Generalisation of EEG-Based Pain Biomarker Classification for Predicting Central Neuropathic Pain in Subacute Spinal Cord Injury
Abstract
:1. Introduction
- Compare the classification performance of linear (band power) and non-linear (HDF) EEG features as markers of pain using two frequently used classifiers (LDA and SVM) as potential makers of future NP.
- Explore the robustness of features and classifiers by gradually increasing the level of challenge: (1) when applied for training and testing on two different datasets (A and B separately); (2) training and testing on the combined dataset (A and B); and (3) training and testing on one dataset (A or B) and validating on another dataset (B or A) separately.
2. Materials and Methods
2.1. Datasets
2.1.1. Dataset A
- Ten able-bodied (AB) participants (three female (F), seven male (M), age 35.2 ± 7.2 years [mean ± std.dev])
- Ten patients who eventually developed pain (PDP) within six months of EEG recording (one F, nine M, age 46.9 ± 15.9 years).
- Ten patients who did not develop pain (PNP) within six months of EEG recording (one F, nine M, age 42.1 ± 13.3 years)
- Eleven patients with pain (PWP) at the time of EEG recording (four F, seven M, age 44.9 ± 16.9 years)
2.1.2. Dataset B
- Twenty AB participants (five F, fifteen M, age 51.2 ± 12.8 years)
- Seventeen PDP participants(five F, twelve M, age 56.9 ± 12.4 years)
- Fifteen PNP participants (one F, fourteen M, age 57.5 ± 18.2 years)
- Nineteen PWP participants (eight F, eleven M, age 45.9 ± 15.6 years)
2.2. EEG Recordings
2.3. Experimental Paradigm
2.4. Feature Extraction
2.4.1. Band Power
- EO theta, alpha, beta
- EC theta, alpha, beta
2.4.2. Higuchi Fractal Dimension
2.4.3. Feature Extraction for Non-Oscillatory Features
2.5. Classification
2.5.1. Classifiers
- Priors: Inferring prior probabilities from data—if not provided, the model estimates class probabilities directly from the training data distribution.
- Solver: SVD—singular value decomposition (SVD) is used for efficient computation, especially when the number of features is high.
- Shrinkage: None—no shrinkage is applied, meaning the model does not regularize the covariance matrix estimates.
- store_covariance: False—the covariance matrix is not stored in the model to reduce memory usage during training.
- Kernel: Linear—assumes data is linearly separable, reducing computational complexity.
- Probability: True—enables probabilistic outputs for predictions.
- tol: Default value —controls solver convergence by setting a minimum change threshold.
- max_iter: Default value −1—no iteration limit; solver runs until convergence is achieved.
2.5.2. Classifier Evaluation
2.5.3. Optimal Feature Selection
2.5.4. Analysis Framework
3. Results
3.1. Classification Results
3.1.1. Band power Feature Classification
3.1.2. HFD Feature Classification
3.1.3. Normalisation and Ratio-Based Feature Classification (HFD)
4. Discussion
- Classifying separately new and old datasets with the same type of EEG features and the same type of classifiers, but allowing the selection of optimal electrodes and network parameters for each set separately.
- Jointly classifying both datasets.
- Training and testing classifiers based on one dataset and validating on another.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siddall, P.J.; McClelland, J.M.; Rutkowski, S.B.; Cousins, M.J. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 2003, 103, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B. Pain in patients with spinal cord injury. Pain 2013, 154 (Suppl. S1), S71–S76. [Google Scholar] [CrossRef]
- Mann, R.; Schaefer, C.; Sadosky, A.; Bergstrom, F.; Baik, R.; Parsons, B.; Nalamachu, S.; Stacey, B.R.; Tuchman, M.; Anschel, A.; et al. Burden of spinal cord injury-related neuropathic pain in the United States: Retrospective chart review and cross-sectional survey. Spinal Cord 2013, 51, 564–570. [Google Scholar] [CrossRef] [PubMed]
- FDA-NIH Biomarker Working Group. Prognostic biomarker. In BEST (Biomarkers, EndpointS, and Other Tools) Resource [Internet]; Food and Drug Administration (US): Silver Spring, MD, USA, 2016. [Google Scholar]
- Rosa, M.J.; Seymour, B. Decoding the matrix: Benefits and limitations of applying machine learning algorithms to pain neuroimaging. Pain 2014, 155, 864. [Google Scholar] [CrossRef] [PubMed]
- van der Miesen, M.M.; Lindquist, M.A.; Wager, T.D. Neuroimaging-based biomarkers for pain: State of the field and current directions. Pain Rep. 2019, 4, e751. [Google Scholar] [CrossRef]
- Vuckovic, A.; Gallardo, V.J.F.; Jarjees, M.; Fraser, M.; Purcell, M. Prediction of central neuropathic pain in spinal cord injury based on EEG classifier. Clin. Neurophysiol. 2018, 129, 1605–1617. [Google Scholar] [CrossRef] [PubMed]
- Sarnthein, J.; Stern, J.; Aufenberg, C.; Rousson, V.; Jeanmonod, D. Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain J. Neurol. 2006, 129, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Stern, J.; Jeanmonod, D.; Sarnthein, J. Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. NeuroImage 2006, 31, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Michels, L.; Moazami-Goudarzi, M.; Jeanmonod, D. Correlations between EEG and clinical outcome in chronic neuropathic pain: Surgical effects and treatment resistance. Brain Imaging Behav. 2011, 5, 329–348. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, F.; Macey, P.M.; Rae, C.D.; Alshelh, Z.; Macefield, V.G.; Vickers, E.R.; Henderson, L.A. The relationship between thalamic GABA content and resting cortical rhythm in neuropathic pain. Hum. Brain Mapp. 2018, 39, 1945–1956. [Google Scholar] [CrossRef] [PubMed]
- van den Broeke, E.N.; Wilder-Smith, O.H.G.; van Goor, H.; Vissers, K.C.P.; van Rijn, C.M. Patients with Persistent Pain after Breast Cancer Treatment Show Enhanced Alpha Activity in Spontaneous EEG. Pain Med. 2013, 14, 1893–1899. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, J.; Qi, W.; Liu, F.Y.; Yi, M.; Guo, H.; Wan, Y. Elevated Resting State Gamma Oscillatory Activities in Electroencephalogram of Patients With Post-herpetic Neuralgia. Front. Neurosci. 2018, 12, 750. [Google Scholar] [CrossRef] [PubMed]
- Krupina, N.A.; Churyukanov, M.V.; Kukushkin, M.L.; Yakhno, N.N. Central Neuropathic Pain and Profiles of Quantitative Electroencephalography in Multiple Sclerosis Patients. Front. Neurol. 2020, 10, 1380. [Google Scholar] [CrossRef]
- Levitt, J.; Edhi, M.M.; Thorpe, R.V.; Leung, J.W.; Michishita, M.; Koyama, S.; Yoshikawa, S.; Scarfo, K.A.; Carayannopoulos, A.G.; Gu, W.; et al. Pain phenotypes classified by machine learning using electroencephalography features. NeuroImage 2020, 223, 117256. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.; Mancini, C.; Wicht, C.A.; Maestretti, G.; Kuntzer, T.; Cazzoli, D.; Mouthon, M.; Annoni, J.M.; Chabwine, J.N. Beta Electroencephalographic Oscillation Is a Potential GABAergic Biomarker of Chronic Peripheral Neuropathic Pain. Front. Neurosci. 2021, 15, 594536. [Google Scholar] [CrossRef] [PubMed]
- Mussigmann, T.; Bardel, B.; Lefaucheur, J.P. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. NeuroImage 2022, 258, 119351. [Google Scholar] [CrossRef]
- Boord, P.; Siddall, P.J.; Tran, Y.; Herbert, D.; Middleton, J.; Craig, A. Electroencephalographic slowing and reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord 2008, 46, 118–123. [Google Scholar] [CrossRef]
- Jensen, M.P.; Sherlin, L.H.; Gertz, K.J.; Braden, A.L.; Kupper, A.E.; Gianas, A.; Howe, J.D.; Hakimian, S. Brain EEG activity correlates of chronic pain in persons with spinal cord injury: Clinical implications. Spinal Cord 2013, 51, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Simis, M.; Pacheco-Barrios, K.; Uygur-Kucukseymen, E.; Castelo-Branco, L.; Battistella, L.R.; Fregni, F. Specific Electroencephalographic Signatures for Pain and Descending Pain Inhibitory System in Spinal Cord Injury. Pain Med. 2022, 23, 955–964. [Google Scholar] [CrossRef]
- Vuckovic, A.; Hasan, M.A.; Fraser, M.; Conway, B.A.; Nasseroleslami, B.; Allan, D.B. Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury. J. Pain Off. J. Am. Pain Soc. 2014, 15, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Wydenkeller, S.; Maurizio, S.; Dietz, V.; Halder, P. Neuropathic pain in spinal cord injury: Significance of clinical and electrophysiological measures. Eur. J. Neurosci. 2009, 30, 91–99. [Google Scholar] [CrossRef]
- Accardo, A.; Affinito, M.; Carrozzi, M.; Bouquet, F. Use of the fractal dimension for the analysis of electroencephalographic time series. Biol. Cybern. 1997, 77, 339–350. [Google Scholar] [CrossRef]
- Katz, M.J. Fractals and the analysis of waveforms. Comput. Biol. Med. 1988, 18, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Li, X.; Polygiannakis, J.; Kapiris, P.; Peratzakis, A.; Eftaxias, K.; Yao, X. Fractal spectral analysis of pre-epileptic seizures in terms of criticality. J. Neural Eng. 2005, 2, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Spasic, S.; Kalauzi, A.; Kesic, S.; Obradovic, M.; Saponjic, J. Surrogate data modeling the relationship between high frequency amplitudes and Higuchi fractal dimension of EEG signals in anesthetized rats. J. Theor. Biol. 2011, 289, 160–166. [Google Scholar] [CrossRef]
- Al-Nuaimi, A.H.H.; Jammeh, E.; Sun, L.; Ifeachor, E. Complexity Measures for Quantifying Changes in Electroencephalogram in Alzheimer’s Disease. Complexity 2018, 2018, e8915079. [Google Scholar] [CrossRef]
- Anderson, K.; Chirion, C.; Fraser, M.; Purcell, M.; Stein, S.; Vuckovic, A. Markers of Central Neuropathic Pain in Higuchi Fractal Analysis of EEG Signals From People With Spinal Cord Injury. Front. Neurosci. 2021, 15, 705652. [Google Scholar] [CrossRef]
- Levitt, J.; Saab, C.Y. What does a pain ‘biomarker’ mean and can a machine be taught to measure pain? Neurosci. Lett. 2019, 702, 40–43. [Google Scholar] [CrossRef]
- Lötsch, J.; Ultsch, A. Machine learning in pain research. Pain 2018, 159, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, H.; Kavitha, P.T.; Loy, F.L.; Ng, S.H.; Wang, C.; Phua, K.S.; Tjan, S.Y.; Yang, S.Y.; Guan, C. Scalp EEG-Based Pain Detection Using Convolutional Neural Network. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 274–285. [Google Scholar] [CrossRef]
- Huang, G.; Xiao, P.; Hung, Y.S.; Iannetti, G.D.; Zhang, Z.G.; Hu, L. A novel approach to predict subjective pain perception from single-trial laser-evoked potentials. NeuroImage 2013, 81, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Gram, M.; Graversen, C.; Olesen, A.; Drewes, A. Machine learning on encephalographic activity may predict opioid analgesia. Eur. J. Pain 2015, 19, 1552–1561. [Google Scholar] [CrossRef] [PubMed]
- Gram, M.; Erlenwein, J.; Petzke, F.; Falla, D.; Przemeck, M.; Emons, M.I.; Reuster, M.; Olesen, S.; Drewes, A.M. Prediction of postoperative opioid analgesia using clinical-experimental parameters and electroencephalography. Eur. J. Pain 2017, 21, 264–277. [Google Scholar] [CrossRef]
- Graversen, C.; Olesen, S.S.; Olesen, A.E.; Steimle, K.; Farina, D.; Wilder-Smith, O.H.G.; Bouwense, S.A.W.; van Goor, H.; Drewes, A.M. The analgesic effect of pregabalin in patients with chronic pain is reflected by changes in pharmaco-EEG spectral indices. Br. J. Clin. Pharmacol. 2012, 73, 363–372. [Google Scholar] [CrossRef]
- Wei, M.; Liao, Y.; Liu, J.; Li, L.; Huang, G.; Huang, J.; Li, D.; Xiao, L.; Zhang, Z. EEG Beta-Band Spectral Entropy Can Predict the Effect of Drug Treatment on Pain in Patients With Herpes Zoster. J. Clin. Neurophysiol. 2022, 39, 166. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, D.M.; Ros, T.; Nahas, R. Elevated and Slowed EEG Oscillations in Patients with Post-Concussive Syndrome and Chronic Pain Following a Motor Vehicle Collision. Brain Sci. 2021, 11, 537. [Google Scholar] [CrossRef] [PubMed]
- Lendaro, E.; Balouji, E.; Baca, K.; Muhammad, A.S.; Ortiz-Catalan, M. Common Spatial Pattern EEG decomposition for Phantom Limb Pain detection. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society, Annual International Conference, Virtual, 1–5 November 2021; Volume 2021, pp. 726–729. [Google Scholar] [CrossRef]
- Hsiao, F.J.; Chen, W.T.; Liu, H.Y.; Wu, Y.T.; Wang, Y.F.; Pan, L.L.H.; Lai, K.L.; Chen, S.P.; Coppola, G.; Wang, S.J. Altered brainstem-cortex activation and interaction in migraine patients: Somatosensory evoked EEG responses with machine learning. J. Headache Pain 2024, 25, 185. [Google Scholar] [CrossRef]
- Dinh, S.T.; Nickel, M.M.; Tiemann, L.; May, E.S.; Heitmann, H.; Hohn, V.D.; Edenharter, G.; Utpadel-Fischler, D.; Tölle, T.R.; Sauseng, P.; et al. Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. Pain 2019, 160, 2751–2765. [Google Scholar] [CrossRef]
- Vanneste, S.; Song, J.J.; De Ridder, D. Thalamocortical dysrhythmia detected by machine learning. Nat. Commun. 2018, 9, 1103. [Google Scholar] [CrossRef]
- Miller, J.; Jacobs, S.; Koppes, W.; Minella, F.; Porta, F.; White, F.A.; Lovelace, J.A. Development of Machine Learning Algorithms Using EEG Data to Detect the Presence of Chronic Pain. medRxiv Prepr. Serv. Health Sci. 2024. [Google Scholar] [CrossRef]
- Fu, Z.; Zhu, H.; Zhang, Y.; Huan, R.; Chen, S.; Pan, Y. A Spatiotemporal Deep Learning Framework for Scalp EEG-Based Automated Pain Assessment in Children. IEEE Trans. Bio-Med. Eng. 2024, 71, 1889–1900. [Google Scholar] [CrossRef]
- Davis, K.D.; Flor, H.; Greely, H.T.; Iannetti, G.D.; Mackey, S.; Ploner, M.; Pustilnik, A.; Tracey, I.; Treede, R.D.; Wager, T.D. Brain imaging tests for chronic pain: Medical, legal and ethical issues and recommendations. Nat. Rev. Neurol. 2017, 13, 624–638. [Google Scholar] [CrossRef]
- Woo, C.W.; Chang, L.J.; Lindquist, M.A.; Wager, T.D. Building better biomarkers: Brain models in translational neuroimaging. Nat. Neurosci. 2017, 20, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Guy, S.D.; Bryce, T.N.; Craven, B.C.; Finnerup, N.B.; Hitzig, S.L.; Orenczuk, S.; Siddall, P.J.; Widerström-Noga, E.; Casalino, A.; et al. The CanPain SCI Clinical Practice Guidelines for Rehabilitation Management of Neuropathic Pain after Spinal Cord: Screening and diagnosis recommendations. Spinal Cord 2016, 54, S7–S13. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Norrbrink, C.; Trok, K.; Piehl, F.; Johannesen, I.L.; Sørensen, J.C.; Jensen, T.S.; Werhagen, L. Phenotypes and predictors of pain following traumatic spinal cord injury: A prospective study. J. Pain Off. J. Am. Pain Soc. 2014, 15, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Vuckovic, A.; Jajrees, M.; Purcell, M.; Berry, H.; Fraser, M. Electroencephalographic Predictors of Neuropathic Pain in Subacute Spinal Cord Injury. J. Pain Off. J. Am. Pain Soc. 2018, 19, 1256.e1–1256.e17. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.J.; Sejnowski, T.J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Comput. 1995, 7, 1129–1159. [Google Scholar] [CrossRef] [PubMed]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage 2019, 198, 181–197. [Google Scholar] [CrossRef]
- Higuchi Fractal Dimension. Available online: https://github.com/inuritdino/HiguchiFractalDimension. (accessed on 30 November 2024).
- Kesić, S.; Spasić, S.Z. Application of Higuchi’s fractal dimension from basic to clinical neurophysiology: A review. Comput. Methods Programs Biomed. 2016, 133, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Lotte, F.; Congedo, M.; Lécuyer, A.; Lamarche, F.; Arnaldi, B. A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 2007, 4, R1–R13. [Google Scholar] [CrossRef]
- Sklearn LDA implementation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html. (accessed on 30 November 2024).
- Scholkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New support vector algorithms. Neural Comput. 2000, 12, 1207–1245. [Google Scholar] [CrossRef]
- Sklearn Nu-SVC Implementation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html. (accessed on 30 November 2024).
- Ting, K.M. Confusion Matrix. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2010; p. 209. [Google Scholar] [CrossRef]
- Deng, K.; Moore, A. Omega: On-Line Memory-Based General Purpose System Classifier; Carnegie Mellon University: Pittsburgh, PA, USA, 1999. [Google Scholar]
- Figueroa, A.; Neumann, G. Category-specific models for ranking effective paraphrases in community Question Answering. Expert Syst. Appl. 2014, 41, 4730–4742. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Kalauzi, A.; Bojić, T.; Vuckovic, A. Modeling the relationship between Higuchi’s fractal dimension and Fourier spectra of physiological signals. Med. Biol. Eng. Comput. 2012, 50, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Zolezzi, D.M.; Alonso-Valerdi, L.M.; Ibarra-Zarate, D.I. EEG frequency band analysis in chronic neuropathic pain: A linear and nonlinear approach to classify pain severity. Comput. Methods Programs Biomed. 2023, 230, 107349. [Google Scholar] [CrossRef] [PubMed]
- Rockholt, M.M.; Kenefati, G.; Doan, L.V.; Chen, Z.S.; Wang, J. In search of a composite biomarker for chronic pain by way of EEG and machine learning: Where do we currently stand? Front. Neurosci. 2023, 17, 1186418. [Google Scholar] [CrossRef]
- Roué, J.M.; Morag, I.; Haddad, W.M.; Gholami, B.; Anand, K.J. Using sensor-fusion and machine-learning algorithms to assess acute pain in non-verbal infants: A study protocol. BMJ Open 2021, 11, e039292. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef]
Dataset | State | Accuracy (%) | Sensitivity (%) | Specificity (%) | Channels | ||
---|---|---|---|---|---|---|---|
LDA | A | EO | 80.0 ± 26.4 | 79.0 ± 43.6 | 81.0 ± 44.7 | Fpz, F8, T7, T8, C5, C6, CP1 | - |
EC | 70.0 ± 28.9 | 60.0 ± 37.7 | 78.0 ± 41.5 | FC5, C6, Cz, CP3 | - | ||
B | EO | 76.7 ± 29.1 | 76.0 ± 43.0 | 77.3 ± 44.0 | CP1, CP2, CP4, CP5 | - | |
EC | 72.8 ± 28.2 | 72.9 ± 43.7 | 72.7 ± 39.0 | Oz, F3, C5, T8, T7, FC5, CP1 | - | ||
SVM | A | EO | 75.5 ± 28.9 | 87.0 ± 45.1 | 64.0 ± 39.8 | FC3, P6 | 0.15 |
EC | 78.9 ± 20.5 | 75.0 ± 39.0 | 82.0 ± 43.9 | Fp1, C1, P6 | 0.05 | ||
B | EO | 79.7 ± 25.8 | 86.0 ± 45.5 | 73.3 ± 41.8 | CP6, T7, FC6, F8, O1, F1, F7, CPz, C4 | 0.05 | |
EC | 70.9 ± 28.9 | 74.7 ± 41.5 | 66.7 ± 39.9 | FC2, T8, FC3, C5, P6, C2 | 0.50 |
Dataset | State | Accuracy (%) | Sensitivity (%) | Specificity (%) | Channels | ||
---|---|---|---|---|---|---|---|
LDA | A & B | EO | 70.4 ± 31.4 | 66.8 ± 39.8 | 74.0 ± 43.2 | F2, F4, F7, FC3, T7, CP5, P8 | - |
EC | 69.2 ± 30.6 | 68.4 ± 40.9 | 70.0 ± 40.8 | FC3, C6, P6, P8 | - | ||
SVM | A & B | EO | 69.6 ± 33.4 | 80.0 ± 44.8 | 59.2 ± 38.5 | C4, P4 | 0.45 |
EC | 72.4 ± 31.1 | 76.8 ± 43.5 | 68.0 ± 41.1 | F2, P5, P6 | 0.15 |
Train Dataset | State | Accuracy (%) | Sensitivity (%) | Specificity (%) | |
---|---|---|---|---|---|
LDA | A | EO | 46.7 ± 36.3 | 39.3 ± 30.8 | 54.0 ± 37.8 |
EC | 60.6 ± 33.4 | 55.3 ± 38.2 | 52.0 ± 36.9 | ||
B | EO | 49.5 ± 38.1 | 65.0 ± 44.0 | 34.0 ± 24.9 | |
EC | 43.9 ± 36.5 | 31.3 ± 24.3 | 54.0 ± 39.7 | ||
SVM | A | EO | 49.3 ± 42.3 | 72.7 ± 44.1 | 26.0 ± 28.2 |
EC | 52.2 ± 40.9 | 24.7 ± 27.0 | 83.3 ± 44.4 | ||
B | EO | 52.0 ± 33.7 | 62.0 ± 38.1 | 42.0 ± 31.4 | |
EC | 46.7 ± 40.0 | 67.5 ± 42.6 | 30.0 ± 28.1 |
State | Train Dataset | Accuracy (%) | Sensitivity (%) | Specificity (%) | Channels | ||
---|---|---|---|---|---|---|---|
LDA | EO | A | 72.7 ± 42.5 | 67.0 ± 38.0 | 77.0 ± 42.0 | Fp1, F7, F2, F8, FC3, T8, CPz, P3, Oz | - |
B | 67.0 ± 27.6 | 68.0 ± 38.0 | 66.0 ± 40.0 | F8, FC6, C5, T8, P2, P4, P8, O2 | - | ||
EC | A | 60.9 ± 35.0 | 44.0 ± 33.0 | 74.0 ± 42.0 | CP4 | - | |
B | 72.3 ± 22.8 | 75.0 ± 39.0 | 70.0 ± 40.0 | C6, P6, PO4 | |||
SVM | EO | A | 88.6 ± 23.3 | 94.0 ± 47.9 | 84.3 ± 46.5 | CP4 | 0.15 |
B | 76.3 ± 29.6 | 70.7 ± 43.3 | 81.8 ± 43.6 | CP3, CP4 | 0.40 | ||
EC | A | 80.2 ± 33.1 | 67.3 ± 43.3 | 90.5 ± 47.2 | F4 | 0.20 | |
B | 77.4 ± 39.7 | 68.2 ± 45.6 | 86.7 ± 49.6 | FC5 | 0.15 |
State | Train Dataset | Accuracy (%) | Sensitivity (%) | Specificity (%) | Channels | ||
---|---|---|---|---|---|---|---|
LDA | EO | A & B | 60.7 ± 26.4 | 56.0 ± 34.4 | 65.0 ± 36.4 | Fp1, CP1, P1, P2, PO4, O2 | - |
EC | A & B | 66.2 ± 33.0 | 64.0 ± 39.0 | 68.0 ± 41.0 | F2, F4, FC2, T7, C3, T8, P4, FC5 | - | |
SVM | EO | A & B | 77.9 ± 37.8 | 87.8 ± 48.2 | 68.7 ± 46.0 | P2 | 0.85 |
EC | A & B | 77.0 ± 35.4 | 70.7 ± 42.1 | 82.9 ± 49.1 | Pz | 0.80 |
Dataset | PCA Comps | Train-acc (%) | Val-acc (%) | Sen (%) | Spe (%) | Channels | ||
---|---|---|---|---|---|---|---|---|
EO | A | None | 88.6 ± 23.3 | 48.3 | 51.1 | 45.5 | CP4 | 0.15 |
B | 76.3 ± 29.6 | 43.7 | 98.0 | 0.02 | CP3, CP4 | 0.40 | ||
A | 1 | 89.1 ± 21.4 | 45.2 | 73.5 | 16.8 | Fp1, FC5 | 0.75 | |
B | 1 | 80.8 ± 32.2 | 52.8 | 34.7 | 67.3 | FC4, PO3 | 0.25 | |
A | None | 81.9 ± 36.8 | 49.4 | 71.8 | 30.0 | T7 | 0.05 | |
B | 89.4 ± 30.0 | 45.3 | 98.6 | 2.7 | PO4 | 0.80 | ||
A | 1 | 91.9 ± 18.6 | 50.0 | 0.0 | 100.0 | C1, O1 | 0.70 | |
B | 1 | 83.3 ± 32.8 | 54.3 | 17.0 | 84.1 | Fp2, P4 | 0.80 | |
A | None | 87.9 ± 31.3 | 47.7 | 93.1 | 2.1 | Fp1, P2 | 0.25 | |
B | 84.0 ± 30.0 | 44.4 | 100.0 | 0.0 | CP6 | 0.20 | ||
A | 1 | 93.4 ± 23.0 | 50.9 | 87.9 | 13.9 | F7, F4, P4 | 0.70 | |
B | 1 | 90.3 ± 27.4 | 44.4 | 100.0 | 0.0 | FC2, C1, O1 | 0.85 | |
A | None | 94.3 ± 22.9 | 50.0 | 100.0 | 0.0 | CP4 | 0.15 | |
B | 83.3 ± 37.2 | 45.8 | 37.5 | 52.5 | F4 | 0.05 | ||
A | 8 | 100.0 ± 0.0 | 66.6 | 73.0 | 60.1 | F3, FC2, T7, C2, CP4, Pz, P2, O2 | 0.20 | |
B | 9 | 93.3 ± 24.9 | 59.5 | 37.5 | 77.0 | Fp1, F3, Fz, FC1, C4, T8, CP4, P7, P5 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, K.; Stein, S.; Suen, H.; Purcell, M.; Belci, M.; McCaughey, E.; McLean, R.; Khine, A.; Vuckovic, A. Generalisation of EEG-Based Pain Biomarker Classification for Predicting Central Neuropathic Pain in Subacute Spinal Cord Injury. Biomedicines 2025, 13, 213. https://doi.org/10.3390/biomedicines13010213
Anderson K, Stein S, Suen H, Purcell M, Belci M, McCaughey E, McLean R, Khine A, Vuckovic A. Generalisation of EEG-Based Pain Biomarker Classification for Predicting Central Neuropathic Pain in Subacute Spinal Cord Injury. Biomedicines. 2025; 13(1):213. https://doi.org/10.3390/biomedicines13010213
Chicago/Turabian StyleAnderson, Keri, Sebastian Stein, Ho Suen, Mariel Purcell, Maurizio Belci, Euan McCaughey, Ronali McLean, Aye Khine, and Aleksandra Vuckovic. 2025. "Generalisation of EEG-Based Pain Biomarker Classification for Predicting Central Neuropathic Pain in Subacute Spinal Cord Injury" Biomedicines 13, no. 1: 213. https://doi.org/10.3390/biomedicines13010213
APA StyleAnderson, K., Stein, S., Suen, H., Purcell, M., Belci, M., McCaughey, E., McLean, R., Khine, A., & Vuckovic, A. (2025). Generalisation of EEG-Based Pain Biomarker Classification for Predicting Central Neuropathic Pain in Subacute Spinal Cord Injury. Biomedicines, 13(1), 213. https://doi.org/10.3390/biomedicines13010213