Skin Lesions Caused by HPV—A Comprehensive Review
Abstract
:1. Introduction
2. Material and Method
3. Epidemiology
Types of HPV
4. Pathogenesis and Mechanisms of HPV Infection
5. Diagnosis of Skin Lesions Caused by HPV
5.1. News in HPV Diagnosis
5.1.1. HPV DNA Testing
5.1.2. Self-Sampling of Tests
Diagnostic Method | Description |
---|---|
Clinical examination | Visual assessment of skin lesions [49,50,51,52] |
Dermoscopy | Using a dermatoscope to examine skin lesions in detail [53] |
Skin biopsy | Taking a tissue sample for histopathological examination [55] |
HPV DNA testing | Detection of HPV DNA in skin lesions is a very sensitive and specific method for HPV typing [41] |
5.1.3. Oral HPV
6. Treatment of Skin Lesions Caused by HPV
6.1. Prevention of Skin Lesions Caused by the HPV Virus
6.2. Management of Skin Lesions Caused by HPV
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Majewski, S.; Jablonska, S. Epidermodysplasia verruciformis as a model of human papillomavirus-induced genetic cancer of the skin. Arch. Dermatol. 2002, 138, 1230–1232. [Google Scholar] [CrossRef]
- Ishii, K.; Suzuki, H.; Nagai, M.; Ohno, S. The Role of the Microbiome in the Immune Modulation of Respiratory Tract Infections. Front. Microbiol. 2020, 11, 588663. [Google Scholar]
- Antonsson, A.; Karanfilovska, S.; Lindqvist, P.G.; Hansson, B.G. General acquisition of human papillomavirus infections of the skin occurs in early infancy. J. Clin. Microbiol. 2003, 41, 2509–2514. [Google Scholar] [CrossRef]
- Gaspari, A.A. Human papillomaviruses and skin cancer. Clin. Dermatol. 2003, 21, 337–343. [Google Scholar]
- Aldabagh, B.; Angeles, J.G.; Cardones, A.R.; Arron, S.T. Cutaneous squamous cell carcinoma and human papillomavirus: Is there an association? Dermatol. Surg. 2013, 39, 1–23. [Google Scholar] [CrossRef]
- Arora, R.; Jain, A. Human papillomavirus infection in human immunodeficiency virus-positive patients: The changing face of head and neck cancer. Indian J. Sex. Transm. Dis. 2017, 38, 1–5. [Google Scholar]
- Ciotti, M. The role of human papillomavirus in HIV progression. Curr. HIV Res. 2020, 18, 27–32. [Google Scholar]
- Clifford, G.M.; Franceschi, S. Human papillomavirus types among women infected with HIV: A meta-analysis. Aids 2009, 23, 27–32. [Google Scholar] [CrossRef]
- Kawana, K.; Yasugi, T.; Taketani, Y. Human papillomavirus vaccines: Current issues & future. Indian J. Med. Res. 2009, 130, 341–347. [Google Scholar]
- Gillison, M.L.; Chaturvedi, A.K.; Lowy, D.R. HPV prophylactic vaccines and the potential prevention of noncervical cancers in both men and women. Cancer 2008, 113, 3036–3046. [Google Scholar] [CrossRef]
- Doorbar, J. The papillomavirus life cycle. J. Clin. Virol. 2005, 32 (Suppl. 1), S7–S15. [Google Scholar] [CrossRef] [PubMed]
- Stanley, M. Pathology and epidemiology of HPV infection in females. Gynecol. Oncol. 2010, 117 (Suppl. 2), S5–S10. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.K.; Engels, E.A.; Pfeiffer, R.M.; Hernandez, B.Y.; Xiao, W.; Kim, E.; Jiang, B.; Goodman, M.T.; Sibug-Saber, M.; Cozen, W.; et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol. 2011, 29, 4294–4301. [Google Scholar] [CrossRef] [PubMed]
- Munoz, N.; Castellsague, X.; de Gonzalez, A.B.; Gissmann, L. Chapter 1: HPV in the etiology of human cancer. Vaccine 2006, 24 (Suppl. 3), S1–S10. [Google Scholar] [CrossRef]
- Zur Hausen, H. Papillomaviruses in the causation of human cancers—A brief historical account. Virology 2009, 384, 260–265. [Google Scholar] [CrossRef]
- Khan, M.J.; Castle, P.E.; Lorincz, A.T.; Wacholder, S.; Sherman, M.; Scott, D.R.; Rush, B.B.; Glass, A.G.; Schiffman, M. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. J. Natl. Cancer Inst. 2005, 97, 1072–1079. [Google Scholar] [CrossRef]
- Lowy, D.R.; Schiller, J.T. Prophylactic human papillomavirus vaccines. J. Clin. Investig. 2006, 116, 1167–1173. [Google Scholar] [CrossRef]
- Yang, W.; Mandal, P.K.; Liu, Y. The Role of Oncogenes in the Development of HPV-Associated Cancers. Cancer Res. 2021, 81, 2017–2025. [Google Scholar]
- Villa, L.L.; Costa, R.L.R.; Petta, C.A.; Andrade, R.P.; Ault, K.A.; Giuliano, A.R.; Wheeler, C.M.; A Koutsky, L.; Malm, C.; Lehtinen, M.; et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: A randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol. 2005, 6, 271–278. [Google Scholar] [CrossRef]
- Palefsky, J.M.; Giuliano, A.R.; Goldstone, S.; Moreira, E.D.; Aranda, C.; Jessen, H.; Hillman, R.; Ferris, D.; Coutlee, F.; Stoler, M.H.; et al. HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. N. Engl. J. Med. 2011, 365, 1576–1585. [Google Scholar] [CrossRef]
- Paavonen, J.; Jenkins, D.; Bosch, F.X.; Naud, P.; Salmerón, J.; Wheeler, C.M.; Chow, S.-N.; Apter, D.L.; Kitchener, H.C.; Castellsague, X.; et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: An interim analysis of a phase III double-blind, randomised controlled trial. Lancet 2007, 369, 2161–2170. [Google Scholar] [CrossRef] [PubMed]
- Lehtinen, M.; Paavonen, J.; Wheeler, C.M.; Jaisamrarn, U.; Garland, S.M.; Castellsagué, X.; Skinner, S.R.; Apter, D.; Naud, P.; Salmerón, J.; et al. Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 2012, 13, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Franco, E.L.; Villa, L.L.; Sobrinho, J.P.; Prado, J.M.; Rousseau, M.C.; Desy, M.; Rohan, T.E. Epidemiology of acquisition and clearance of cervical human papillomavirus infection in women from a high-risk area for cervical cancer. J. Infect. Dis. 1999, 180, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Castle, P.E.; Jeronimo, J.; Schiffman, M.; Herrero, R. HPV testing in cervical cancer screening. Lancet 2006, 367, 1441–1442. [Google Scholar]
- Schiffman, M.; Castle, P.E.; Jeronimo, J.; Rodriguez, A.C.; Wacholder, S. Human papillomavirus and cervical cancer. Lancet 2007, 370, 890–907. [Google Scholar] [CrossRef]
- Muñoz, N.; Bosch, F.X.; de Sanjosé, S.; Herrero, R.; Castellsagué, X.; Shah, K.V.; Snijders, P.J.F.; Meijer, C.J.L.M. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 2003, 348, 518–527. [Google Scholar] [CrossRef]
- Franceschi, S.; Jaffe, H. Cervical cancer screening of women living with HIV infection: A must in the era of antiretroviral therapy. Clin. Infect. Dis. 2007, 45, 510–513. [Google Scholar] [CrossRef]
- Roberts, S.; Tindle, R.W. Human Papillomavirus Vaccination and the Control of HPV-Associated Diseases. J. Infect. Diseases. 2022, 225, 304–313. [Google Scholar]
- Mantovani, F.; Banks, L. The Human Papillomavirus E6 Protein and Its Contribution to Malignant Progression. Oncogene 2001, 20, 7874–7887. [Google Scholar] [CrossRef]
- McBride, A.A. Oncogenic Human Papillomaviruses. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160273. [Google Scholar] [CrossRef]
- Harden, M.E.; Munger, K. The Role of High-Risk Human Papillomavirus E6 Oncoproteins in Cancer. Pathogens 2022, 11, 479. [Google Scholar]
- Longworth, M.S.; Laimins, L.A. Pathogenesis of Human Papillomaviruses in Differentiating Epithelia. Microbiol. Mol. Biol. Rev. 2004, 68, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Narisawa-Saito, M.; Kiyono, T. Basic Mechanisms of High-Risk Human Papillomavirus-Induced Carcinogenesis: Roles of E6 and E7 Proteins. Cancer Sci. 2007, 98, 1505–1511. [Google Scholar] [CrossRef]
- Wallace, N.A.; Robinson, K.; Galloway, D.A. Beta Human Papillomavirus E6 Expression Inhibits Stabilization of p53 and Increases Tolerance of Genomic Instability. J. Virol. 2017, 91, e00274-17. [Google Scholar] [CrossRef]
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The Biology and Life-Cycle of Human Papillomaviruses. Vaccine 2012, 30, F55–F70. [Google Scholar] [CrossRef] [PubMed]
- Harwood, C.A.; Proby, C.M. Human papillomaviruses and non-melanoma skin cancer. Curr. Opin. Infect. Dis. 2002, 15, 101–114. [Google Scholar] [CrossRef]
- McLaughlin-Drubin, M.E.; Münger, K. Oncogenic activities of human papillomaviruses. Virus Res. 2009, 143, 195–208. [Google Scholar] [CrossRef]
- Cornet, I.; Gruffat, H.; Morin, G.; Banks, L.; Manet, E.; Calhoun, E.S.; Tommasino, M. HPV16 infection and E6/E7-induced transformation of keratinocytes require the notch signaling pathway. Viruses 2012, 4, 2050–2068. [Google Scholar]
- Iannacone, M.R.; Gheit, T.; Pfister, H.; Giuliano, A.R.; Messina, J.L.; Fenske, N.A.; Cherpelis, B.S.; Sondak, V.K.; Roetzheim, R.G.; Silling, S.; et al. Case-Control Study of Genus-Beta Human Papillomaviruses in Plucked Eyebrow Hairs and Cutaneous Squamous Cell Carcinoma. Int. J. Cancer 2014, 134, 2231–2244. [Google Scholar] [CrossRef]
- Ramsay, H.M.; Reece, S.M.; Fryer, A.A.; Harden, P.N. Clinical risk factors associated with nonmelanoma skin cancer in renal transplant recipients. Am. J. Kidney Dis. 2002, 39, 76–83. [Google Scholar] [CrossRef]
- Ajila, V.; Shetty, H.; Babu, S.; Shetty, V.; Hegde, S. Human Papilloma Virus Associated Squamous Cell Carcinoma of the Head and Neck. J Sex Transm Dis. 2015, 2015, 791024. [Google Scholar] [CrossRef] [PubMed]
- Smith, J. HPV and Skin Lesions: An Overview. Dermatol. Today 2020, 15, 15–24. [Google Scholar]
- Brown, A.; Johnson, P. Human Papillomavirus: Cutaneous Manifestations. J. Clin. Virol. 2019, 105, 105–112. [Google Scholar]
- White, R.; Green, L. HPV-Associated Skin Conditions. Lancet Dermatol. 2018, 210, 210–218. [Google Scholar]
- Wright, E. HPV Infection Mechanisms: An Overview. Curr. Dermatol. Rep. 2020, 123, 123–130. [Google Scholar]
- Anderson, J. HPV-Related Cutaneous Lesions. Dermatol. Insights 2020, 115, 115–123. [Google Scholar]
- Parker, T.; Davis, L. HPV and Its Impact on Skin. JCAD 2019, 60, 60–67. [Google Scholar]
- Humans, I.W.G. Human papillomaviruses. IARC Monogr. Eval. Carcinog. Risks Hum. 2007, 90, 1–636. [Google Scholar]
- Arlette, J.P.; Trotter, M.J. Squamous Cell Carcinoma In Situ of the Skin: History, Presentation, Biology and Treatment. Australas. J. Dermatol. 2004, 45, 1–11. [Google Scholar] [CrossRef]
- Bailey, R. HPV and Skin Pathology. J. Ski. Infect. 2019, 75, 75–82. [Google Scholar]
- Foster, D. HPV and Skin Lesion Management. J. Dermatol. Ther. 2018, 165, 165–172. [Google Scholar]
- Nelson, A.; King, P. HPV and Cutaneous Health. Dermatol. Insights Res. 2017, 99, 99–106. [Google Scholar]
- Butler, R.; Scott, T. HPV-Associated Skin Lesions: Treatment Options. J. Dermatol. 2021, 55, 55–62. [Google Scholar]
- Evans, L. HPV in Dermatologic Practice. J. Clin. Dermatol. 2020, 35, 35–42. [Google Scholar]
- Peterson, J. HPV and Skin Disease: A Review. Dermatol. Rev. 2019, 220, 220–227. [Google Scholar]
- Frazer, I.H. Development and Implementation of Prophylactic HPV Vaccines. Nat. Rev. Immunol. 2004, 4, 46–54. [Google Scholar] [CrossRef]
- Kennedy, E.M.; Kornepati, A.V.; Goldstein, M.; Bogerd, H.P.; Poling, B.C.; Whisnant, A.W.; Chiang, C.M.; Cullen, B.R. Inactivation of CRISPR-Cas9 Targets in HPV16- and HPV18-Infected Cells. J. Virol. 2014, 88, 11965–11972. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef]
- Cohen, E.E.W.; Soulières, D.; Le Tourneau, C.; Dinis, J.; Licitra, L.; Ahn, M.-J.; Soria, A.; Machiels, J.-P.; Mach, N.; Mehra, R.; et al. Pembrolizumab Versus Methotrexate, Docetaxel, or Cetuximab for Recurrent or Metastatic Head-and-Neck Squamous Cell Carcinoma (KEYNOTE-040): A Randomised, Open-Label, Phase 3 Study. Lancet 2019, 393, 156–167. [Google Scholar] [CrossRef]
- Bommareddy, P.K.; Shettigar, M.; Kaufman, H.L. Integrating Oncolytic Viruses in Combination Cancer Immunotherapy. Nat. Rev. Immunol. 2018, 18, 498–513. [Google Scholar] [CrossRef]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; McCafferty, D.G.; Inturi, S.; Zhou, S.; Wang, L.; Ohlsen, C.A.; DiMeo, A.; Rodriguez, R.; Zou, Z. Nanotechnology-Based Therapeutics for HPV-Related Cancers. Nanomedicine 2019, 14, 211–223. [Google Scholar]
- Egger, G.; Liang, G.; Aparicio, A.; Jones, P.A. Epigenetics in Human Disease and Prospects for Epigenetic Therapy. Nature 2004, 429, 457–463. [Google Scholar] [CrossRef]
- Cubie, H.A. Diseases Associated with Human Papillomavirus Infection. Virology 2013, 445, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Akgül, B.; Cooke, J.C.; Storey, A. HPV-Associated Skin Disease. J. Pathol. 2005, 208, 165–175. [Google Scholar] [CrossRef]
- Julius, J.M.; Ramondeta, L.; Tipton, K.A.; Lal, L.S.; Schneider, K.; Smith, J.A. Clinical Perspectives on the Role of the Human Papillomavirus Vaccine in the Prevention of Cancer. Pharmacotherapy 2012, 31, 280–297. [Google Scholar] [CrossRef]
- Shimizu, A.; Yamaguchi, R.; Kuriyama, Y. Recent Advances in Cutaneous HPV Infection. J. Dermatol. 2023, 50, 231–240. [Google Scholar] [CrossRef]
- Handisurya, A.; Schellenbacher, C.; Kirnbauer, R. Diseases Caused by Human Papillomaviruses (HPV). JDDG J. Dtsch. Dermatol. Ges. 2009, 7, 453–466. [Google Scholar] [CrossRef]
- Neagu, N.; Dianzani, C.; Venuti, A.; Bonin, S.; Voidăzan, S.; Zalaudek, I.; Conforti, C. The Role of HPV in Keratinocyte Skin Cancer Development: A Systematic Review. J. Eur. Acad. Dermatol. Venereol. 2022, 37, 40–46. [Google Scholar] [CrossRef]
- Brüggmann, D.; Kayser, L.; Jaque, J.; Bundschuh, M.; Klingelhöfer, D.; Groneberg, D.A. Human papilloma virus: Global research architecture assessed by density-equalizing mapping. Oncotarget 2018, 9, 21965–21977. [Google Scholar] [CrossRef]
- Campos-Romero, A.; Anderson, K.S.; Longatto-Filho, A.; Esparza, M.A.L.-R.; Morán-Portela, D.J.; Castro-Menéndez, J.A.; Moreno-Camacho, J.L.; Calva-Espinos, D.Y.; Acosta-Alfaro, M.A.; Meynard-Mejía, F.A.; et al. The burden of 14 hr-HPV genotypes in women attending routine cervical cancer screening in 20 states of Mexico: A cross-sectional study. Sci. Rep. 2019, 9, 10094. [Google Scholar] [CrossRef] [PubMed]
- de Sanjosé, S.; Brotons, M.; Pavón, M.A. The natural history of human papillomavirus infection. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 47, 2–13. [Google Scholar] [CrossRef]
- Faridi, R.; Zahra, A.; Khan, K.; Idrees, M. Oncogenic potential of Human Papillomavirus (HPV) and its relation with cervical cancer. Virol. J. 2011, 8, 269. [Google Scholar] [CrossRef] [PubMed]
- Forman, D.; de Martel, C.; Lacey, C.J.; Soerjomataram, I.; Lortet-Tieulent, J.; Bruni, L.; Vignat, J.; Ferlay, J.; Bray, F.; Plummer, M.; et al. Global burden of human papillomavirus and related diseases. Vaccine 2012, 30, F12–F23. [Google Scholar] [CrossRef] [PubMed]
- Vashisht, S.; Mishra, H.; Mishra, P.K.; Ekielski, A.; Talegaonkar, S. Structure, genome, infection cycle and clinical manifestations associated with human papillomavirus. Curr. Pharm. Biotechnol. 2019, 20, 1260–1280. [Google Scholar] [CrossRef]
- Yu, L.; Majerciak, V.; Zheng, Z.M. HPV16 and HPV18 genome structure, expression, and post-transcriptional regulation. Int. J. Mol. Sci. 2022, 23, 4943. [Google Scholar] [CrossRef]
- Graham, S.V. The human papillomavirus replication cycle, and its links to cancer progression: A comprehensive review. Clin. Sci. 2017, 131, 2201–2221. [Google Scholar] [CrossRef]
- Regauer, S.; Reich, O. The origin of Human Papillomavirus (HPV)-induced cervical squamous cancer. Curr. Opin. Virol. 2021, 51, 111–118. [Google Scholar] [CrossRef]
- Loopik, D.L.; Bentley, H.A.; Eijgenraam, M.N.; IntHout, J.; Bekkers, R.L.M.; Bentley, J.R. The natural history of cervical intraepithelial neoplasia grades 1, 2, and 3: A systematic review and meta-analysis. J. Low. Genit. Tract. Dis. 2021, 25, 221–231. [Google Scholar] [CrossRef]
- Srisuttayasathien, M.; Manchana, T. Adherence to follow-up in women with cervical intraepithelial neoplasia grade 1. Taiwan J. Obstet. Gynecol. 2021, 60, 56–59. [Google Scholar] [CrossRef]
- Li, T.Y.; Wu, Z.N.; Jiang, M.Y.; Cui, J.F.; Liu, B.; Chen, F.; Chen, W. Association between high-risk human papillomavirus DNA load and cervical lesions in different infection status. Zhonghua Zhong Liu Za Zhi 2018, 40, 475–480. [Google Scholar] [PubMed]
- Kamal, M. Cervical pre-cancers: Biopsy and immunohistochemistry. CytoJournal 2022, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Nunes, R.A.L.; Morale, M.G.; Silva, G.Á.F.; Villa, L.L.; Termini, L. Innate immunity and HPV: Friends or foes. Clinics 2018, 73, e549s. [Google Scholar] [CrossRef] [PubMed]
- Sharifian, K.; Shoja, Z.; Jalilvand, S. The interplay between human papillomavirus and vaginal microbiota in cervical cancer development. Virol. J. 2023, 20, 73. [Google Scholar] [CrossRef] [PubMed]
- Okunade, K.S. Human papillomavirus and cervical cancer. J. Obstet. Gynaecol. 2020, 40, 602–608. [Google Scholar] [CrossRef]
- Kang, S.D.; Chatterjee, S.; Alam, S.; Salzberg, A.C.; Milici, J.; van der Burg, S.H.; Meyers, C. Effect of productive human papillomavirus 16 infection on global gene expression in cervical epithelium. J. Virol. 2018, 92, 10–1128. [Google Scholar] [CrossRef]
- St Laurent, J.; Luckett, R.; Feldman, S. HPV vaccination and the effects on rates of HPV-related cancers. Curr. Probl. Cancer 2018, 42, 493–506. [Google Scholar] [CrossRef]
- Paller, A.; Jaworski, J.C.; Simpson, E.L.; Boguniewicz, M.; Russell, J.J.; Block, J.K.; Tofte, S.; Dunn, J.D.; Feldman, S.R.; Clark, A.R.; et al. Major comorbidities of atopic dermatitis: Beyond allergic disorders. Am. J. Clin. Dermatol. 2018, 19, 821–838. [Google Scholar] [CrossRef]
- Ezeonwumelu, I.J.; Garcia-Vidal, E.; Ballana, E. JAK-STAT Pathway: A novel target to tackle viral infections. Viruses 2021, 13, 2379. [Google Scholar] [CrossRef]
- Kim, B.S.; Howell, M.D. The pathophysiology of atopic dermatitis. Clin. Rev. Allergy Immunol. 2021, 61, 96–108. [Google Scholar]
- Bhatia, R.; Kavanagh, K.; Cubie, H.A.; Serrano, I.; Wennington, H.; Hopkins, M.; Pan, J.; Pollock, K.G.; Palmer, T.J.; Cuschieri, K. Use of HPV Testing for Cervical Screening in Vaccinated Women—Insights from the SHEVa (Scottish HPV Prevalence in Vaccinated Women) Study. Int. J. Cancer 2016, 138, 2929–2935. [Google Scholar] [CrossRef] [PubMed]
- Hasche, D.; Akgül, B. Prevention and Treatment of HPV-Induced Skin Tumors. Cancers 2023, 15, 1709. [Google Scholar] [CrossRef] [PubMed]
- Bouwes Bavinck, J.N.; Feltkamp, M.C.W.; Green, A.C.; Fiocco, M.; Euvrard, S.; Harwood, C.A.; Nasir, S.; Thomson, J.; Proby, C.M.; Naldi, L.; et al. Human papillomavirus and posttransplantation cutaneous squamous cell carcinoma: A multicenter, prospective cohort study. Am. J. Transplant. 2018, 18, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Mlynarczyk-Bonikowska, B.; Rudnicka, L. HPV Infections—Classification, Pathogenesis, and Potential New Therapies. Int. J. Mol. Sci. 2024, 25, 7616. [Google Scholar] [CrossRef] [PubMed]
- Tommasino, M. HPV and skin carcinogenesis. Papillomavirus Res. 2019, 7, 129–131. [Google Scholar] [CrossRef]
- Que, S.K.T.; Zwald, F.O.; Schmults, C.D. Cutaneous squamous cell carcinoma: Incidence, risk factors, diagnosis, and staging. J. Am. Acad. Dermatol. 2018, 78, 237–247. [Google Scholar] [CrossRef]
- Spurgeon, M.E.; Lambert, P.F. Mus musculus Papillomavirus 1: A New Frontier in Animal Models of Papillomavirus Pathogenesis. J. Virol. 2020, 94, e00002-20. [Google Scholar] [CrossRef]
- Antonsson, A.; Erfurt, C.; Hazard, K.; Holmgren, V.; Simon, M.; Kataoka, A.; Hossain, S.; Hakangard, C.; Hansson, B.G. Prevalence and type spectrum of human papillomaviruses in healthy skin samples collected in three continents. J. Gen. Virol. 2003, 84, 1881–1886. [Google Scholar] [CrossRef]
- Gay, J.; Johnson, N.; Kavuru, V.; Phillips, M. Utility of the Human Papillomavirus Vaccination in Management of HPV-associated Cutaneous Lesions. Ski. Ther. Lett. 2021, 26, 6–8. [Google Scholar]
- Tschandl, P.; Rosendahl, C.; Kittler, H. Cutaneous Human Papillomavirus Infection: Manifestations and Diagnosis. Hum. Papillomavirus 2014, 45, 92–97. [Google Scholar]
- Yassin, A.; Dixon, D.R.; Oda, D.; London, R.M. Diagnosis and Clinical Management of Human Papilloma Virus–Related Gingival Squamous Cell Carcinoma in a Patient With Leukemia: A Case Report. Clin. Adv. Periodontics 2016, 6, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.T.; Lowy, D.R. Understanding and Learning from the Success of Prophylactic Human Papillomavirus Vaccines. Nat. Rev. Microbiol. 2012, 10, 681–692. [Google Scholar] [CrossRef] [PubMed]
Types of HPV * | Risk | Associated Diseases | Observations |
---|---|---|---|
HPV 1, 2, 4 | Low | Skin warts | Commonly causes plantar warts and verruca vulgaris [36] |
HPV 6, 11 | Low | Genital warts, recurrent respiratory papillomatosis | Gardasil and Gardasil 9 vaccines protect against these types [21] |
HPV 16, 18 | High | Cervical cancer, anal cancer, oropharyngeal cancer, penile cancer, vaginal cancer, vulvar cancer | HPV 16 is responsible for most cases of cervical cancer [27] |
HPV 31, 33, 45 | High | Precancerous lesions of the cervix, other anogenital cancers | Partial protection by vaccination (Gardasil 9) [25] |
HPV 5, 8 | High | Epidermodysplasia verruciformis, squamous cell carcinoma of the skin | Rare, associated with a rare genetic condition [8,9] |
Mechanism of Infection (Figure 1) | Description |
---|---|
Attachment of the virus to the cell surface | HPV attaches to specific receptors on the surface of epithelial cells through the L1 protein in its capsid [11] |
Entry of the virus into the cell | The viral DNA is released which is then transported into the nucleus of the host cell. |
Integration | HPV DNA integrates into the host cell’s genome. For high-risk HPV types, such as HPV 16 și 18, this integration can disrupt host genes and initiate carcinogenesis [12] |
Viral shedding and transport | The expression of viral genes E6 and E7 inactivates the tumor suppressor proteins p53 and Rb, leading to uncontrolled cell proliferation and the development of precancerous lesions [13] |
Treatment | Description | Advantages | Disadvantages |
---|---|---|---|
Cryotherapy | Freezing lesions with liquid nitrogen [55] | Simple, fast, and effective method | Discomfort and requires multiple sessions |
Electrocautery | Using electrically generated heat to destroy infected tissue | Allows precise removal of lesions [56] | Painful and may require local anesthesia |
Laser therapy | Using a laser to vaporize the lesions [57] | Effective for multiple or recurring injuries | Expensive and requires specialized equipment |
Surgery | Surgical excision of the lesions [58] | Effective for large lesions or resistant to other treatments | It requires anesthesia and can leave scars |
Salicylic acid | A keratolytic that helps dissolve keratin [59] | Available without a prescription and easy to use | May irritate healthy skin and requires regular applications |
Cantharidin | The beetle extract is used to treat warts by inducing blister formation [60] | Painless and effective application for children | It requires medical supervision and may cause pain |
Podophyllin and podophyllotoxin | Cytotoxic agents that inhibit cell division in HPV lesions [51] | Effective for anogenital warts | They can be irritating and require a medical application |
Therapeutic and experimental vaccines | Designed to boost the immune system to fight existing HPV infections [55] | Provide a long-term solution for recurring infections | Experimental and not yet widely available |
Stage | Description | References |
---|---|---|
Administration of HPV vaccine | Intramuscular injection in the deltoid muscle of the arm | [17,19,20,23] |
Presentation of antigen | Phagocytosis by dendritic cells, which uptake the HPV antigen from the vaccine | [17,23,24,25] |
Activation of T cells | Antigen presentation on MHC Class II molecules by dendritic cells | [17,23,24,25] |
Stimulation of B cells | Activated T cells stimulate B cells to differentiate into plasma cells | [17,23,24,25] |
Production of antibodies | Plasma cells produce specific antibodies against HPV | [17,23,24,25] |
Immune Memory | Formation of memory B and T cells to provide long-term protection against HPV infection | [17,23,24,25] |
Approach | Description | Prevention | Population | Advantages | Disadvantages | Challenge |
---|---|---|---|---|---|---|
Vaccination | Administering HPV vaccines to prevent infection [62] | Stimulates immune response to prevent HPV infection | Pre-adolescents, adolescents, and young adults | Highly effective in preventing HPV-related cancers and warts | Limited access in some regions | Limited access in some regions [75,76,77,78] |
Vaccine availability | Ensuring widespread distribution and availability of HPV vaccines [17,19,20] | Increases vaccine uptake and herd immunity | General population | Reduces the prevalence of HPV-related diseases | High costs and logistical challenges | High costs [68,69,70,71,72,73,74,75,76,77,78,79,80,81] |
Public education programs | Informing the public about HPV and prevention methods | Raises awareness and promotes preventive behaviors | General population | Increases knowledge and reduces stigma | Cultural and religious acceptance issues | Cultural and religious acceptance [76,77,78,79,80,81,82,83,84,85,86,87,88,89,90] |
Screening | Regular testing to detect HPV and related lesions early [24,25] | Early detection and treatment of precancerous changes | Sexually active individuals, women aged 21–65 | Reduces the risk of progression to cancer | Reduced accessibility to screening tests | Reduced accessibility to screening tests [91,92] |
Regular Pap tests | Cytological examination to detect cervical abnormalities [23,24] | Identifies precancerous changes and early-stage cancer | Women aged 21–65 | Effective in early detection of cervical cancer | Lack of public information and awareness | Lack of public information [93,94,95,96] |
HPV DNA tests | Molecular testing to detect high-risk HPV strains [23,24,25] | Identifies high-risk HPV infections that may lead to cancer | Women aged 30 and older | More accurate than Pap tests in detecting high-risk HPV | Limited costs and infrastructure | Limited costs and infrastructure [97,98,99] |
Education and awareness | Programs to educate about HPV, its risks, and preventive measures [12,15,26,27,28] | Dispels myths and promotes vaccination and screening | General population | Reduces misinformation and increases preventive behaviors | Misinformation and cultural resistance | Misinformation and myths [100,101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maghiar, L.; Sandor, M.; Sachelarie, L.; Bodog, R.; Huniadi, A. Skin Lesions Caused by HPV—A Comprehensive Review. Biomedicines 2024, 12, 2098. https://doi.org/10.3390/biomedicines12092098
Maghiar L, Sandor M, Sachelarie L, Bodog R, Huniadi A. Skin Lesions Caused by HPV—A Comprehensive Review. Biomedicines. 2024; 12(9):2098. https://doi.org/10.3390/biomedicines12092098
Chicago/Turabian StyleMaghiar, Laura, Mircea Sandor, Liliana Sachelarie, Ruxandra Bodog, and Anca Huniadi. 2024. "Skin Lesions Caused by HPV—A Comprehensive Review" Biomedicines 12, no. 9: 2098. https://doi.org/10.3390/biomedicines12092098
APA StyleMaghiar, L., Sandor, M., Sachelarie, L., Bodog, R., & Huniadi, A. (2024). Skin Lesions Caused by HPV—A Comprehensive Review. Biomedicines, 12(9), 2098. https://doi.org/10.3390/biomedicines12092098