNA methylation fingerprint of 1628 human samples. Genome Res. 2012, 22, 407–419. [Google Scholar] [CrossRef]
- Reinhardt, A.; Stichel, D.; Schrimpf, D.; Sahm, F.; Korshunov, A.; Reuss, D.E.; Koelsche, C.; Huang, K.; Wefers, A.K.; Hovestadt, V.; et al. Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol. 2018, 136, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Pratt, D.; Abdullaev, Z.; Papanicolau-Sengos, A.; Ketchum, C.; Panneer Selvam, P.; Chung, H.J.; Lee, I.; Raffeld, M.; Gilbert, M.R.; Armstrong, T.S.; et al. High-grade glioma with pleomorphic and pseudopapillary features (HPAP): A proposed type of circumscribed glioma in adults harboring frequent TP53 mutations and recurrent monosomy 13. Acta Neuropathol. 2022, 143, 403–414. [Google Scholar] [CrossRef]
- Bender, K.; Perez, E.; Chirica, M.; Onken, J.; Kahn, J.; Brenner, W.; Ehret, F.; Euskirchen, P.; Koch, A.; Capper, D.; et al. High-grade astrocytoma with piloid features (HGAP): The Charite experience with a new central nervous system tumor entity. J. Neuro-Oncol. 2021, 153, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Cimino, P.J.; Ketchum, C.; Turakulov, R.; Singh, O.; Abdullaev, Z.; Giannini, C.; Pytel, P.; Lopez, G.Y.; Colman, H.; Nasrallah, M.P.; et al. Expanded analysis of high-grade astrocytoma with piloid features identifies an epigenetically and clinically distinct subtype associated with neurofibromatosis type 1. Acta Neuropathol. 2023, 145, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, F.J.; Brosnan-Cashman, J.A.; Allen, S.J.; Vizcaino, M.A.; Giannini, C.; Camelo-Piragua, S.; Webb, M.; Matsushita, M.; Wadhwani, N.; Tabbarah, A.; et al. Alternative lengthening of telomeres, ATRX loss and H3-K27M mutations in histologically defined pilocytic astrocytoma with anaplasia. Brain Pathol. 2019, 29, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Soni, N.; Agarwal, A.; Ajmera, P.; Mehta, P.; Gupta, V.; Vibhute, M.; Gubbiotti, M.; Mark, I.T.; Messina, S.A.; Mohan, S.; et al. High-Grade Astrocytoma with Piloid Features: A Dual Institutional Review of Imaging Findings of a Novel Entity. AJNR Am. J. Neuroradiol. 2024, 45, 468–474. [Google Scholar] [CrossRef]
- Kline, C.N.; Joseph, N.M.; Grenert, J.P.; van Ziffle, J.; Talevich, E.; Onodera, C.; Aboian, M.; Cha, S.; Raleigh, D.R.; Braunstein, S.; et al. Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro-Oncology 2017, 19, 699–709. [Google Scholar] [CrossRef]
- Zhang, Y.; Lucas, C.G.; Young, J.S.; Morshed, R.A.; McCoy, L.; Oberheim Bush, N.A.; Taylor, J.W.; Daras, M.; Butowski, N.A.; Villanueva-Meyer, J.E.; et al. Prospective genomically guided identification of “early/evolving” and “undersampled” IDH-wildtype glioblastoma leads to improved clinical outcomes. Neuro-Oncology 2022, 24, 1749–1762. [Google Scholar] [CrossRef]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef]
- Louis, D.N.; Wesseling, P.; Paulus, W.; Giannini, C.; Batchelor, T.T.; Cairncross, J.G.; Capper, D.; Figarella-Branger, D.; Lopes, M.B.; Wick, W.; et al. cIMPACT-NOW update 1: Not Otherwise Specified (NOS) and Not Elsewhere Classified (NEC). Acta Neuropathol. 2018, 135, 481–484. [Google Scholar] [CrossRef]
- Aldape, K.; Zadeh, G.; Mansouri, S.; Reifenberger, G.; von Deimling, A. Glioblastoma: Pathology, molecular mechanisms and markers. Acta Neuropathol. 2015, 129, 829–848. [Google Scholar] [CrossRef] [PubMed]
- Stichel, D.; Ebrahimi, A.; Reuss, D.; Schrimpf, D.; Ono, T.; Shirahata, M.; Reifenberger, G.; Weller, M.; Hanggi, D.; Wick, W.; et al. Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol. 2018, 136, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Brat, D.J.; Aldape, K.; Colman, H.; Holland, E.C.; Louis, D.N.; Jenkins, R.B.; Kleinschmidt-DeMasters, B.K.; Perry, A.; Reifenberger, G.; Stupp, R.; et al. cIMPACT-NOW update 3: Recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol. 2018, 136, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Tesileanu, C.M.S.; Dirven, L.; Wijnenga, M.M.J.; Koekkoek, J.A.F.; Vincent, A.; Dubbink, H.J.; Atmodimedjo, P.N.; Kros, J.M.; van Duinen, S.G.; Smits, M.; et al. Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: A confirmation of the cIMPACT-NOW criteria. Neuro-Oncology 2020, 22, 515–523. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. Central Nervous System Tumours; International Agency for Research on Cancer, World Health Organization: Lyon, France, 2021. [Google Scholar]
- Cancer Genome Atlas Research, N.; Brat, D.J.; Verhaak, R.G.; Aldape, K.D.; Yung, W.K.; Salama, S.R.; Cooper, L.A.; Rheinbay, E.; Miller, C.R.; Vitucci, M.; et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N. Engl. J. Med. 2015, 372, 2481–2498. [Google Scholar] [CrossRef]
- Raghu, A.L.B.; Chen, J.A.; Valdes, P.A.; Essayed, W.; Claus, E.; Arnaout, O.; Smith, T.R.; Chiocca, E.A.; Peruzzi, P.P.; Bernstock, J.D. Cerebellar High-Grade Glioma: A Translationally Oriented Review of the Literature. Cancers 2022, 15, 174. [Google Scholar] [CrossRef]
- Zander, C.; Diebold, M.; Shah, M.J.; Malzkorn, B.; Prinz, M.; Urbach, H.; Erny, D.; Taschner, C.A. Freiburg Neuropathology Case Conference: 68-Year-Old Patient with Slurred Speech, Double Vision, and Increasing Gait Disturbance. Clin. Neuroradiol. 2024, 34, 279–286. [Google Scholar] [CrossRef]
- Nawa, S.; Ohka, F.; Motomura, K.; Takeuchi, K.; Nagata, Y.; Yamaguchi, J.; Saito, R. Obstructive Hydrocephalus Due to Aggressive Posterior Fossa Tumor Exhibiting Histological Characteristics of Pilocytic Astrocytoma in Two Adult Neurofibromatosis Type 1 (NF1) Cases. Cureus 2024, 16, e58697. [Google Scholar] [CrossRef]
- Gareton, A.; Tauziede-Espariat, A.; Dangouloff-Ros, V.; Roux, A.; Saffroy, R.; Castel, D.; Kergrohen, T.; Fina, F.; Figarella-Branger, D.; Pages, M.; et al. The histomolecular criteria established for adult anaplastic pilocytic astrocytoma are not applicable to the pediatric population. Acta Neuropathol. 2020, 139, 287–303. [Google Scholar] [CrossRef]
- Lassman, A.B.; Sepulveda-Sanchez, J.M.; Cloughesy, T.F.; Gil-Gil, M.J.; Puduvalli, V.K.; Raizer, J.J.; De Vos, F.Y.F.; Wen, P.Y.; Butowski, N.A.; Clement, P.M.J.; et al. Infigratinib in Patients with Recurrent Gliomas and FGFR Alterations: A Multicenter Phase II Study. Clin. Cancer Res. 2022, 28, 2270–2277. [Google Scholar] [CrossRef]
- Loilome, W.; Joshi, A.D.; ap Rhys, C.M.; Piccirillo, S.; Vescovi, A.L.; Gallia, G.L.; Riggins, G.J. Glioblastoma cell growth is suppressed by disruption of Fibroblast Growth Factor pathway signaling. J. Neuro-Oncol. 2009, 94, 359–366. [Google Scholar] [CrossRef]
- Yoza, K.; Himeno, R.; Amano, S.; Kobashigawa, Y.; Amemiya, S.; Fukuda, N.; Kumeta, H.; Morioka, H.; Inagaki, F. Biophysical characterization of drug-resistant mutants of fibroblast growth factor receptor 1. Genes Cells 2016, 21, 1049–1058. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, B.T.; Huse, J.T. Classification of adult-type diffuse gliomas: Impact of the World Health Organization 2021 update. Brain Pathol. 2022, 32, e13062. [Google Scholar] [CrossRef]
- Cimmino, F.; Montella, A.; Tirelli, M.; Avitabile, M.; Lasorsa, V.A.; Visconte, F.; Cantalupo, S.; Maiorino, T.; De Angelis, B.; Morini, M.; et al. FGFR1 is a potential therapeutic target in neuroblastoma. Cancer Cell Int. 2022, 22, 174. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, M.F.; Janovitz, T.; Dias-Santagata, D.; Siegmund, S.E.; Nardi, V.; Wirth, L.J.; Randolph, G.W.; Lennerz, J.K.; Decker, B.; Nose, V.; et al. FGFR Alterations in Thyroid Carcinoma: A Novel Class of Primary Drivers with Significant Therapeutic Implications and Secondary Molecular Events Potentially Mediating Resistance in Thyroid Malignancy. Thyroid 2024. [Google Scholar] [CrossRef] [PubMed]
Author/Year | Age/Sex | Location | Molecular Alterations | Surgery (s) | RT (Gy) | PFS (m) | OS (m) |
---|---|---|---|---|---|---|---|
Yuen et al., 2024 | 72/M | Temporal lobe | CDKN2A/B homozygous deletion FGFR1 p.N546K ATRX loss (on IHC) BRAF, NF1, KRAS, IDH1, IDH2, H3-3A, TERT, EGFR, PTEN, PDGFRA–wild-type | NTR | 60 | 15 | alive at 15 m follow-up |
Bender et al., 2021 [13] | 71/M | Spinal cord | CDKN2A/B deletion ATRX loss (on IHC) FGFR1 complex rearrangement IDH 1/2 wild-type MGMT unmethylated | STR → GTR | 50.4 | 3.6 | alive at 14.6 m follow-up |
49/F | Pons Cerebellar peduncle | CDKN2A/B deletion ATRX loss (on IHC) IDH1 R132H IHC negative MGMT unmethylated | biopsy | 54 | 7.6 | 9.1 | |
67/M | Spinal cord | CDKN2A/B deletion ATRX loss (on IHC) IDH 1/2 wild-type MGMT unmethylated | STR | n/a | n/a | n/a | |
53/M | Brainstem | CDKN2A/B deletion ATRX retained (on IHC) IDH 1/2 wild-type H3-3A wild-type BRAF V600 hotspot-wild-type MGMT methylated | STR | 54 | n/a | 18.6 | |
47/M | Mesencephalon—diencephalon | NF1 syndrome CDKN2A/B deletion ATRX loss (on IHC) MGMT unmethylated | bx | n/a | n/a | 1.8 | |
44/M | Parieto- occipital | NF1 mutation in the setting of NF1 syndrome CDKN2A/B deletion ATRX retained (on IHC) IDH1 R132H IHC negative H3 K27M IHC negative BRAF V600 wild-type, MGMT methylated | STR → STR | 59.2 | 5.4 | 14.8 | |
Cimino et al., 2023 [14] (n = 144) | 43 (mean)/ F (n = 59), M (n = 85) | Posterior fossa (81/130, 62%) Supratentorial (34/130, 26%) Spinal Cord (13/130, 10%) | CDKN2A deletion (84.1%) ATRX mutation or loss on IHC (58.6%) NF1 alterations (40.4%) FGFR1 alterations (33.1%) BRAF alterations (20.9%) KRAS (1.1%) | n/a | n/a | n/a | n/a |
Reinhardt et al., 2018 [11] (n = 102) | 41.5 (median)/ F (n = 40), M (n = 43) | Posterior fossa (74%) | CDKN2A/B deletion (66/83, 80%) ATRX mutations/loss on IHC (33/74, 45%) NF1 alterations (20/67, 30%) BRAF fusion (15/74, 20%) FGFR1 alterations (12/64, 19%) KRAS mutation (2/64, 3%) IDH 1/2 wild-type (100%) MGMT methylated (38/83, 46%) | n/a | n/a | n/a | n/a |
Nawa et al., 2024 [29] | 34/M | Cerebellum/pons | CDKN2A/B homozygous deletion | STR | 54 | 16 | n/a |
37/F | Cerebellum, spinal cord | CDKN2A/B homozygous deletion | STR | 60 | 12 | n/a | |
Gareton et al., 2020 [30] | 8/F | Supratentorial Parietal lobe | ATRX retained (on IHC) CDKN2A intact FGFR1 p.K678E RAD50 p.R365Q MDM2 amplification Monosomy 10q | GTR | RT dose n/a | 13.4 | 37 |
Zander et al., 2024 [28] | 68/M | Cerebellum | NF1 truncating mutation CDKN2A deletion (likely not homozygous) ATRX retained (on IHC) BRAF, IDH1, IDH2, H3-3A, TERT wild-type | GTR | n/a | n/a | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuen, C.A.; Bao, S.; Kong, X.-T.; Terry, M.; Himstead, A.; Zheng, M.; Pekmezci, M. A High-Grade Glioma, Not Elsewhere Classified in an Older Adult with Discordant Genetic and Epigenetic Analyses. Biomedicines 2024, 12, 2042. https://doi.org/10.3390/biomedicines12092042
Yuen CA, Bao S, Kong X-T, Terry M, Himstead A, Zheng M, Pekmezci M. A High-Grade Glioma, Not Elsewhere Classified in an Older Adult with Discordant Genetic and Epigenetic Analyses. Biomedicines. 2024; 12(9):2042. https://doi.org/10.3390/biomedicines12092042
Chicago/Turabian StyleYuen, Carlen A., Silin Bao, Xiao-Tang Kong, Merryl Terry, Alexander Himstead, Michelle Zheng, and Melike Pekmezci. 2024. "A High-Grade Glioma, Not Elsewhere Classified in an Older Adult with Discordant Genetic and Epigenetic Analyses" Biomedicines 12, no. 9: 2042. https://doi.org/10.3390/biomedicines12092042
APA StyleYuen, C. A., Bao, S., Kong, X. -T., Terry, M., Himstead, A., Zheng, M., & Pekmezci, M. (2024). A High-Grade Glioma, Not Elsewhere Classified in an Older Adult with Discordant Genetic and Epigenetic Analyses. Biomedicines, 12(9), 2042. https://doi.org/10.3390/biomedicines12092042