Postoperative Intravenous Iron Infusion in Anemic Colorectal Cancer Patients: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Baseline Characteristics and Main Outcomes
3.2. Hemoglobin Levels
3.3. Hematocrit Levels
3.4. RBC Counts
3.5. Ferritin Levels
3.6. CRP Levels
3.7. TSAT Levels
3.8. Additional Laboratory Examinations
3.9. Iron Deficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Hematologic Markers | Control Group | IVI Group | p-Value | ||
---|---|---|---|---|---|
N | Mean (±SD) or Median (IQR) | N | Mean (±SD) or Median (IQR) | ||
Hematocrit (%)—male | |||||
Preoperative | 19 | 40.63 (±4.71) | 21 | 39.41 (±4.80) | p = 0.387 |
Postoperative 3rd day | 19 | 34.72 (±4.22) | 21 | 32.75 (±4.17) | p = 0.303 |
Postoperative 30th day | 19 | 39.07 (±3.53) | 21 | 39.95 (±3.90) | p = 0.308 |
Hematocrit (%)—female | |||||
Preoperative | 23 | 40.30 (35.00, 43.20) | 15 | 41.00 (37.70, 41.70) | p = 0.658 |
Postoperative 3rd day | 23 | 33.00 (29.00, 36.00) | 15 | 35.00 (32.40, 36.00) | p = 0.497 |
Postoperative 30th day | 23 | 38.20 (33.20, 40.60) | 15 | 40.40 (36.60, 41.70) | p = 0.129 |
Ferritin—male (ng/mL) | |||||
Preoperative | 14 | 73.00 (34.25, 125.75) | 15 | 32.00 (14.00, 70.00) | p = 0.588 |
Postoperative 3rd day | 14 | 226.50 (174.00, 335.75) | 15 | 116.00 (79.00, 179.00) | p = 0.005 |
Postoperative 30th day | 14 | 62.65 (37.75, 104.33) | 15 | 212.80 (124.00, 320.00) | p < 0.001 |
Ferritin—female (ng/mL) | |||||
Preoperative | 17 | 44.00 (22.00, 102.00) | 14 | 75.50 (16.75, 228.50) | p = 0.610 |
Postoperative 3rd day | 17 | 161.00 (107.00, 194.00) | 14 | 150.50 (100.50, 247.75) | p = 0.682 |
Postoperative 30th day | 17 | 58.00 (18.00, 111.50) | 14 | 366.70 (254.00, 526.00) | p < 0.001 |
Folic acid (ng/mL) | |||||
Preoperative | 28 | 6.65 (4.48, 7.98) | 27 | 6.00 (3.40, 8.70) | p = 0.569 |
Postoperative 3rd day | 28 | 5.75 (4.05, 8.48) | 27 | 5.00 (3.40, 7.50) | p = 0.214 |
Postoperative 30th day | 28 | 5.45 (3.70, 8.10) | 27 | 4.80 (3.80, 7.70) | p = 0.441 |
Β12 (pg/mL) | |||||
Preoperative | 28 | 331.50 (275.00, 449.25) | 28 | 374.50 (255.50, 445.00) | p = 0.516 |
Postoperative 3rd day | 28 | 453.00 (247.25, 553.75) | 28 | 359.50 (275.00, 506.25) | p = 0.470 |
Postoperative 30th day | 28 | 352.00 (283.63, 428.00) | 28 | 361.00 (254.50, 489.25) | p = 0.284 |
INR | |||||
Preoperative | 25 | 1.03 (±0.11) | 30 | 1.01 (±0.08) | p = 0.332 |
Postoperative 3rd day | 25 | 1.05 (±0.08) | 30 | 1.06 (±0.10) | p = 0.746 |
Postoperative 30th day | 25 | 1.09 (±0.26) | 30 | 1.02 (±0.11) | p = 0.171 |
Fibrinogen (mg/dL) | |||||
Preoperative | 26 | 436.59 (±107.52) | 29 | 402.36 (±126.71) | p = 0.288 |
Postoperative 3rd day | 26 | 538.05 (478.35, 621.23) | 29 | 539.00 (503.40, 561.10) | p = 0.474 |
Postoperative 30th day | 26 | 383.75 (354.53, 427.60) | 29 | 395.60 (327.00, 440.45) | p = 0.174 |
APTT (sec) | |||||
Preoperative | 26 | 28.56 (±4.25) | 30 | 29.34 (±2.88) | p = 0.569 |
Postoperative 3rd day | 26 | 30.22 (±4.45) | 30 | 31.41 (±3.95) | p = 0.562 |
Postoperative 30th day | 26 | 29.85 (±3.35) | 30 | 30.19 (±3.69) | p = 0.770 |
PLT (1000 cells/μL) | |||||
Preoperative | 42 | 240.16 (±76.76) | 36 | 222.11 (±76.74) | p = 0.304 |
Postoperative 3rd day | 42 | 208.99 (±77.22) | 36 | 193.94 (±68.22) | p = 0.368 |
Postoperative 30th day | 42 | 251.66 (±77.81) | 36 | 227.63 (±71.33) | p = 0.162 |
CRP (mg/dL) | |||||
Preoperative | 40 | 0.20 (0.10, 0.50) | 34 | 0.20 (0.10, 0.55) | p = 0.771 |
Postoperative 3rd day | 40 | 8.65 (4.10, 12.80) | 34 | 8.45 (4.05, 12.23) | p = 0.988 |
Postoperative 30th day | 40 | 0.20 (0.10, 0.78) | 34 | 0.16 (0.10, 0.66) | p = 0.667 |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Ploug, M.; Kroijer, R.; Qvist, N.; Lindahl, C.H.; Knudsen, T. Iron deficiency in colorectal cancer patients: A cohort study on prevalence and associations. Color. Dis. 2021, 23, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Calleja, J.L.; Delgado, S.; del Val, A.; Hervas, A.; Larraona, J.L.; Teran, A.; Cucala, M.; Mearin, F.; Colon Cancer Study, G. Ferric carboxymaltose reduces transfusions and hospital stay in patients with colon cancer and anemia. Int. J. Color. Dis. 2016, 31, 543–551. [Google Scholar] [CrossRef]
- Wilson, M.J.; Dekker, J.W.T.; Harlaar, J.J.; Jeekel, J.; Schipperus, M.; Zwaginga, J.J. The role of preoperative iron deficiency in colorectal cancer patients: Prevalence and treatment. Int. J. Color. Dis. 2017, 32, 1617–1624. [Google Scholar] [CrossRef]
- Leichtle, S.W.; Mouawad, N.J.; Lampman, R.; Singal, B.; Cleary, R.K. Does preoperative anemia adversely affect colon and rectal surgery outcomes? J. Am. Coll. Surg. 2011, 212, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Acheson, A.G.; Brookes, M.J.; Spahn, D.R. Effects of allogeneic red blood cell transfusions on clinical outcomes in patients undergoing colorectal cancer surgery: A systematic review and meta-analysis. Ann. Surg. 2012, 256, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Bohlius, J.; Schmidlin, K.; Brillant, C.; Schwarzer, G.; Trelle, S.; Seidenfeld, J.; Zwahlen, M.; Clarke, M.; Weingart, O.; Kluge, S.; et al. Recombinant human erythropoiesis-stimulating agents and mortality in patients with cancer: A meta-analysis of randomised trials. Lancet 2009, 373, 1532–1542. [Google Scholar] [CrossRef]
- Pascual, M.; Bohle, B.; Alonso, S.; Mayol, X.; Salvans, S.; Grande, L.; Pera, M. Preoperative administration of erythropoietin stimulates tumor recurrence after surgical excision of colon cancer in mice by a vascular endothelial growth factor-independent mechanism. J. Surg. Res. 2013, 183, 270–277. [Google Scholar] [CrossRef]
- Tolkien, Z.; Stecher, L.; Mander, A.P.; Pereira, D.I.; Powell, J.J. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0117383. [Google Scholar] [CrossRef]
- Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef]
- Lederhuber, H.; Massey, L.H.; Abeysiri, S.; Roman, M.A.; Rajaretnam, N.; McDermott, F.D.; Miles, L.F.; Smart, N.J.; Richards, T. Preoperative intravenous iron and the risk of blood transfusion in colorectal cancer surgery: Meta-analysis of randomized clinical trials. Br. J. Surg. 2024, 111, znad320. [Google Scholar] [CrossRef] [PubMed]
- Talboom, K.; Borstlap, W.A.A.; Roodbeen, S.X.; Bruns, E.R.J.; Buskens, C.J.; Hompes, R.; Tytgat, K.; Tuynman, J.B.; Consten, E.C.J.; Heuff, G.; et al. Ferric carboxymaltose infusion versus oral iron supplementation for preoperative iron deficiency anaemia in patients with colorectal cancer (FIT): A multicentre, open-label, randomised, controlled trial. Lancet Haematol. 2023, 10, e250–e260. [Google Scholar] [CrossRef] [PubMed]
- Dru, R.C.; Curtis, N.J.; Court, E.L.; Spencer, C.; El Falaha, S.; Dennison, G.; Dalton, R.; Allison, A.; Ockrim, J.; Francis, N.K. Impact of anaemia at discharge following colorectal cancer surgery. Int. J. Color. Dis. 2020, 35, 1769–1776. [Google Scholar] [CrossRef] [PubMed]
- Moncur, A.; Chowdhary, M.; Chu, Y.; Francis, N.K. Impact and outcomes of postoperative anaemia in colorectal cancer patients: A systematic review. Color. Dis. 2021, 23, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Khalafallah, A.A.; Yan, C.; Al-Badri, R.; Robinson, E.; Kirkby, B.E.; Ingram, E.; Gray, Z.; Khelgi, V.; Robertson, I.K.; Kirkby, B.P. Intravenous ferric carboxymaltose versus standard care in the management of postoperative anaemia: A prospective, open-label, randomised controlled trial. Lancet Haematol. 2016, 3, e415–e425. [Google Scholar] [CrossRef] [PubMed]
- Laso-Morales, M.J.; Vives, R.; Gomez-Ramirez, S.; Pallisera-Lloveras, A.; Pontes, C. Intravenous iron administration for post-operative anaemia management after colorectal cancer surgery in clinical practice: A single-centre, retrospective study. Blood Transfus. 2018, 16, 338–342. [Google Scholar] [CrossRef]
- Richards, T.; Baikady, R.R.; Clevenger, B.; Butcher, A.; Abeysiri, S.; Chau, M.; Macdougall, I.C.; Murphy, G.; Swinson, R.; Collier, T.; et al. Preoperative intravenous iron to treat anaemia before major abdominal surgery (PREVENTT): A randomised, double-blind, controlled trial. Lancet 2020, 396, 1353–1361. [Google Scholar] [CrossRef]
- Liumbruno, G.M.; Bennardello, F.; Lattanzio, A.; Piccoli, P.; Rossetti, G.; Italian Society of Transfusion, M.; Immunohaematology Working, P. Recommendations for the transfusion management of patients in the peri-operative period. II. The intra-operative period. Blood Transfus. 2011, 9, 189–217. [Google Scholar] [CrossRef]
- American Society of Anesthesiologists Task Force on Perioperative Blood Management. Practice guidelines for perioperative blood management: An updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management. Anesthesiology 2015, 122, 241–275. [Google Scholar] [CrossRef]
- Carson, J.L.; Guyatt, G.; Heddle, N.M.; Grossman, B.J.; Cohn, C.S.; Fung, M.K.; Gernsheimer, T.; Holcomb, J.B.; Kaplan, L.J.; Katz, L.M.; et al. Clinical Practice Guidelines From the AABB: Red Blood Cell Transfusion Thresholds and Storage. JAMA 2016, 316, 2025–2035. [Google Scholar] [CrossRef]
- Keeler, B.D.; Simpson, J.A.; Ng, O.; Padmanabhan, H.; Brookes, M.J.; Acheson, A.G.; Group, I.T. Randomized clinical trial of preoperative oral versus intravenous iron in anaemic patients with colorectal cancer. Br. J. Surg. 2017, 104, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Quinn, E.M.; Meland, E.; McGinn, S.; Anderson, J.H. Correction of iron-deficiency anaemia in colorectal surgery reduces perioperative transfusion rates: A before and after study. Int. J. Surg. 2017, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bruns, E.R.J.; Borstlap, W.A.; van Duijvendijk, P.; van der Zaag-Loonen, H.J.; Buskens, C.J.; van Munster, B.C.; Bemelman, W.A.; Tanis, P.J. The Association of Preoperative Anemia and the Postoperative Course and Oncological Outcome in Patients Undergoing Rectal Cancer Surgery: A Multicenter Snapshot Study. Dis. Colon. Rectum 2019, 62, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.M.; Van Remoortel, H.; Meybohm, P.; Aranko, K.; Aubron, C.; Burger, R.; Carson, J.L.; Cichutek, K.; De Buck, E.; Devine, D.; et al. Patient Blood Management: Recommendations From the 2018 Frankfurt Consensus Conference. JAMA 2019, 321, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Rottoli, M.; Pellino, G.; Spinelli, A.; Flacco, M.E.; Manzoli, L.; Morino, M.; Pucciarelli, S.; Jovine, E.; Abu Hilal, M.; Rosati, R.; et al. Impact of COVID-19 on the oncological outcomes of colorectal cancer surgery in northern Italy in 2019 and 2020: Multicentre comparative cohort study. BJS Open 2022, 6, zrab139. [Google Scholar] [CrossRef]
- Morris, E.J.A.; Goldacre, R.; Spata, E.; Mafham, M.; Finan, P.J.; Shelton, J.; Richards, M.; Spencer, K.; Emberson, J.; Hollings, S.; et al. Impact of the COVID-19 pandemic on the detection and management of colorectal cancer in England: A population-based study. Lancet Gastroenterol. Hepatol. 2021, 6, 199–208. [Google Scholar] [CrossRef]
- Munoz, M.; Acheson, A.G.; Auerbach, M.; Besser, M.; Habler, O.; Kehlet, H.; Liumbruno, G.M.; Lasocki, S.; Meybohm, P.; Rao Baikady, R.; et al. International consensus statement on the peri-operative management of anaemia and iron deficiency. Anaesthesia 2017, 72, 233–247. [Google Scholar] [CrossRef]
- Deng, Y.; Weng, M.; Zhang, J. Preoperative anemia and long-term survival in patients undergoing colorectal cancer surgery: A retrospective cohort study. World J. Surg. Oncol. 2023, 21, 122. [Google Scholar] [CrossRef]
- Laso-Morales, M.J.; Vives, R.; Bisbe, E.; Garcia-Erce, J.A.; Munoz, M.; Martinez-Lopez, F.; Carol-Boeris, F.; Pontes-Garcia, C. Single-dose intravenous ferric carboxymaltose infusion versus multiple fractionated doses of intravenous iron sucrose in the treatment of post-operative anaemia in colorectal cancer patients: A randomised controlled trial. Blood Transfus. 2022, 20, 310–318. [Google Scholar] [CrossRef]
- Myles, P.S.; Andrews, S.; Nicholson, J.; Lobo, D.N.; Mythen, M. Contemporary Approaches to Perioperative IV Fluid Therapy. World J. Surg. 2017, 41, 2457–2463. [Google Scholar] [CrossRef]
- Holte, K.; Sharrock, N.E.; Kehlet, H. Pathophysiology and clinical implications of perioperative fluid excess. Br. J. Anaesth. 2002, 89, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Biel, M.; Grondys, K.; Androniceanu, A.M. A Crisis in the Health System and Quality of Healthcare in Economically Developed Countries. Int. J. Environ. Res. Public. Health 2022, 20, 469. [Google Scholar] [CrossRef] [PubMed]
Total Number Ν = 78 | Control Group Ν = 42 | IV Iron Group Ν = 36 | p-Value | |
---|---|---|---|---|
Sex, Ν (%) | p = 0.249 | |||
Male | 40 (51.3%) | 19 (45.2%) | 21 (58.3%) | |
Female | 38 (48.8%) | 23 (54.8%) | 15 (41.7%) | |
Age (years), mean (±SD) | 65.58 (±10.62) | 67.50 (±9.61) | 63.33 (±11.42) | p = 0.084 |
Body mass index (BMI) (kg/m2), mean (±SD) | 27.46 (±5.05) | 27.22 (±5.16) | 27.74 (±4.98) | p = 0.652 |
ASA * physical status classification, Ν (%) | p = 0.716 | |||
I | 32 (41.0%) | 19 (45.2%) | 13 (36.1%) | |
II | 36 (46.2%) | 18 (42.9%) | 18 (50%) | |
III | 10 (12.8%) | 5 (11.9%) | 5 (13.9%) | |
Neoadjuvant therapy, Ν (%) | p = 0.363 | |||
No | 64 (82.1%) | 36 (85.7%) | 28 (77.8%) | |
Yes | 14 (17.9%) | 6 (14.3%) | 8 (22.2%) | |
Blood loss >200 mL, Ν (%) | p = 0.657 | |||
No | 75 (93.6%) | 40 (95.2%) | 33 (91.7%) | |
Yes | 5 (6.4%) | 2 (4.8%) | 3 (8.3%) | |
Intraoperative transfusion, Ν (%) | p = 0.657 | |||
No | 73 (93.6%) | 40 (95.2%) | 33 (91.7%) | |
Yes | 5 (6.4%) | 2 (4.8%) | 3 (8.3%) | |
Operative time (min), median (IQR) | 190 (180.0–250.0) | 180.0 (180.0–250.0) | 205.0 (180.0–267.5) | p = 0.655 |
ICU admission, Ν (%) | p > 0.999 | |||
No | 76 (97.4%) | 41 (97.6%) | 35 (97.2%) | |
Yes | 2 (2.6%) | 1 (2.4%) | 1 (2.8%) | |
Clavien–Dindo, N (%) | p = 0.041 | |||
No complications | 56 (71.8%) | 34 (81.0%) | 22 (61.1%) | |
1 | 13 (16.7%) | 3 (7.1%) | 10 (27.8%) | |
2 | 8 (10.3%) | 5 (11.9%) | 3 (8.3%) | |
3A | 1 (1.3%) | 0 (0.0%) | 1 (2.8%) | |
Length of stay, median (IQR) | 6.0 (5.0–8.0) | 6.0 (4.0–7.0) | 7.0 (6.0–8.0) | p = 0.011 |
Readmission, Ν (%) | p > 0.999 | |||
No | 75 (96.2%) | 40 (95.2%) | 35 (97.2%) | |
Yes | 3 (3.8%) | 2 (4.8%) | 1 (2.8%) |
Hemoglobin Level (g/dL) | Control Group | IVI Group | p-Value | ||
---|---|---|---|---|---|
N | Mean (±SD) or Median (IQR) | N | Mean (±SD) or Median (IQR) | ||
Male | |||||
Preoperative | 19 | 13.11 (±1.74) | 21 | 12.62 (±1.79) | p = 0.387 |
Postoperative 3rd day | 19 | 11.25 (±1.50) | 21 | 10.77 (±1.39) | p = 0.303 |
Postoperative 30th day | 19 | 12.63 (±1.24) | 21 | 13.04 (±1.36) | p = 0.309 |
Female | |||||
Preoperative | 23 | 12.55 (±1.92) | 15 | 12.76 (±1.25) | p = 0.680 |
Postoperative 3rd day | 23 | 10.68 (±1.71) | 15 | 11.11 (±0.99) | p = 0.256 |
Postoperative 30th day | 23 | 12.05 (±1.42) | 15 | 12.96 (±1.07) | p = 0.042 |
Hematologic Markers | Iron Deficiency | Control Group | IVI Group | p-Value | ||
---|---|---|---|---|---|---|
N | Mean (±SD) or Median (IQR) | N | Mean (±SD) or Median (IQR) | |||
Percentage Hb change POD3 to POD30 (%) | Νο | 8 | 4.19 (2.73, 9.11) | 5 | 6.29 (3.79, 9.41) | p = 0.622 |
Yes | 24 | 3.36 (1.72, 4.51) | 29 | 5.59 (3.67, 9.69) | p = 0.006 | |
Percentage HCT change POD3 to POD30 (%) | Νο | 8 | 17.16 (7.61, 25.78) | 5 | 23.43 (4.41, 30.31) | p = 0.833 |
Yes | 24 | 10.75 (6.45, 18.41) | 29 | 18.89 (9.57, 28.48) | p = 0.056 | |
Percentage Ferritin change POD3 to POD30 (%) | Νο | 8 | −73.54 (−81.93, −56.66) | 5 | 228.18 (106.68, 765.11) | p = 0.002 |
Yes | 23 | −68.47 (−85.58, −42.03) | 26 | 99.65 (17.94, 199.25) | p < 0.001 | |
TSAT (%) | ||||||
POD3 | Νο | 8 | 21.44 (20.46, 22.31) | 5 | 26.67 (21.67, 32.98) | p = 0.284 |
Yes | 24 | 12.01 (±4.11) | 29 | 11.79 (±4.75) | p = 0.861 | |
POD30 | Νο | 7 | 21.21 (12.24, 30.79) | 5 | 41.95 (34.78, 50.90) | p = 0.030 |
Yes | 23 | 14.88 (11.00, 28.35) | 26 | 32.64 (25.69, 38.33) | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chardalias, L.; Skreka, A.-M.; Memos, N.; Nieri, A.-S.; Politis, D.; Politou, M.; Theodosopoulos, T.; Papaconstantinou, I. Postoperative Intravenous Iron Infusion in Anemic Colorectal Cancer Patients: An Observational Study. Biomedicines 2024, 12, 2094. https://doi.org/10.3390/biomedicines12092094
Chardalias L, Skreka A-M, Memos N, Nieri A-S, Politis D, Politou M, Theodosopoulos T, Papaconstantinou I. Postoperative Intravenous Iron Infusion in Anemic Colorectal Cancer Patients: An Observational Study. Biomedicines. 2024; 12(9):2094. https://doi.org/10.3390/biomedicines12092094
Chicago/Turabian StyleChardalias, Leonidas, Androniki-Maria Skreka, Nikolaos Memos, Alexandra-Stavroula Nieri, Dimitrios Politis, Marianna Politou, Theodosios Theodosopoulos, and Ioannis Papaconstantinou. 2024. "Postoperative Intravenous Iron Infusion in Anemic Colorectal Cancer Patients: An Observational Study" Biomedicines 12, no. 9: 2094. https://doi.org/10.3390/biomedicines12092094
APA StyleChardalias, L., Skreka, A. -M., Memos, N., Nieri, A. -S., Politis, D., Politou, M., Theodosopoulos, T., & Papaconstantinou, I. (2024). Postoperative Intravenous Iron Infusion in Anemic Colorectal Cancer Patients: An Observational Study. Biomedicines, 12(9), 2094. https://doi.org/10.3390/biomedicines12092094