Iron Trace Elements Concentration in PM10 and Alzheimer’s Disease in Lima, Peru: Ecological Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Area
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, Y.; Chang, X.; Lang, M. Iron Homeostasis Disorder and Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 12442. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda-Lara, A.; Sepúlveda, P.; Marzuca-Nassr, G.N. Resistance Exercise Training as a New Trend in Alzheimer’s Disease Research: From Molecular Mechanisms to Prevention. Int. J. Mol. Sci. 2024, 25, 7084. [Google Scholar] [CrossRef]
- Li, X.; Feng, X.; Sun, X.; Hou, N.; Han, F.; Liu, Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front. Aging Neurosci. 2022, 14, 937486. [Google Scholar] [CrossRef] [PubMed]
- Fruhwürth, S.; Zetterberg, H.; Paludan, S.R. Microglia and amyloid plaque formation in Alzheimer’s disease—Evidence, possible mechanisms, and future challenges. J. Neuroimmunol. 2024, 390, 578342. [Google Scholar] [CrossRef] [PubMed]
- Parums, D.V. A Review of the Current Status of Disease-Modifying Therapies and Prevention of Alzheimer’s Disease. Med. Sci. Monit. 2024, 30, e945091. [Google Scholar] [CrossRef] [PubMed]
- Hajat, A.; Park, C.; Adam, C.; Fitzpatrick, A.L.; Ilango, S.D.; Leary, C.; Libby, T.; Lopez, O.; Semmens, E.O.; Kaufman, J.D. Air pollution and plasma amyloid beta in a cohort of older adults: Evidence from the Ginkgo Evaluation of Memory study. Environ. Int. 2023, 172, 107800. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Solt, A.C.; Henríquez-Roldán, C.; Torres-Jardón, R.; Nuse, B.; Herritt, L.; Villarreal-Calderón, R.; Osnaya, N.; Stone, I.; García, R.; et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol. Pathol. 2008, 36, 289–310. [Google Scholar] [CrossRef]
- Casey, E.; Li, Z.; Liang, D.; Ebelt, S.; Levey, A.I.; Lah, J.J.; Wingo, T.S.; Hüls, A. Association between Fine Particulate Matter Exposure and Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease among a Cognitively Healthy Population-Based Cohort. Environ. Health Perspect. 2024, 132, 47001. [Google Scholar] [CrossRef]
- Thiankhaw, K.; Chattipakorn, N.; Chattipakorn, S.C. PM2.5 exposure in association with AD-related neuropathology and cognitive outcomes. Environ. Pollut. 2022, 292, 118320. [Google Scholar] [CrossRef]
- Fu, P.; Yung, K.K.L. Air Pollution and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Alzheimers Dis. 2020, 77, 701–714. [Google Scholar] [CrossRef]
- Chen, Y.; Kong, D.; Fu, J.; Zhang, Y.; Zhao, Y.; Liu, Y.; Chang, Z.g.; Liu, Y.; Liu, X.; Xu, K.; et al. Associations between ambient temperature and adult asthma hospitalizations in Beijing, China: A time-stratified case-crossover study. Respir. Res. 2022, 23, 38. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.C.; Nyarko Hukportie, D.; Wan, Z.; Li, F.R.; Wu, X.B. The Association Between Exposure to Air Pollution and Dementia Incidence: The Modifying Effect of Smoking. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 2309–2317. [Google Scholar] [CrossRef]
- Lee, J.H.; Byun, M.S.; Yi, D.; Ko, K.; Jeon, S.Y.; Sohn, B.K.; Lee, J.Y.; Lee, Y.; Joung, H.; Lee, D.Y. Long-Term Exposure to PM10 and in vivo Alzheimer’s Disease Pathologies. J. Alzheimers Dis. 2020, 78, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.D.; Barratt, B.M.; Fuller, G.W.; Kelly, F.J.; Loxham, M.; Nicolosi, E.; Priestman, M.; Tremper, A.H.; Green, D.C. PM(2.5) on the London Underground. Environ. Int. 2020, 134, 105188. [Google Scholar] [CrossRef] [PubMed]
- Aust, A.E.; Ball, J.C.; Hu, A.A.; Lighty, J.S.; Smith, K.R.; Straccia, A.M.; Veranth, J.M.; Young, W.C. Particle characteristics responsible for effects on human lung epithelial cells. Res. Rep. Health Eff. Inst. 2002, 110, 1–65; discussion 67–76. [Google Scholar]
- Mateo, D.; Marquès, M.; Torrente, M. Metals linked with the most prevalent primary neurodegenerative dementias in the elderly: A narrative review. Environ. Res. 2023, 236, 116722. [Google Scholar] [CrossRef]
- Tyczyńska, M.; Gędek, M.; Brachet, A.; Stręk, W.; Flieger, J.; Teresiński, G.; Baj, J. Trace Elements in Alzheimer’s Disease and Dementia: The Current State of Knowledge. J. Clin. Med. 2024, 13, 2381. [Google Scholar] [CrossRef]
- Kawahara, M.; Kato-Negishi, M.; Tanaka, K.I. Dietary Trace Elements and the Pathogenesis of Neurodegenerative Diseases. Nutrients 2023, 15, 2067. [Google Scholar] [CrossRef]
- Dusek, P.; Hofer, T.; Alexander, J.; Roos, P.M.; Aaseth, J.O. Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022, 12, 714. [Google Scholar] [CrossRef]
- Islam, F.; Shohag, S.; Akhter, S.; Islam, M.R.; Sultana, S.; Mitra, S.; Chandran, D.; Khandaker, M.U.; Ashraf, G.M.; Idris, A.M.; et al. Exposure of metal toxicity in Alzheimer’s disease: An extensive review. Front. Pharmacol. 2022, 13, 903099. [Google Scholar] [CrossRef]
- Opazo, C. Metales de transición y enfermedad de Alzheimer. Revista Española de Geriatría y Gerontología 2005, 40, 365–370. [Google Scholar] [CrossRef]
- Mezzaroba, L.; Alfieri, D.F.; Colado Simão, A.N.; Vissoci Reiche, E.M. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 2019, 74, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Dornelles, A.S.; Garcia, V.A.; de Lima, M.N.; Vedana, G.; Alcalde, L.A.; Bogo, M.R.; Schröder, N. mRNA expression of proteins involved in iron homeostasis in brain regions is altered by age and by iron overloading in the neonatal period. Neurochem. Res. 2010, 35, 564–571. [Google Scholar] [CrossRef]
- González-Maciel, A.; Reynoso-Robles, R.; Torres-Jardón, R.; Mukherjee, P.S.; Calderón-Garcidueñas, L. Combustion-Derived Nanoparticles in Key Brain Target Cells and Organelles in Young Urbanites: Culprit Hidden in Plain Sight in Alzheimer’s Disease Development. J. Alzheimers Dis. 2017, 59, 189–208. [Google Scholar] [CrossRef]
- Serafin, P.; Zaremba, M.; Sulejczak, D.; Kleczkowska, P. Air Pollution: A Silent Key Driver of Dementia. Biomedicines 2023, 11, 1477. [Google Scholar] [CrossRef]
- Cory-Slechta, D.A.; Sobolewski, M.; Marvin, E.; Conrad, K.; Merrill, A.; Anderson, T.; Jackson, B.P.; Oberdorster, G. The Impact of Inhaled Ambient Ultrafine Particulate Matter on Developing Brain: Potential Importance of Elemental Contaminants. Toxicol. Pathol. 2019, 47, 976–992. [Google Scholar] [CrossRef] [PubMed]
- Maher, B.A.; Ahmed, I.A.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.; Torres-Jardón, R.; Calderon-Garciduenas, L. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA 2016, 113, 10797–10801. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, M.; Zhou, C.; Sun, L.; Cai, W.; Li, X. Ferroptosis and its implications in treating cognitive impairment caused by aging: A study on the mechanism of repetitive transcranial magnetic stimulation. Exp. Gerontol. 2024, 192, 112443. [Google Scholar] [CrossRef]
- Sobolewski, M.; Conrad, K.; Marvin, E.; Eckard, M.; Goeke, C.M.; Merrill, A.K.; Welle, K.; Jackson, B.P.; Gelein, R.; Chalupa, D.; et al. The potential involvement of inhaled iron (Fe) in the neurotoxic effects of ultrafine particulate matter air pollution exposure on brain development in mice. Part. Fibre Toxicol. 2022, 19, 56. [Google Scholar] [CrossRef]
- Bennett, E.E.; Song, Z.; Lynch, K.M.; Liu, C.; Stapp, E.K.; Xu, X.; Park, E.S.; Ying, Q.; Smith, R.L.; Stewart, J.D.; et al. The association of long-term exposure to criteria air pollutants, fine particulate matter components, and airborne trace metals with late-life brain amyloid burden in the Atherosclerosis Risk in Communities (ARIC) study. Environ. Int. 2023, 180, 108200. [Google Scholar] [CrossRef]
- Hussain, R.; Graham, U.; Elder, A.; Nedergaard, M. Air pollution, glymphatic impairment, and Alzheimer’s disease. Trends Neurosci. 2023, 46, 901–911. [Google Scholar] [CrossRef]
- Motesaddi Zarandi, S.; Shahsavani, A.; Khodagholi, F.; Fakhri, Y. Co-exposure to ambient PM2.5 plus gaseous pollutants increases amyloid β1–42 accumulation in the hippocampus of male and female rats. Toxin Rev. 2021, 40, 300–309. [Google Scholar] [CrossRef]
- Jamwal, R.; Amit; Sengar, M.; Jamwal, R. Determination of geographical origin of Mustard oil based on multi-elemental fingerprinting using inductively coupled plasma mass spectrometry (ICP-MS) and chemometric analysis. Food Chem. Adv. 2023, 2, 100233. [Google Scholar] [CrossRef]
- Olazarán, J.; Carnero-Pardo, C.; Fortea, J.; Sánchez-Juan, P.; García-Ribas, G.; Viñuela, F.; Martínez-Lage, P.; Boada, M. Prevalence of treated patients with Alzheimer’s disease: Current trends and COVID-19 impact. Alzheimers Res. Ther. 2023, 15, 130. [Google Scholar] [CrossRef]
- Choi, H.G.; Kim, J.H.; Kim, J.H.; Kim, E.S.; Park, H.Y.; Min, K.W.; Kwon, M.J. Associations between proton pump inhibitors and Alzheimer’s disease: A nested case-control study using a Korean nationwide health screening cohort. Alzheimers Res. Ther. 2022, 14, 91. [Google Scholar] [CrossRef] [PubMed]
- Kallionpää, R.A.; Valtanen, M.; Auranen, K.; Uusitalo, E.; Rinne, J.O.; Peltonen, S.; Peltonen, J. Increased risk for dementia in neurofibromatosis type 1. Genet. Med. 2021, 23, 2219–2222. [Google Scholar] [CrossRef] [PubMed]
- Cerón Bretón, J.G.; Cerón Bretón, R.M.; Espinosa Guzman, A.A.; Guarnaccia, C.; Martínez Morales, S.; Lara Severino, R.d.C.; Rangel Marrón, M.; Hernández López, G.; Carranco Lozada, S.E.; Kahl, J.D.W.; et al. Trace Metal Content and Health Risk Assessment of PM10 in an Urban Environment of León, Mexico. Atmosphere 2019, 10, 573. [Google Scholar] [CrossRef]
- Koukoulakis, K.G.; Chrysohou, E.; Kanellopoulos, P.G.; Karavoltsos, S.; Katsouras, G.; Dassenakis, M.; Nikolelis, D.; Bakeas, E. Trace elements bound to airborne PM10 in a heavily industrialized site nearby Athens: Seasonal patterns, emission sources, health implications. Atmos. Pollut. Res. 2019, 10, 1347–1356. [Google Scholar] [CrossRef]
- Bodor, K.; Bodor, Z.; Szép, R. Spatial distribution of trace elements (As, Cd, Ni, Pb) from PM(10) aerosols and human health impact assessment in an Eastern European country, Romania. Environ. Monit. Assess. 2021, 193, 176. [Google Scholar] [CrossRef]
- Soria Lopez, J.A.; González, H.M.; Léger, G.C. Alzheimer’s disease. Handb. Clin. Neurol. 2019, 167, 231–255. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, X.; Zhao, X.; Chang, H.; Zhang, J.; Gao, Z.; Mi, Y.; Chen, Y.; Zhang, H.; Huang, C.; et al. Global ambient particulate matter pollution and neurodegenerative disorders: A systematic review of literature and meta-analysis. Environ. Sci. Pollut. Res. Int. 2023, 30, 39418–39430. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, V.; Trushna, T.; Raj, D.; Tiwari, R.R. Is Air Pollution Associated with Increased Risk of Dementia? A Meta-Analysis of Epidemiological Research. Neurol. India 2022, 70, 1004–1019. [Google Scholar] [CrossRef] [PubMed]
- Ordoñez-Aquino, C.; Gonzales-Arimborgo, C.; Gonzales, G.F. Manganeso, otro contaminante en el aire que afecta el rendimiento escolar en el Perú. Revista de la Sociedad Peruana de Medicina Interna 2023, 36, e748. [Google Scholar] [CrossRef]
- Talpur, S.; Afridi, H.I.; Kazi, T.G.; Talpur, F.N. Interaction of Lead with Calcium, Iron, and Zinc in the Biological Samples of Malnourished Children. Biol. Trace Elem. Res. 2018, 183, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Fasae, K.D.; Abolaji, A.O.; Faloye, T.R.; Odunsi, A.Y.; Oyetayo, B.O.; Enya, J.I.; Rotimi, J.A.; Akinyemi, R.O.; Whitworth, A.J.; Aschner, M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: Limitations, and current and future perspectives. J. Trace Elem. Med. Biol. 2021, 67, 126779. [Google Scholar] [CrossRef]
- Ngui, E.M.; Khasakhala, L.; Ndetei, D.; Roberts, L.W. Mental disorders, health inequalities and ethics: A global perspective. Int. Rev. Psychiatry 2010, 22, 235–244. [Google Scholar] [CrossRef]
- Eckard, M.L.; Marvin, E.; Conrad, K.; Oberdörster, G.; Sobolewski, M.; Cory-Slechta, D.A. Neonatal exposure to ultrafine iron but not combined iron and sulfur aerosols recapitulates air pollution-induced impulsivity in mice. Neurotoxicology 2023, 94, 191–205. [Google Scholar] [CrossRef]
- Lin, F.C.; Chen, C.Y.; Lin, C.W.; Wu, M.T.; Chen, H.Y.; Huang, P. Air Pollution Is Associated with Cognitive Deterioration of Alzheimer’s Disease. Gerontology 2022, 68, 53–61. [Google Scholar] [CrossRef]
- Lee, Y.G.; Yoon, S.J.; Yoon, S.H.; Kang, S.W.; Jeon, S.; Kim, M.; Shin, D.A.; Nam, C.M.; Ye, B.S. Air pollution is associated with faster cognitive decline in Alzheimer’s disease. Ann. Clin. Transl. Neurol. 2023, 10, 964–973. [Google Scholar] [CrossRef]
- Górska, A.; Markiewicz-Gospodarek, A.; Markiewicz, R.; Chilimoniuk, Z.; Borowski, B.; Trubalski, M.; Czarnek, K. Distribution of Iron, Copper, Zinc and Cadmium in Glia, Their Influence on Glial Cells and Relationship with Neurodegenerative Diseases. Brain Sci. 2023, 13, 911. [Google Scholar] [CrossRef]
- Lopera, F.; Custodio, N.; Rico-Restrepo, M.; Allegri, R.F.; Barrientos, J.D.; Garcia Batres, E.; Calandri, I.L.; Calero Moscoso, C.; Caramelli, P.; Duran Quiroz, J.C.; et al. A task force for diagnosis and treatment of people with Alzheimer’s disease in Latin America. Front. Neurol. 2023, 14, 1198869. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ccoyllo, O.R.; Gala-Barraza, Y.; Arratea-Morán, J. Analyzing PM10 concentrations and their trace elements in southern Lima, Peru: A case study from March 06th to 13th, 2020. DYNA 2022, 89, 18–23. [Google Scholar] [CrossRef]
- Tapia, V.L.; Vasquez-Apestegui, B.V.; Alcantara-Zapata, D.; Vu, B.; Steenland, K.; Gonzales, G.F. Association between maximum temperature and PM(2.5) with pregnancy outcomes in Lima, Peru. Environ. Epidemiol. 2021, 5, e179. [Google Scholar] [CrossRef] [PubMed]
- Vu, B.N.; Tapia, V.; Ebelt, S.; Gonzales, G.F.; Liu, Y.; Steenland, K. The association between asthma emergency department visits and satellite-derived PM(2.5) in Lima, Peru. Environ. Res. 2021, 199, 111226. [Google Scholar] [CrossRef] [PubMed]
- Tapia, V.; Steenland, K.; Sarnat, S.E.; Vu, B.; Liu, Y.; Sánchez-Ccoyllo, O.; Vasquez, V.; Gonzales, G.F. Time-series analysis of ambient PM(2.5) and cardiorespiratory emergency room visits in Lima, Peru during 2010-2016. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 680–688. [Google Scholar] [CrossRef]
- Vasquez-Apestegui, B.V.; Parras-Garrido, E.; Tapia, V.; Paz-Aparicio, V.M.; Rojas, J.P.; Sanchez-Ccoyllo, O.R.; Gonzales, G.F. Association between air pollution in Lima and the high incidence of COVID-19: Findings from a post hoc analysis. BMC Public Health 2021, 21, 1161. [Google Scholar] [CrossRef]
Metals (ng/m3 ± SD) | Comas | Lima Downtown | Lince | El Agustino | San Juan de Miraflores | Santiago de Surco | p-Value ¥ |
---|---|---|---|---|---|---|---|
#Observations | 41 | 41 | 42 | 40 | 38 | 40 | |
Fe | 2096 ± 750 | 868 ± 223 | 692 ± 172 | 1089 ± 319 | 1568 ± 507 | 694 ± 178 | >0.001 |
Cd | 2.4 ± 0.3 | 2.3 ± 0.2 | 2.3 ± 0.2 | 2.3 ± 0.7 | 2.3 ± 0.0 | 2.3 ± 0.1 | 0.174 |
Cr | 6.0 ± 1.4 | 5.6 ± 0.5 | 5.5 ± 0.7 | 6.1 ± 2.9 | 5.8 ± 0.8 | 6.0 ± 3.4 | 0.180 |
Cu | 63.1 ± 31.3 | 34.6 ± 12.5 | 44.8 ± 17.7 | 43.4 ± 53.9 | 72.0 ± 27.1 | 56.3 ± 21.9 | >0.001 |
Li | 168.7 ± 2.9 | 166.9 ± 4.3 | 165.6 ± 5.9 | 165.2 ± 8.6 | 167.1 ± 1.8 | 167.7 ± 5.2 | 0.014 |
Mn | 44.3 ± 26.4 | 17.0 ± 12.9 | 14.0 ± 8.0 | 24.9 ± 16.3 | 25.3 ± 16.0 | 14.6 ± 11.0 | >0.001 |
Mo | 4.2 ± 0.4 | 4.2 ± 0.6 | 4.4 ± 2.6 | 4.6 ± 3.7 | 4.3 ± 1.3 | 4.1 ± 0.1 | 0.660 |
Ni | 8.1 ± 3.1 | 6.8 ± 1.5 | 6.5 ± 1.0 | 6.7 ± 2.3 | 6.5 ± 0.6 | 7.0 ± 2.6 | >0.001 |
Pb | 53.9 ± 29.3 | 18.5 ± 7.4 | 15.5 ± 3.5 | 25.5 ± 19.1 | 21.6 ± 8.8 | 15.8 ± 6.1 | >0.001 |
Sb | 12.2 ± 3.1 | 11.6 ± 1.7 | 11.6 ± 2.8 | 12.1 ± 4.2 | 11.5 ± 0.7 | 11.4 ± 0.4 | 0.296 |
Se | 71.7 ± 1.2 | 70.9 ± 1.8 | 70.4 ± 2.5 | 70.2 ± 3.6 | 71.0 ± 0.8 | 71.3 ± 2.2 | 0.526 |
Zn | 300.9 ± 119.5 | 95.5 ± 42.2 | 69.1 ± 22.3 | 118.4 ± 49.6 | 139.6 ± 81.8 | 75.9 ± 26.7 | >0.001 |
Be | 0.9 ± 0.01 | 0.9 ± 0.02 | 0.9 ± 0.1 | 0.9 ± 0.05 | 0.9 ± 0.001 | 0.9 ± 0.02 | 0.726 |
Co | 6.8 ± 0.1 | 6.8 ± 0.1 | 6.7 ± 0.2 | 6.7 ± 0.2 | 6.6 ± 1.1 | 6.8 ± 0.2 | 0.463 |
District | Comas | Lima Downtown | Lince | El Agustino | San Juan de Miraflores | Santiago de Surco | p-Value |
---|---|---|---|---|---|---|---|
Number of observations | 41 | 41 | 42 | 40 | 38 | 40 | |
AD + DAD (%) | 201 (7.50) | 1373 (51.25) | 22 (0.82) | 581 (21.69) | 478 (17.84) | 24 (0.90) | <0.001 |
AD cases (%) | 34 (2.82) | 857 (71.18) | 17 (1.41) | 92 (7.65) | 191 (15.86) | 13 (1.08) | <0.001 |
DAD cases (%) | 167 (11.32) | 516 (34.98) | 5 (0.34) | 489 (33.15) | 287 (19.46) | 11 (0.75) | <0.001 |
AD + DAD incidence (mean ± SD) α | 6.83 ± 4.49 | 69.90 ± 22.78 | 4.50 ± 14.75 | 62.28 ± 23.17 | 26.72 ± 9.86 | 0.89 ± 1.06 | <0.001 £ |
AD incidence (mean ± SD) α | 1.17 ± 1.47 | 43.01 ± 16.07 | 3.44 ± 14.72 | 10.83 ± 9.76 | 10.86 ± 7.01 | 0.44 ± 0.75 | <0.001 £ |
DAD incidence (mean ± SD) α | 5.66 ± 3.91 | 25.88 ± 11.45 | 1.06 ± 2.91 | 51.44 ± 24.07 | 15.86 ± 5.53 | 0.45 ± 0.91 | <0.001 £ |
Outcome | Mixed Effects | Complete Model β-Coeff (CI 95%) | Sensitivity Analysis Model IRR (CI 95%) |
---|---|---|---|
AD + DAD | Gaussian | 9.93 (2.93; 16.93) * | 5.77 (−0.97; 12.51) |
Negative binomial | 1.44 (1.15; 1.78) * | 1.38 (1.03; 1.84) * | |
AD | Gaussian | 3.29 (−1.50; 8.08) | 1.65 (−2.35; 5.64) |
Negative binomial | 1.47 (1.01; 2.12) * | 1.35 (0.76; 2.38) | |
DAD | Gaussian | 6.55 (1.50; 11.59) * | 4.31 (−1.27; 9.90) |
Negative binomial | 1.53 (1.18; 1.96) * | 1.36 (1.01; 1.83) * |
Outcome/Metal | Gaussian Mixed Effects | Negative Binomial Mixed Effects | |||
---|---|---|---|---|---|
Complete Model | Sensitivity Analysis Model | Complete Model | Sensitivity Analysis Model | ||
AD + DAD | |||||
log-Fe | 8.91 (−0.83; 18.66) | 4.47 (−4.46; 13.40) | 1.55 (1.09; 2.20) * | 1.43 (0.93; 2.21) | |
log-Pb | −7.11 (−16.09; 1.87) | −5.45 (−13.58; 2.67) | 0.73 (0.53; 1.01) | 0.73 (0.50; 1.07) | |
log-Cu | 0.49 (−5.18; 6.15) | −0.58 (−5.65; 4.49) | 0.92 (0.77; 1.09) | 0.90 (0.74; 1.10) | |
log-Zn | 1.04 (−7.55; 9.62) | 0.26 (−7.67; 8.19) | 1.00 (0.75; 1.32) | 0.95 (0.67; 1.33) | |
log-Mn | 2.03 (−0.33; 4.39) | 1.36 (−0.83; 3.54) | 1.09 (1.01; 1.17) * | 1.09 (0.99; 1.18) | |
AD | |||||
log-Fe | 2.14 (−4.83; 9.12) | 1.62 (−4.50; 7.74) | 1.32 (0.74; 2.34) | 1.51 (0.62; 3.71) | |
log-Pb | −3.09 (−9.52; 3.34) | −1.76 (−7.37; 3.85) | 0.72 (0.43; 1.22) | 0.77 (0.35; 1.69) | |
log-Cu | 1.65 (−2.41; 5.71) | 0.31 (−3.24; 3.86) | 0.99 (0.43; 1.22) | 0.88 (0.59; 1.32) | |
log-Zn | 0.15 (−6.00; 6.30) | −0.38 (−5.85; 5.09) | 1.07 (0.68; 1.68) | 0.84 (0.42; 1.67) | |
log-Mn | 1.37 (−0.32; 3.06) | 0.73 (−0.81; 2.28) | 1.15 (1.01; 1.29) * | 1.11 (0.93; 1.34) | |
DAD | |||||
log-Fe | 6.76 (0.07; 13.46) * | 3.86 (−3.06; 10.79) | 1.83 (1.21; 2.78) ** | 1.51 (0.96; 2.37) | |
log-Pb | −4.03 (−10.20; 2.14) | −4.11 (−10.42; 2.19) | 0.75 (0.52; 1.08) | 0.70 (0.47; 1.05) | |
log-Cu | −1.27 (−5.17; 2.62) | −0.97 (−4.90; 2.96) | 0.88 (0.71; 1.08) | 0.92 (0.74; 1.13) | |
log-Zn | 0.81 (−5.09; 6.71) | 0.42 (−5.73; 6.56) | 0.96 (0.69; 1.34) | 0.94 (0.66; 1.35) | |
log-Mn | 0.67 (−0.95; 2.30) | 0.62 (−1.08; 2.31) | 1.04 (0.95; 1.14) | 1.06 (0.96; 1.16) |
Analysis/Outcome | GLM Gaussian | GLM Negative Binomial # | Correlation # | |
---|---|---|---|---|
AD + DAD | ||||
Fe | 1.21 (0.72–1.70) ** | 7.06 (4.26–11.68) ** | - | |
SO2 | 0.04 (0.02–0.05) ** | 1.04 (1.02–1.05) ** | 0.57 ** | |
AD | ||||
Fe | 0.52 (0.23; 0.80) ** | 9.42 (4.55; 19.48) ** | - | |
SO2 | 0.02 (0.01; 0.03) ** | 1.05 (1.04; 1.07) ** | 0.34 ** | |
DAD | ||||
Fe | 0.70 (0.43; 0.97) ** | 5.90 (3.50; 9.95) ** | - | |
SO2 | 0.02 (0.01; 0.03) ** | 1.03 (1.02; 1.04) ** | 0.46 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fano-Sizgorich, D.; Vásquez-Velásquez, C.; Ordoñez-Aquino, C.; Sánchez-Ccoyllo, O.; Tapia, V.; Gonzales, G.F. Iron Trace Elements Concentration in PM10 and Alzheimer’s Disease in Lima, Peru: Ecological Study. Biomedicines 2024, 12, 2043. https://doi.org/10.3390/biomedicines12092043
Fano-Sizgorich D, Vásquez-Velásquez C, Ordoñez-Aquino C, Sánchez-Ccoyllo O, Tapia V, Gonzales GF. Iron Trace Elements Concentration in PM10 and Alzheimer’s Disease in Lima, Peru: Ecological Study. Biomedicines. 2024; 12(9):2043. https://doi.org/10.3390/biomedicines12092043
Chicago/Turabian StyleFano-Sizgorich, Diego, Cinthya Vásquez-Velásquez, Carol Ordoñez-Aquino, Odón Sánchez-Ccoyllo, Vilma Tapia, and Gustavo F. Gonzales. 2024. "Iron Trace Elements Concentration in PM10 and Alzheimer’s Disease in Lima, Peru: Ecological Study" Biomedicines 12, no. 9: 2043. https://doi.org/10.3390/biomedicines12092043
APA StyleFano-Sizgorich, D., Vásquez-Velásquez, C., Ordoñez-Aquino, C., Sánchez-Ccoyllo, O., Tapia, V., & Gonzales, G. F. (2024). Iron Trace Elements Concentration in PM10 and Alzheimer’s Disease in Lima, Peru: Ecological Study. Biomedicines, 12(9), 2043. https://doi.org/10.3390/biomedicines12092043