Intra- and Interspecies Conjugal Transfer of Plasmids in Gram-Negative Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antimicrobial Agents, Bacterial Strains and Susceptibility Testing
2.2. Mating Experiments
2.3. In Vitro Dynamic Model and Operational Procedure Used in the Pharmacodynamic Experiments
2.4. Antibiotic Dosing Regimens and Simulated Pharmacokinetic Profiles
2.5. Statistical Analysis
3. Results
3.1. Donor and Recipient Strains, Meropenem and Rifampicin Susceptibility
3.2. Mating Experiments and Meropenem Susceptibility of Transconjugants
3.3. Conjugation Frequency
3.4. Pharmacodynamic Evaluation of E. coli Transconjugant Strain
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HFIM | Hollow-fiber infection model |
CF | Conjugation frequency |
MIC | Minimum inhibitory concentration |
LB | Luria broth |
LA | Luria agar |
PCR | Polymerase chain reaction |
References
- Michaelis, C.; Grohmann, E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef]
- Emamalipour, M.; Seidi, K.; Zununi Vahed, S.; Jahanban-Esfahlan, A.; Jaymand, M.; Majdi, H.; Amoozgar, Z.; Chitkushev, L.T.; Javaheri, T.; Jahanban-Esfahlan, R.; et al. Horizontal Gene Transfer: From Evolutionary Flexibility to Disease Progression. Front. Cell Dev. Biol. 2020, 8, 229. [Google Scholar] [CrossRef] [PubMed]
- Hardiman, C.A.; Weingarten, R.A.; Conlan, S.; Khil, P.; Dekker, J.P.; Mathers, A.J.; Sheppard, A.E.; Segre, J.A.; Frank, K.M. Horizontal Transfer of Carbapenemase-Encoding Plasmids and Comparison with Hospital Epidemiology Data. Antimicrob. Agents Chemother. 2016, 60, 4910–4919. [Google Scholar] [CrossRef] [PubMed]
- Dimitriu, T.; Matthews, A.C.; Buckling, A. Increased copy number couples the evolution of plasmid horizontal transmission and plasmid-encoded antibiotic resistance. Proc. Natl. Acad. Sci. USA 2021, 118, e2107818118. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Del Valle, A.; Toribio-Celestino, L.; Quirant, A.; Pi, C.T.; DelaFuente, J.; Canton, R.; Rocha, E.P.C.; Ubeda, C.; Peña-Miller, R.; San Millan, A. Antimicrobial resistance level and conjugation permissiveness shape plasmid distribution in clinical enterobacteria. Proc. Natl. Acad. Sci. USA 2023, 120, e2314135120. [Google Scholar] [CrossRef] [PubMed]
- Stewardson, A.J.; Marimuthu, K.; Sengupta, S.; Allignol, A.; El-Bouseary, M.; Carvalho, M.J.; Hassan, B.; Delgado-Ramirez, M.A.; Arora, A.; Bagga, R.; et al. Effect of carbapenem resistance on outcomes of bloodstream infection caused by Enterobacteriaceae in low-income and middle-income countries (PANORAMA): A multinational prospective cohort study. Lancet Infect. Dis. 2019, 19, 601–610. [Google Scholar] [CrossRef]
- Abbas, R.; Chakkour, M.; Zein El Dine, H.; Obaseki, E.F.; Obeid, S.T.; Jezzini, A.; Ghssein, G.; Ezzeddine, Z. General Overview of Klebsiella pneumonia: Epidemiology and the Role of Siderophores in Its Pathogenicity. Biology 2024, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-C.; Yu, W.-L. Klebsiella pneumoniae harboring carbapenemase genes in Taiwan: Its evolution over 20 years, 1998–2019. Int. J. Antimicrob. Agents 2021, 58, 106354. [Google Scholar] [CrossRef] [PubMed]
- Ragheb, S.M.; Tawfick, M.M.; El-Kholy, A.A.; Abdulall, A.K. Phenotypic and genotypic features of Klebsiella pneumoniae harboring carbapenemases in Egypt: OXA-48-like carbapenemases as an investigated model. Antibiotics 2020, 9, 852. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.J.; Jeong, S.H. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front. Microbiol. 2021, 12, 614058. [Google Scholar] [CrossRef] [PubMed]
- Galetti, R.; Andrade, L.N.; Chandler, M.; Varani Ade, M.; Darini, A.L. New Small Plasmid Harboring blaKPC-2 in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2016, 60, 3211–3214. [Google Scholar] [CrossRef] [PubMed]
- Sadouki, Z.; McHugh, T.D.; Aarnoutse, R.; Ortiz Canseco, J.; Darlow, C.; Hope, W.; van Ingen, J.; Longshaw, C.; Manissero, D.; Mead, A.; et al. Application of the hollow fibre infection model (HFIM) in antimicrobial development: A systematic review and recommendations of reporting. J. Antimicrob. Chemother. 2021, 76, 2252–2259. [Google Scholar] [CrossRef] [PubMed]
- Wenzler, E.; Gotfried, M.H.; Loutit, J.S.; Durso, S.; Griffith, D.C.; Dudley, M.N.; Rodvold, K.A. Meropenem-RPX7009 Concentrations in Plasma, Epithelial Lining Fluid, and Alveolar Macrophages of Healthy Adult Subjects. Antimicrob. Agents Chemother. 2015, 59, 7232–7239. [Google Scholar] [CrossRef]
- Ageevets, V.; Sopova, J.; Lazareva, I.; Malakhova, M.; Ilina, E.; Kostryukova, E.; Babenko, V.; Carattoli, A.; Lobzin, Y.; Uskov, A.; et al. Genetic Environment of the blaKPC-2 Gene in a Klebsiella pneumoniae Isolate That May Have Been Imported to Russia from Southeast Asia. Antimicrob. Agents Chemother. 2017, 61, e01856-16. [Google Scholar] [CrossRef]
- Ageevets, V.; Sopova, J.V.; Lazareva, I.; Malakhova, M.; Popov, D.; Babenko, V.; Ilina, E.; Kostryukova, E.; Sidorenko, S. ECCMID 2016, P1188. Available online: https://2016.eccmid.org/ (accessed on 27 December 2024).
- ISO 20776-1:2019; Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices—Part 1: Broth Micro-Dilution Reference Method for Testing the In Vitro Activity of Antimicrobial Agents Against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. ISO: Geneva, Switzerland, 2019.
- Zhang, L.; Tian, X.; Sun, L.; Mi, K.; Wang, R.; Gong, F.; Huang, L. Bacterial Efflux Pump Inhibitors Reduce Antibiotic Resistance. Pharmaceutics 2024, 16, 170. [Google Scholar] [CrossRef] [PubMed]
- Schjørring, S.; Struve, C.; Krogfelt, K.A. Transfer of antimicrobial resistance plasmids from Klebsiella pneumoniae to Escherichia coli in the mouse intestine. J. Antimicrob. Chemother. 2008, 62, 1086–1093. [Google Scholar] [CrossRef]
- Sher, A.A.; VanAllen, M.E.; Ahmed, H.; Whitehead-Tillery, C.; Rafique, S.; Bell, J.A.; Zhang, L.; Mansfield, L.S. Conjugative RP4 Plasmid-Mediated Transfer of Antibiotic Resistance Genes to Commensal and Multidrug-Resistant Enteric Bacteria In Vitro. Microorganisms 2023, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor: New York, NY, USA, 2001. [Google Scholar]
- Firsov, A.A.; Alieva, K.N.; Strukova, E.N.; Golikova, M.V.; Portnoy, Y.A.; Dovzhenko, S.A.; Kobrin, M.B.; Romanov, A.V.; Edelstein, M.V.; Zinner, S.H. Testing the mutant selection window hypothesis with Staphylococcus aureus exposed to linezolid in an in vitro dynamic model. J. Antimicrob. Chemother. 2017, 72, 3100–3107. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. 2024. Available online: http://www.eucast.org (accessed on 27 December 2024).
- Bañuelos-Vazquez, L.A.; Torres Tejerizo, G.; Brom, S. Regulation of conjugative transfer of plasmids and integrative conjugative elements. Plasmid 2017, 91, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Prensky, H.; Gomez-Simmonds, A.; Uhlemann, A.C.; Lopatkin, A.J. Conjugation dynamics depend on both the plasmid acquisition cost and the fitness cost. Mol. Syst. Biol. 2021, 17, e9913. [Google Scholar] [CrossRef]
- Allard, N.; Collette, A.; Paquette, J.; Rodrigue, S.; Côté, J.P. Systematic investigation of recipient cell genetic requirements reveals important surface receptors for conjugative transfer of IncI2 plasmids. Commun. Biol. 2023, 6, 1172. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Prensky, H.; Balestrieri, J.; ElNaggar, S.; Gomez-Simmonds, A.; Uhlemann, A.C.; Traxler, B.; Singh, A.; Lopatkin, A.J. Tradeoff between lag time and growth rate drives the plasmid acquisition cost. Nat. Commun. 2023, 14, 2343. [Google Scholar] [CrossRef] [PubMed]
- van Mastrigt, O.; Lommers, M.M.A.N.; de Vries, Y.C.; Abee, T.; Smid, E.J. Dynamics in Copy Numbers of Five Plasmids of a Dairy Lactococcus lactis Strain under Dairy-Related Conditions Including Near-Zero Growth Rates. Appl. Environ. Microbiol. 2018, 84, e00314-18. [Google Scholar] [CrossRef]
- Ramiro-Martinez, P.; de Quinto, I.; Gama, J.A.; Rodriguez-Beltran, J. Universal rules govern plasmid copy number. bioRxiv 2024. Preprint. [Google Scholar] [CrossRef]
- Clark, D.P.; Pazdernik, N.J.; McGehee, M.R. (Eds.) Chapter 23—Plasmids. In Molecular Biology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 712–748. [Google Scholar] [CrossRef]
- Chen, H.; Li, N.; Wang, F.; Wang, L.; Liang, W. Carbapenem antibiotic stress increases blaKPC-2 gene relative copy number and bacterial resistance levels of Klebsiella pneumoniae. J. Clin. Lab. Anal. 2022, 36, e24519. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Horinouchi, T.; Furusawa, C. Prediction of antibiotic resistance by gene expression profiles. Nat. Commun. 2014, 5, 5792. [Google Scholar] [CrossRef]
- Hleba, L.; Hlebová, M.; Kováčik, A.; Čuboň, J.; Medo, J. Carbapenemase producing Klebsiella pneumoniae (KPC): What is the best MALDI-TOF MS detection method. Antibiotics 2021, 10, 1549. [Google Scholar] [CrossRef] [PubMed]
- Veeraraghavan, B.; Bakthavatchalam, Y.D.; Anandan, S. Laboratory detection and clinical implication of oxacillinase-48 like carbapenemase: The hidden threat. J. Glob. Infect. Dis. 2016, 8, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Medaney, F.; Dimitriu, T.; Ellis, R.J.; Raymond, B. Live to cheat another day: Bacterial dormancy facilitates the social exploitation of β-lactamases. ISME J. 2016, 10, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, A.B.; Carrara, J.A.; Barroso, C.D.N.; Tuon, F.F.; Faoro, H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022, 23, 15779. [Google Scholar] [CrossRef]
- Chevalier, S.; Bouffartigues, E.; Bodilis, J.; Maillot, O.; Lesouhaitier, O.; Feuilloley, M.G.J.; Orange, N.; Dufour, A.; Cornelis, P. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol. Rev. 2017, 41, 698–722. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chan, E.W.; Chen, S. Transmission and stable inheritance of carbapenemase gene (blaKPC-2 or blaNDM-1)-encoding and mcr-1-encoding plasmids in clinical Enterobacteriaceae strains. J. Glob. Antimicrob. Resist. 2021, 26, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.C.; Wong, A. Plasmid persistence: Costs, benefits, and the plasmid paradox. Can. J. Microbiol. 2018, 64, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, J.O.; Alvarez-Ortega, C.; Rico, M.A.; Martínez, J.L. Metabolic compensation of fitness costs in a general outcome for antibiotic-resistant Pseudomonas aeruginosa mutants overexpressing efflux pumps. mBio 2017, 8, e00500-17. [Google Scholar] [CrossRef] [PubMed]
- Golikova, M.V.; Alieva, K.N.; Strukova, E.N.; Kondratieva, D.A.; Petrova, N.F.; Petrova, M.A.; Zinner, S.H. Comparative meropenem pharmacodynamics and emergence of resistance against carbapenem-susceptible non-carbapenemase-producing and carbapenemase-producing Enterobacterales: A pharmacodynamic study in a hollow-fiber infection model. Antibiotics 2023, 12, 1717. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.; Sime, F.B.; Wallis, S.C.; Bauer, M.J.; Forde, B.M.; Harris, P.; Shirin, T.; Habib, Z.H.; Flora, M.S.; Roberts, J.A. Pharmacodynamic evaluation of piperacillin/tazobactam versus meropenem against extended-spectrum β-lactamase-producing and non-producing Escherichia coli clinical isolates in a hollow-fibre infection model. J. Antimicrob. Chemother. 2022, 77, 2448–2455. [Google Scholar] [CrossRef]
- Drusano, G.L.; Neely, M.N.; Yamada, W.M.; Duncanson, B.; Brown, D.; Maynard, M.; Vicchiarelli, M.; Louie, A. The Combination of Fosfomycin plus Meropenem Is Synergistic for Pseudomonas aeruginosa PAO1 in a Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 2018, 62, e01682-18. [Google Scholar] [CrossRef]
- Alieva, K.N.; Golikova, M.V.; Dovzhenko, S.A.; Kobrin, M.B.; Strukova, E.N.; Ageevets, V.A.; Avdeeva, A.A.; Sulian, O.S.; Sidorenko, S.V.; Zinner, S.H. Testing the mutant selection window hypothesis with meropenem: In vitro model study with OXA-48-producing Klebsiella pneumoniae. PLoS ONE 2023, 18, e0288660. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.who.int/europe/activities/improving-infection-prevention-and-control-to-prevent-the-spread-of-antimicrobial-resistance (accessed on 15 January 2025).
- Buonsenso, D.; Sodero, G.; Mariani, F.; Lazzareschi, I.; Proli, F.; Zampino, G.; Pierantoni, L.; Valentini, P.; Rendeli, C. Comparison between Short Therapy and Standard Therapy in Pediatric Patients Hospitalized with Urinary Tract Infection: A Single Center Retrospective Analysis. Children 2022, 9, 1647. [Google Scholar] [CrossRef]
- Fuhs, D.T.; Cortés-Lara, S.; Tait, J.R.; Rogers, K.E.; López-Causapé, C.; Lee, W.L.; Shackleford, D.M.; Nation, R.L.; Oliver, A.; Landersdorfer, C.B. The effects of single and multiple resistance mechanisms on bacterial response to meropenem. Clin. Microbiol. Infect. 2024, 30, 1276–1283. [Google Scholar] [CrossRef]
- Gaibani, P.; Bianco, G.; Amadesi, S.; Boattini, M.; Ambretti, S.; Costa, C. Increased blaKPC Copy Number and OmpK35 and OmpK36 Porins Disruption Mediated Resistance to Imipenem/Relebactam and Meropenem/Vaborbactam in a KPC-Producing Klebsiella pneumoniae Clinical Isolate. Antimicrob. Agents Chemother. 2022, 66, e0019122. [Google Scholar] [CrossRef] [PubMed]
- Woerther, P.L.; Royer, G.; Decousser, J.W.; Fihman, V.; Lepeule, R. Emergence of Resistance to Carbapenems Should Not Be Considered the Only Marker of Good Practices in Antibiotic Stewardship. Clin. Infect. Dis. 2020, 71, 2538–2539. [Google Scholar] [CrossRef]
K. pneumoniae Strain Number | 38 | 485 | 565 |
---|---|---|---|
City, year | Moscow, 2011 | Saint Petersburg, 2012 | Saint Petersburg, 2012 |
Plasmid | pOXAAPSS2 | pOXAAPSS1 | pKPCAPSS |
NCBI reference sequence | NZ_KU159086.1 | NZ_KU159085.1 | NZ_KP008371.1 |
Incompatibility group | IncL | IncL | IncFII |
Length | 63,359 bp | 66,284 bp | 127,970 bp |
Resistome | blaOXA-48 | blaOXA-48, blaTEM-1b | blaKPC-2, blaTEM-1b, qnrS1, mphA, mrx, mphR |
ST of donor | ST147 | ST395 | ST273 |
MIC of meropenem, µg/mL | 16 | 32 | 64 |
Bacterial Strain | Carbapenemase | Meropenem MIC, µg/mL |
---|---|---|
Klebsiella pneumoniae 38 | OXA-48 | 16 |
Klebsiella pneumoniae 485 | OXA-48 | 32 |
Klebsiella pneumoniae 565 | KPC | 64 |
Klebsiella pneumoniae ATCC 700603 1 | None | 0.06 |
Klebsiella pneumoniae 188 1 | None | 0.03 |
Escherichia coli ATCC 25922 1 | None | 0.03 |
Escherichia coli C600 1 | None | 0.03 |
Pseudomonas aeruginosa ATCC 9027 1 | None | 0.125 |
Pseudomonas aeruginosa ATCC 27853 1 | None | 0.25 |
P. aeruginosa Isolate | Meropenem MIC, µg/mL | Meropenem MIC in the Presence of CCCP, µg/mL |
---|---|---|
565/9027 | 16 | 16 |
565/27853 | 4 | 0.125 |
485/9027 | 16 | 8 |
485/27853 | 16 | 1 |
38/9027 | 4 | 0.125 |
38/27853 | 8 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savelieva, J.R.; Kondratieva, D.A.; Golikova, M.V. Intra- and Interspecies Conjugal Transfer of Plasmids in Gram-Negative Bacteria. Biomedicines 2025, 13, 238. https://doi.org/10.3390/biomedicines13010238
Savelieva JR, Kondratieva DA, Golikova MV. Intra- and Interspecies Conjugal Transfer of Plasmids in Gram-Negative Bacteria. Biomedicines. 2025; 13(1):238. https://doi.org/10.3390/biomedicines13010238
Chicago/Turabian StyleSavelieva, Julia R., Daria A. Kondratieva, and Maria V. Golikova. 2025. "Intra- and Interspecies Conjugal Transfer of Plasmids in Gram-Negative Bacteria" Biomedicines 13, no. 1: 238. https://doi.org/10.3390/biomedicines13010238
APA StyleSavelieva, J. R., Kondratieva, D. A., & Golikova, M. V. (2025). Intra- and Interspecies Conjugal Transfer of Plasmids in Gram-Negative Bacteria. Biomedicines, 13(1), 238. https://doi.org/10.3390/biomedicines13010238