Venoarterial Membrane Oxygenation in Cardiogenic Shock Complicated from an Acute Myocardial Infarction: An Overview and Comprehensive Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
- (1)
- Shock, cardiogenic, cardiac shock, or abrupt loss of heart function or acute cardiac failure [Title/Abstract];
- (2)
- Myocardial infarction or myocardial infarct or coronary infarct [Title/Abstract];
- (3)
- Extracorporeal membrane oxygenation or ECLS or extracorporeal life support or veno(-)arterial extracorporeal membrane oxygenation or veno(-)arterial ECMO [Title/Abstract].
2.2. End-Points and Definitions
2.3. Statistical Analysis
3. Results
Secondary End Points
4. Discussion
- (a)
- The 30-day mortality rate for cardiogenic shock patients is still high even with the use of VA-ECMO;
- (b)
- Our findings may, however, imply that vascular complications are linked to a worse prognosis.
Limitations
5. Conclusions
Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thiele, H.; Akin, I.; Sandri, M.; Fuernau, G.; de Waha, S.; Meyer-Saraei, R.; Nordbeck, P.; Geisler, T.; Landmesser, U.; Skurk, C.; et al. PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N. Engl. J. Med. 2017, 377, 2419–2432. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Ohman, E.M.; de Waha-Thiele, S.; Zeymer, U.; Desch, S. Management of cardiogenic shock complicating myocardial infarction: An update 2019. Eur. Heart J. 2019, 40, 2671–2683. [Google Scholar] [CrossRef] [PubMed]
- Conrad, S.A.; Broman, L.M.; Taccone, F.S.; Lorusso, R.; Malfertheiner, M.V.; Pappalardo, F.; Di Nardo, M.; Belliato, M.; Grazioli, L.; Barbaro, R.P.; et al. The Extracorporeal Life Support Organization Maastricht Treaty for Nomenclature in Extracorporeal Life Support. A Position Paper of the Extracorporeal Life Support Organization. Am. J. Respir. Crit. Care Med. 2018, 198, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Tachon, G.; Devilliers, C.; Muller, G.; Hekimian, G.; Bréchot, N.; Merceron, S.; Luyt, C.E.; Trouillet, J.L.; Chastre, J.; et al. Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults. Intensive Care Med. 2013, 39, 838–846. [Google Scholar] [CrossRef]
- Le Gall, A.; Follin, A.; Cholley, B.; Mantz, J.; Aissaoui, N.; Pirracchio, R. Veno-arterial-ECMO in the intensive care unit: From technical aspects to clinical practice. Anaesth. Crit. Care Pain Med. 2018, 37, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Guglin, M.; Zucker, M.J.; Bazan, V.M.; Bozkurt, B.; El Banayosy, A.; Estep, J.D.; Gurley, J.; Nelson, K.; Malyala, R.; Panjrath, G.S.; et al. Venoarterial ECMO for Adults: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 2019, 73, 698–716. [Google Scholar] [CrossRef] [PubMed]
- Brunner, S.; Guenther, S.P.W.; Lackermair, K.; Peterss, S.; Orban, M.; Boulesteix, A.L.; Michel, S.; Hausleiter, J.; Massberg, S.; Hagl, C. Extracorporeal Life Support in Cardiogenic Shock Complicating Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2019, 73, 2355–2357. [Google Scholar] [CrossRef] [PubMed]
- Banning, A.S.; Sabaté, M.; Orban, M.; Gracey, J.; López-Sobrino, T.; Massberg, S.; Kastrati, A.; Bogaerts, K.; Adriaenssens, T.; Berry, C.; et al. Venoarterial extracorporeal membrane oxygenation or standard care in patients with cardiogenic shock complicating acute myocardial infarction: The multicentre, randomised EURO SHOCK trial. EuroIntervention 2023, 19, 482–492. [Google Scholar] [CrossRef]
- Mehran, R.; Rao, S.V.; Bhatt, D.L.; Gibson, C.M.; Caixeta, A.; Eikelboom, J.; Kaul, S.; Wiviott, S.D.; Menon, V.; Nikolsky, E.; et al. Standardized bleeding definitions for cardiovascular clinical trials: A consensus report from the Bleeding Academic Research Consortium. Circulation 2011, 123, 2736–2747. [Google Scholar] [CrossRef]
- Aso, S.; Matsui, H.; Fushimi, K.; Yasunaga, H. The Effect of Intraaortic Balloon Pumping Under Venoarterial Extracorporeal Membrane Oxygenation on Mortality of Cardiogenic Patients: An Analysis Using a Nationwide Inpatient Database. Crit. Care Med. 2016, 44, 1974–1979. [Google Scholar] [CrossRef]
- Chamogeorgakis, T.; Rafael, A.; Shafii, A.E.; Nagpal, D.; Pokersnik, J.A.; Gonzalez-Stawinski, G.V. Which is better: A miniaturized percutaneous ventricular assist device or extracorporeal membrane oxygenation for patients with cardiogenic shock? ASAIO J. 2013, 59, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Chen, H.C.; Caffrey, J.L.; Hsu, J.; Lin, J.W.; Lai, M.S.; Chen, Y.S. Survival Analysis After Extracorporeal Membrane Oxygenation in Critically Ill Adults: A Nationwide Cohort Study. Circulation 2016, 133, 2423–2433. [Google Scholar] [CrossRef] [PubMed]
- Karatolios, K.; Chatzis, G.; Markus, B.; Luesebrink, U.; Ahrens, H.; Divchev, D.; Syntila, S.; Jerrentrup, A.; Schieffer, B. Comparison of mechanical circulatory support with venoarterial extracorporeal membrane oxygenation or Impella for patients with cardiogenic shock: A propensity-matched analysis. Clin. Res. Cardiol. 2021, 110, 1404–1411. [Google Scholar] [CrossRef]
- Cho, S.; Lee, W.; Lim, S.H.; Kang, T.S. Relationship between Clinical Outcomes and Cardiopulmonary Resuscitation Time in Patients with Acute Myocardial Infarction Treated by Extracorporeal Membrane Oxygenation-Assisted Primary Percutaneous Coronary Intervention. Korean Circ. J. 2018, 48, 705–715. [Google Scholar] [CrossRef]
- Choi, K.H.; Yang, J.H.; Hong, D.; Park, T.K.; Lee, J.M.; Song, Y.B.; Hahn, J.Y.; Choi, S.H.; Choi, J.H.; Chung, S.R.; et al. Optimal Timing of Venoarterial-Extracorporeal Membrane Oxygenation in Acute Myocardial Infarction Patients Suffering From Refractory Cardiogenic Shock. Circ. J. 2020, 84, 1502–1510. [Google Scholar] [CrossRef]
- Chung, S.Y.; Tong, M.S.; Sheu, J.J.; Lee, F.Y.; Sung, P.H.; Chen, C.J.; Yang, C.H.; Wu, C.J.; Yip, H.K. Short-term and long-term prognostic outcomes of patients with ST-segment elevation myocardial infarction complicated by profound cardiogenic shock undergoing early extracorporeal membrane oxygenator-assisted primary percutaneous coronary intervention. Int. J. Cardiol. 2016, 223, 412–417. [Google Scholar] [CrossRef]
- Fried, J.A.; Griffin, J.M.; Masoumi, A.; Clerkin, K.J.; Witer, L.J.; Topkara, V.K.; Karmpaliotis, D.; Rabbani, L.; Colombo, P.C.; Yuzefpolskaya, M.; et al. Predictors of Survival and Ventricular Recovery Following Acute Myocardial Infarction Requiring Extracorporeal Membrane Oxygenation Therapy. ASAIO J. 2022, 68, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Hsu, J.C.; Wu, Y.W.; Ke, S.R.; Huang, J.H.; Chiu, K.M.; Liao, P.C. Implementation of extracorporeal membrane oxygenation before primary percutaneous coronary intervention may improve the survival of patients with ST-segment elevation myocardial infarction and refractory cardiogenic shock. Int. J. Cardiol. 2018, 269, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Ong, B.H.; Hoo, A.E.E.; Gao, F.; Chao, V.T.T.; Lim, C.H.; Tan, T.E.; Sin, K.Y.K. Prognostic Factors for Survival After Extracorporeal Membrane Oxygenation for Cardiogenic Shock. ASAIO J. 2020, 66, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Hyun, D.Y.; Han, X.; Oh, S.; Ahn, J.H.; Lee, S.H.; Cho, K.H.; Kim, M.C.; Sim, D.S.; Hong, Y.J.; Kim, J.H.; et al. Long-term clinical outcomes in patients with acute myocardial infarction complicated by cardiogenic shock according to the application and initiation time of extracorporeal membrane oxygenation in South Korea. Cardiol. J. 2023, 30, 713–724. [Google Scholar] [CrossRef]
- Kang, J.; Lee, K.S.; Lee, H.S.; Lee, H.; Ahn, H.; Han, J.K.; Yang, H.M.; Park, K.W.; Lee, H.Y.; Kang, H.J.; et al. Differential effect of left ventricular unloading according to the aetiology of cardiogenic shock. ESC Heart Fail. 2024, 11, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Karami, M.; den Uil, C.A.; Ouweneel, D.M.; Scholte, N.T.; Engström, A.E.; Akin, S.; Lagrand, W.K.; Vlaar, A.P.; Jewbali, L.S.; Henriques, J.P. Mechanical circulatory support in cardiogenic shock from acute myocardial infarction: Impella CP/5.0 versus ECMO. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.C.; Ahn, Y.; Cho, K.H.; Sim, D.S.; Hong, Y.J.; Kim, J.H.; Jeong, M.H.; Cho, J.G.; Kim, D.; Lee, K.; et al. Benefit of Extracorporeal Membrane Oxygenation before Revascularization in Patients with Acute Myocardial Infarction Complicated by Profound Cardiogenic Shock after Resuscitated Cardiac Arrest. Korean Circ. J. 2021, 51, 533–544. [Google Scholar] [CrossRef]
- Moussa, M.D.; Beyls, C.; Lamer, A.; Roksic, S.; Juthier, F.; Leroy, G.; Petitgand, V.; Rousse, N.; Decoene, C.; Dupré, C.; et al. Early hyperoxia and 28-day mortality in patients on venoarterial ECMO support for refractory cardiogenic shock: A bicenter retrospective propensity score-weighted analysis. Crit. Care 2022, 26, 257. [Google Scholar] [CrossRef] [PubMed]
- Ostadal, P.; Rokyta, R.; Karasek, J.; Kruger, A.; Vondrakova, D.; Janotka, M.; Naar, J.; Smalcova, J.; Hubatova, M.; Hromadka, M.; et al. Extracorporeal Membrane Oxygenation in the Therapy of Cardiogenic Shock: Results of the ECMO-CS Randomized Clinical Trial. Circulation 2023, 147, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, M.; Payet, C.; Polazzi, S.; L’Hospital, A.; Obadia, J.F.; Duclos, A. Veno-arterial extracorporeal membrane oxygenation for cardiogenic shock after acute myocardial infarction: Insights from a French nationwide database. Int. J. Cardiol. 2023, 380, 14–19. [Google Scholar] [CrossRef]
- Schrage, B.; Becher, P.M.; Bernhardt, A.; Bezerra, H.; Blankenberg, S.; Brunner, S.; Colson, P.; Cudemus Deseda, G.; Dabboura, S.; Eckner, D.; et al. Left Ventricular Unloading Is Associated with Lower Mortality in Patients with Cardiogenic Shock Treated with Venoarterial Extracorporeal Membrane Oxygenation: Results from an International, Multicenter Cohort Study. Circulation 2020, 142, 2095–2106. [Google Scholar] [CrossRef]
- Shin, D.G.; Shin, S.D.; Han, D.; Kang, M.K.; Lee, S.H.; Kim, J.; Cho, J.R.; Kim, K.; Choi, S.; Lee, N. Features of Patients Receiving Extracorporeal Membrane Oxygenation Relative to Cardiogenic Shock Onset: A Single-Centre Experience. Medicina 2021, 57, 886. [Google Scholar] [CrossRef]
- Szczanowicz, L.; Majunke, N.; de Waha-Thiele, S.; Tietz, F.; Schürer, S.; Kirsch, K.; Desch, S.; Thiele, H.; Sandri, M. Predictors of Clinical Outcome After Early Veno-Arterial Extracorporeal Membrane Oxygenation in Cardiogenic Shock Complicating ST-Elevation Myocardial Infarction. J. Invasive Cardiol. 2021, 33, E329–E335. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Akin, I.; Behnes, M.; Rassaf, T.; Mahabadi, A.A.; Lehmann, R.; Eitel, I.; Graf, T.; Seidler, T.; et al. Extracorporeal Life Support in Infarct-Related Cardiogenic Shock. N. Engl. J. Med. 2023, 389, 1286–1297. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.Y.; Tseng, Y.H.; Chang, Y.S.; Tsai, F.C.; Lin, P.J. Using extracorporeal membrane oxygenation to rescue acute myocardial infarction with cardiopulmonary collapse: The impact of early coronary revascularization. Resuscitation 2013, 84, 940–945. [Google Scholar] [CrossRef]
- Aubin, H.; Petrov, G.; Dalyanoglu, H.; Saeed, D.; Akhyari, P.; Paprotny, G.; Richter, M.; Westenfeld, R.; Schelzig, H.; Kelm, M.; et al. A Suprainstitutional Network for Remote Extracorporeal Life Support: A Retrospective Cohort Study. JACC Heart Fail. 2016, 4, 698–708. [Google Scholar] [CrossRef]
- Wayangankar, S.A.; Bangalore, S.; McCoy, L.A.; Jneid, H.; Latif, F.; Karrowni, W.; Charitakis, K.; Feldman, D.N.; Dakik, H.A.; Mauri, L.; et al. Temporal Trends and Outcomes of Patients Undergoing Percutaneous Coronary Interventions for Cardiogenic Shock in the Setting of Acute Myocardial Infarction: A Report From the CathPCI Registry. JACC Cardiovasc. Interv. 2016, 9, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Neumann, F.J.; Ferenc, M.; Olbrich, H.G.; Hausleiter, J.; de Waha, A.; Richardt, G.; Hennersdorf, M.; Empen, K.; et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): Final 12 month results of a randomised, open-label trial. Lancet 2013, 382, 1638–1645. [Google Scholar] [CrossRef] [PubMed]
- Aissaoui, N.; Puymirat, E.; Tabone, X.; Charbonnier, B.; Schiele, F.; Lefevre, T.; Durand, E.; Blanchard, D.; Simon, T.; Cambou, J.P.; et al. Improved outcome of cardiogenic shock at the acute stage of myocardial infarction: A report from the USIK 1995, USIC 2000, and FAST-MI French nationwide registries. Eur. Heart J. 2012, 33, 2535–2543. [Google Scholar] [CrossRef]
- Sakamoto, S.; Taniguchi, N.; Nakajima, S.; Takahashi, A. Extracorporeal life support for cardiogenic shock or cardiac arrest due to acute coronary syndrome. Ann. Thorac. Surg. 2012, 94, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sheu, J.J.; Tsai, T.H.; Lee, F.Y.; Fang, H.Y.; Sun, C.K.; Leu, S.; Yang, C.H.; Chen, S.M.; Hang, C.L.; Hsieh, Y.K.; et al. Early extracorporeal membrane oxygenator-assisted primary percutaneous coronary intervention improved 30-day clinical outcomes in patients with ST-segment elevation myocardial infarction complicated with profound cardiogenic shock. Crit. Care Med. 2010, 38, 1810–1817. [Google Scholar] [CrossRef]
- Harjola, V.P.; Lassus, J.; Sionis, A.; Kober, L.; Tarvasmaki, T.; Spinar, J.; Parissis, J.; Banaszewski, M.; Silva-Cardoso, J.; Carubelli, V.; et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur. J. Heart Fail. 2015, 17, 501–509. [Google Scholar] [CrossRef]
- Chatzis, G.; Syntila, S.; Markus, B.; Ahrens, H.; Patsalis, N.; Luesebrink, U.; Divchev, D.; Parahuleva, M.; Al Eryani, H.; Schieffer, B.; et al. Biventricular Unloading with Impella and Venoarterial Extracorporeal Membrane Oxygenation in Severe Refractory Cardiogenic Shock: Implications from the Combined Use of the Devices and Prognostic Risk Factors of Survival. J. Clin. Med. 2021, 10, 747. [Google Scholar] [CrossRef]
- Torre, T.; Toto, F.; Klersy, C.; Theologou, T.; Casso, G.; Gallo, M.; Surace, G.G.; Franciosi, G.; Demertzis, S.; Ferrari, E. Early predictors of mortality in refractory cardiogenic shock following acute coronary syndrome treated with extracorporeal membrane oxygenator. J. Artif. Organs 2021, 24, 327–335. [Google Scholar] [CrossRef]
- Szabó, G.T.; Ágoston, A.; Csató, G.; Rácz, I.; Bárány, T.; Uzonyi, G.; Szokol, M.; Sármán, B.; Jebelovszki, É.; Édes, I.F.; et al. Predictors of Hospital Mortality in Patients with Acute Coronary Syndrome Complicated by Cardiogenic Shock. Sensors 2021, 21, 969. [Google Scholar] [CrossRef]
First Author | Publication Date | Journal | Study-Design | Clinical Endpoint |
---|---|---|---|---|
Aso [10] | 2016 | Crit Care Medicine | Retrospective Multicenter | 30-Day mortality |
Brunner [7] | 2019 | JACC | Prospective Singlecenter | 30-Day mortality |
Chamogeorgakis [11] | 2013 | ASAIO Journal | Retrospective | In-Hospital outcome and long-term survival |
Chang [12] | 2016 | Circulation | Retrospective | 30-Day and one year survival |
Chatzis [13] | 2021 | Clinical Research in Cardiology | Retrospective | In-Hospital and 6-months survival |
Cho [14] | 2018 | KCJ | Retrospective | 30-Day mortality |
Choi [15] | 2020 | Circulation Journal | Retrospective | In-Hospital mortality and 1-year follow-up |
Chung [16] | 2013 | Int. J. Cardiol. | Retrospective | 30-Day mortality |
Fried [17] | 2021 | ASAIO Journal | Prospective Singlecenter | Survival to discharge and 30-Day survival |
C. C. Huang [18] | 2018 | Int. J. Cardiol. | Retrospective | Six-month survival |
M. Huang [19] | 2020 | ASAIO Journal | Retrospective | 30-Day mortality |
Hyun [20] | 2023 | Cardiology Journal | Prospective Multicenter | 3-Years monitoring and follow-up |
Kang [21] | 2024 | ESC Heart Failure | Retrospective | 90-Day mortality |
Karami [22] | 2020 | European Heart Journal Acute Cardiovascular Care | Retrospective | 30-Day mortality |
Kim [23] | 2021 | KCJ | Retrospective Multicenter | 30-Day mortality |
Mousa [24] | 2022 | Critical Care | Retrospective | 30-Day mortality |
Ostadal [25] | 2023 | Circulation | Retrospective Multicenter | 30-Day mortality |
Pozzi [26] | 2023 | Int. J. Cardiol. | Retrospective Multicenter | 90-Day Mortality |
Schrage [27] | 2020 | Circulation | Retrospective | 30-Day mortality |
Shin [28] | 2021 | Medicina | Retrospective | 30-Day mortality |
Szczanowicz [29] | 2021 | JIC | Prospective Multicenter | 6-months survival |
Thiele [30] | 2023 | NEJM | Prospective Multicenter | 30-Day mortality |
Wu [31] | 2014 | Resuscitation | Retrospective | Survival to discharge and LT-follow-up |
Aubin [32] | 2016 | JACC | Retrospective | Survival to discharge and 2-year-follow-up |
First Author | Number of Participants | 30-Day Mortality (%) | Age (y) | Male (%) | Bleeding (%) | Lactate (mmol/L) | LVEF (%) | Prior CPR (%) | pH | Creatinine (mg/dL) |
---|---|---|---|---|---|---|---|---|---|---|
Aso [10] * | 473 | 62 | n.a. | 69.4 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Brunner [7] | 42 | 33 | 62 (50–68) | 76 | 19 | n.a. | n.a. | n.a. | n.a. | n.a. |
Chamogeorgakis [11] | 61 | 50 | 53 ± 13 | 49 | 14 | n.a | n.a. | 33% | n.a. | n.a. |
Chang [12] * | 1705 | 66 | 57 ± 17 | 70.6 | n.a. | n.a | n.a | n.a | n.a | n.a |
Chatzis [13] | 106 | 56 | 61.3 ± 10.2 | 78 | 17 | 9.18 ± 5.6 | 35 ± 4.5 | n.a. | 7.2 ± 0.2 | 1.47 (1.3–1.9) |
Cho [14] | 42 | 78.6 | 63 ± 11.4 | 65 | n.a. | 7.4 ± 5 | 27 ± 13.6 | n.a. | 7.2 ± 0.2 | 1.35 ± 1.1 |
Choi [15] | 97 | 48 | 63.8 ± 12 | 78 | 17 | 5.2 ± 4.4 | n.a. | 60% | n.a. | 1.7 ± 1.3 |
Chung [16] | 65 | 43 | 60.1 ± 7.6 | 89 | 17.9 | n.a. | n.a. | n.a. | n.a. | 1.77 ± 1.62 |
Fried [17] | 109 | 56 | 60 ± 11.7 | 73.8 | n.a. | 5.95 ± 4.84 | 21 | n.a. | 7.28 ± 0.16 | 1.64 ± 0.87 |
C. C. Huang [18] | 46 | 63 | 57 ± 11.2 | 87 | 33 | n.a. | n.a. | n.a. | n.a. | n.a. |
M. Huang [19] * | 76 | 34 | 45 (34–58) | 79 | 31 | n.a. | n.a. | n.a. | n.a. | n.a. |
Hyun [20] | 104 | 74 | 63.3 ± 11.8 | 77.9 | n.a. | n.a. | 34 ± 14 | n.a. | n.a. | 1.6 ± 1.9 |
Kang [21] * | 40 | 50 | 68 (59–75) | 64 | 18 | 8 | 30 (20–40) | 46% | n.a. | 1.3 (1–2) |
Karami [22] | 38 | 53 | 55 ± 9 | 79 | 18 | 7.1 ± 4.8 | n.a. | 24% | 7.2 ± 0.2 | 1.33 (1–1.8) |
Kim [23] | 184 | 80.4 | 60.5 ± 12.2 | 88 | n.a | n.a. | n.a. | 47% | n.a. | n.a. |
Mousa [24] * | 121 | 48 | 55.9 ± 13.8 | 67.8 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Ostadal [25] * | 37 | 50 | 67 (60–74) | 74.1 | 22 | 5.3 (3.1–8.4) | n.a. | n.a. | n.a. | n.a. |
Pozzi [26] * | 649 | 61 | 57.1 ± 10.4 | 80 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Schrage [27] * | 242 | 62 | 57.5 ± 13 | 77.7 | 18 | 8.9 | n.a. | 66% | 7.18 ± 0.2 | n.a. |
Shin [28] * | 67 | 72 | 65 (55–77) | 76.1 | n.a. | n.a. | 24 (16–39.5) | 66 | n.a. | 1.1 (1–2) |
Szczanowicz [29] * | 79 | 62 | 60 ± 11 | n.a. | 13 | 8.2 | n.a. | n.a. | 7.2 | 1.6 |
Thiele [30] | 208 | 47.8 | 62 (56–69) | 81.3 | 23 | n.a. | 30 (20–35) | 78% | 7.2(7.1–7.3) | 1.2 (1–1.5) |
Wu [31] * | 36 | 92 | 68 (40–83) | 78 | 22 | n.a. | 45 (28–73) | 81% | n.a. | n.a. |
Aubin [32] * | 78 | 58 | 56 ± 15.2 | 75 | 32 | n.a. | n.a. | 79% | n.a. | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sassani, K.; Syntila, S.; Waechter, C.; Kreutz, J.; Markus, B.; Patsalis, N.; Schieffer, B.; Chatzis, G. Venoarterial Membrane Oxygenation in Cardiogenic Shock Complicated from an Acute Myocardial Infarction: An Overview and Comprehensive Meta-Analysis. Biomedicines 2025, 13, 237. https://doi.org/10.3390/biomedicines13010237
Sassani K, Syntila S, Waechter C, Kreutz J, Markus B, Patsalis N, Schieffer B, Chatzis G. Venoarterial Membrane Oxygenation in Cardiogenic Shock Complicated from an Acute Myocardial Infarction: An Overview and Comprehensive Meta-Analysis. Biomedicines. 2025; 13(1):237. https://doi.org/10.3390/biomedicines13010237
Chicago/Turabian StyleSassani, Kiarash, Styliani Syntila, Christian Waechter, Julian Kreutz, Birgit Markus, Nikolaos Patsalis, Bernhard Schieffer, and Georgios Chatzis. 2025. "Venoarterial Membrane Oxygenation in Cardiogenic Shock Complicated from an Acute Myocardial Infarction: An Overview and Comprehensive Meta-Analysis" Biomedicines 13, no. 1: 237. https://doi.org/10.3390/biomedicines13010237
APA StyleSassani, K., Syntila, S., Waechter, C., Kreutz, J., Markus, B., Patsalis, N., Schieffer, B., & Chatzis, G. (2025). Venoarterial Membrane Oxygenation in Cardiogenic Shock Complicated from an Acute Myocardial Infarction: An Overview and Comprehensive Meta-Analysis. Biomedicines, 13(1), 237. https://doi.org/10.3390/biomedicines13010237