A Biopsychosocial Overview of Speech Disorders: Neuroanatomical, Genetic, and Environmental Insights
Abstract
:1. Introduction
2. Neuroanatomy of Speech
2.1. Neuroanatomical Structures Involved in Speech Development
2.1.1. Broca’s Area: Motor Aspects of Speech Production
2.1.2. Wernicke’s Area: Language Comprehension
2.1.3. Arcuate Fasciculus: Connectivity and Coordination
2.1.4. Basal Ganglia: Modulation of Motor Speech
2.1.5. Cerebellum: Coordination and Timing
2.1.6. Primary Motor Cortex: Execution of Speech Movements
2.2. Neurodevelopmental Changes in Speech and Language Acquisition
3. Genetics of Speech
Gene | Associated Disorder/Function | Chromosomal Location | Role in Speech and Language | Refs |
---|---|---|---|---|
FOXP2 | Verbal Dyspraxia | Chromosome 7q | Regulates genes in brain regions for motor control, impacting speech and language. Disruption leads to speech deficits. Acts as a transcription factor, reducing neural gene expression. | [24] |
FOXP1 | Speech and Language Mechanisms | Chromosome 3 | Involved in neural circuitry for speech and language development. Disruption causes speech delays and developmental issues. | [25] |
CNTNAP2 | Complex Language Impairment | Chromosome 7q35-q36.1 | Encodes a neurexin protein for synapse function. Mutations linked to SLI and SSD. Works with FOXP2 in gene-expression networks. | [26] |
GNPTAB | Stuttering | Various chromosomes (2,3,5,7,9) | Involved in the lysosomal enzyme pathway. Mutations linked to stuttering. | [27] |
GNPTG | Stuttering | Chromosome 7 | Similar to GNPTAB, involved in the lysosomal enzyme pathway. Mutations linked to stuttering. | [27] |
NAGPA | Stuttering | Chromosome 16p13.3 | Involved in lysosomal enzyme targeting. Mutations contribute to stuttering. | [28] |
CMIP | Specific Language Impairment (SLI) and Autism Spectrum Disorder (ASD) | Chromosome 16q23.2 | Regulates phonological memory, critical for language acquisition. Linked to SLI and ASD. | [26] |
TCF4, STOX1A | Combinatorial Gene-Expression Network in Speech | Chromosome 18q21.2, Chromosome 10q22.1 | Involved in gene networks with FOXP2 and CNTNAP2 for speech and language development. | [1,26] |
DRD2 | Stuttering | Chromosome 11q23.2 | Encodes dopamine receptor D2, linked to susceptibility to stuttering. | [29] |
SLC6A3 | Stuttering | Chromosome 5p15.33 | Encodes dopamine transporter (DAT). Mutations affect speech and language, linked to stuttering. | [30] |
CYP19A1 | Neurodevelopmental Disorders | Chromosome 15q21.1 | Involved in estrogen synthesis, potentially linked to neurodevelopmental speech disorders. | [31] |
CYP17A1 | Neurodevelopmental Processes | Chromosome 10q24.32 | Influences steroid hormone biosynthesis. Role in speech disorders unclear. | [32] |
PPID | Persistent Stuttering | Chromosome 4q33 | Involved in protein folding. Mutations linked to stuttering by affecting brain development. | [33] |
AP4E1 | Neuroanatomical Anomalies | Chromosome 15q21.2 | Mutations associated with brain anomalies in people who stutter. | [22] |
IFNAR1 | Developmental Stuttering | Chromosome 21q22.11 | Mutations linked to stuttering in certain populations. | [34] |
ARMC3 | Persistent Stuttering | Chromosome 10p15.3 | Associated with non-syndromic persistent stuttering in specific populations. | [35] |
Gene | Functions | Biological Functions | Pathophysiology | Refs |
---|---|---|---|---|
FOXP1 | Encodes a transcription factor involved in brain development, particularly in areas related to language, cognition, and motor functions. | Striatum development, subpallium development, and anatomical structure development. | Impairment in striatum development affects the anterior and posterior language-processing networks. | [24,25,26,29,36] |
FOXP2 | Encodes a transcription factor that regulates genes involved in the development of neural circuits for speech and language. | |||
CNTNAP2 | Encodes a protein involved in neuron–glia interactions, synaptic transmission, and neuronal migration. | |||
DRD2 | Encodes a dopamine receptor involved in reward, learning, and motor control. | |||
GNPTG | Encodes a subunit of the enzyme N-acetylglucosamine-1-phosphotransferase, which is crucial for targeting lysosomal enzymes by adding mannose-6-phosphate markers. | Protein targeting to lysosome. Protein targeting to vacuole, lysosomal transport, and protein localization to lysosome. | Mutations in NAGPA, GNPTG, and GNPTAB have been associated with the speech disorder in Pakistani family members. | [27,28,37] |
GNPTAB | Encodes the alpha and beta subunits of the enzyme N-acetyl glucosamine-1-phosphotransferase, essential for lysosomal enzyme targeting. | |||
NAGPA | Encodes an enzyme involved in the second step of mannose-6-phosphate marker formation, crucial for lysosomal enzyme targeting. |
4. Speech Disorders
4.1. Speech Sound Disorders
4.1.1. Articulation Disorders
4.1.2. Phonological Disorders
4.2. Motor Speech Disorders
4.2.1. Apraxia of Speech
4.2.2. Dysarthria
4.3. Fluency Disorders
4.3.1. Stuttering
4.3.2. Cluttering
4.4. Dysphonia or Voice Disorder
4.4.1. Mutism
4.4.2. Selective Mutism
4.4.3. Cerebellar Mutism
4.4.4. Speech Dysrhythmia
4.4.5. Childhood Speech Disorders
4.4.6. Broca’s Aphasia
5. Psychological Comorbidities
5.1. Social Factors of Stuttering and Its Comorbidities
5.1.1. Environmental Factors
5.1.2. Bilingualism
5.1.3. Linguistic Factors
5.1.4. Anxiety
Link with Stuttering
- i.
- Evidence from Children Who Stutter (CWS)
- ii.
- Evidence from Adults Who Stutter (AWS)
5.1.5. Depression
Link with Stuttering
5.1.6. Temperament
Link with Stuttering
- i.
- Inconsistent findings using different measures
- ii.
- Recent Evidence
5.1.7. Attention Deficit Hyperactivity Disorder (ADHD)
Link with Stuttering
- i.
- Evidence from Behavioral Measures in CWS
- ii.
- Experimental Evidence
- iii.
- Genetic and Neurological Factors
- iv.
- Association with Cluttering
- v.
- Prognostic Value of ADHD Traits
- vi.
- Evidence from Network Modeling
5.1.8. Autism Spectrum Disorder (ASD)
Link with Stuttering
- i.
- Heritability
- ii.
- Onset
- iii.
- Symptom Differences
5.1.9. Intellectual Disability
6. Conclusions
7. Future Outlook
Funding
Conflicts of Interest
References
- Mountford, H.S.; Braden, R.; Newbury, D.F.; Morgan, A.T. The Genetic and Molecular Basis of Developmental Language Disorder: A Review. Children 2022, 9, 586. [Google Scholar] [CrossRef]
- Morgan, A.T.; Amor, D.J.; John, M.D.S.; Scheffer, I.E.; Hildebrand, M.S. Genetic architecture of childhood speech disorder: A review. Mol. Psychiatry 2024, 29, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M.; Maesawa, S.; Ishiai, S.; Iwami, K.; Futamura, M.; Saito, K. Neural Basis of Language: An Overview of An Evolving Model. Neurol. Med.-Chir. 2016, 56, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Loucks, T.; Kraft, S.J.; Choo, A.L.; Sharma, H.; Ambrose, N.G. Functional brain activation differences in stuttering identified with a rapid fMRI sequence. J. Fluen. Disord. 2011, 36, 302–307. [Google Scholar] [CrossRef] [PubMed]
- den Hoed, J.; Fisher, S.E. Genetic pathways involved in human speech disorders. Curr. Opin. Genet. Dev. 2020, 65, 103–111. [Google Scholar] [CrossRef]
- Rogalsky, C.; Basilakos, A.; Rorden, C.; Pillay, S.; LaCroix, A.N.; Keator, L.; Mickelsen, S.; Anderson, S.W.; Love, T.; Fridriksson, J.; et al. The Neuroanatomy of Speech Processing: A Large-scale Lesion Study. J. Cogn. Neurosci. 2022, 34, 1355–1375. [Google Scholar] [CrossRef]
- Friederici, A.D. The brain basis of language processing: From structure to function. Physiol. Rev. 2011, 91, 1357–1392. [Google Scholar] [CrossRef]
- Rogalsky, C.; Matchin, W.; Hickok, G. Broca’s area, sentence comprehension, and working memory: An fMRI Study. Front. Hum. Neurosci. 2008, 2, 14. [Google Scholar] [CrossRef]
- Redcay, E.; Courchesne, E. Deviant functional magnetic resonance imaging patterns of brain activity to speech in 2–3-year-old children with autism spectrum disorder. Biol. Psychiatry 2008, 64, 589–598. [Google Scholar] [CrossRef]
- Rosselli, M.; Ardila, A.; Matute, E.; Vélez-Uribe, I. Language Development across the Life Span: A Neuropsychological/Neuroimaging Perspective. Neurosci. J. 2014, 2014, 585237. [Google Scholar] [CrossRef]
- Skeide, M.A.; Friederici, A.D. The ontogeny of the cortical language network. Nat. Rev. Neurosci. 2016, 17, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Catani, M.; Mesulam, M. The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Aphasia Hist. Curr. State. 2008, 44, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Paus, T.; Zijdenbos, A.; Worsley, K.; Collins, D.L.; Blumenthal, J.; Giedd, J.N.; Rapoport, J.L.; Evans, A.C. Structural maturation of neural pathways in children and adolescents: In vivo study. Science 1999, 283, 1908–1911. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, H. Cerebellar contributions to speech production and speech perception: Psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008, 31, 265–272. [Google Scholar] [CrossRef]
- Ullman, M.T.; Pierpont, E.I. Specific language impairment is not specific to language: The procedural deficit hypothesis. Cortex 2005, 41, 399–433. [Google Scholar] [CrossRef]
- Stoodley, C.J.; Schmahmann, J.D. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 2010, 46, 831–844. [Google Scholar] [CrossRef] [PubMed]
- Guenther, F.H. Cortical interactions underlying the production of speech sounds. J. Commun. Disord. 2006, 39, 350–365. [Google Scholar] [CrossRef]
- Tourville, J.A.; Guenther, F.H. The DIVA model: A neural theory of speech acquisition and production. Lang. Cogn. Process. 2011, 26, 952–981. [Google Scholar] [CrossRef]
- Kuhl, P.K. Brain mechanisms in early language acquisition. Neuron 2010, 67, 713–727. [Google Scholar] [CrossRef]
- Werker, J.F.; Tees, R.C. Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behav. Dev. 1984, 7, 49–63. [Google Scholar] [CrossRef]
- Polikowsky, H.G.; Shaw, D.M.; Petty, L.E.; Chen, H.-H.; Pruett, D.G.; Linklater, J.P.; Viljoen, K.Z.; Beilby, J.M.; Highland, H.M.; Levitt, B.; et al. Population-based genetic effects for developmental stuttering. Hum. Genet. Genom. Adv. 2022, 3, 100073. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.M.; Polikowsky, H.P.; Pruett, D.G.; Chen, H.-H.; Petty, L.E.; Viljoen, K.Z.; Beilby, J.M.; Jones, R.M.; Kraft, S.J.; Below, J.E. Phenome risk classification enables phenotypic imputation and gene discovery in developmental stuttering. Am. J. Hum. Genet. 2021, 108, 2271–2283. [Google Scholar] [CrossRef] [PubMed]
- Neef, N.E.; Chang, S.-E. Knowns and unknowns about the neurobiology of stuttering. PLoS Biol. 2024, 22, e3002492. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.; Fisher, S.E.; Scheffer, I.; Hildebrand, M. FOXP2-Related Speech and Language Disorder. In GeneReviews(®); University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Rappold, G.; Siper, P.; Kostic, A.; Braden, R.; Morgan, A.; Koene, S.; Kolevzon, A. FOXP1 Syndrome. In GeneReviews(®); University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Newbury, D.F.; Gibson, J.L.; Conti-Ramsden, G.; Pickles, A.; Durkin, K.; Toseeb, U. Using Polygenic Profiles to Predict Variation in Language and Psychosocial Outcomes in Early and Middle Childhood. J. Speech Lang. Hear. Res. 2019, 62, 3381–3396. [Google Scholar] [CrossRef]
- Han, T.U.; Root, J.; Reyes, L.D.; Huchinson, E.B.; Hoffmann, J.D.; Lee, W.S.; Barnes, T.D.; Drayna, D. Human GNPTAB stuttering mutations engineered into mice cause vocalization deficits and astrocyte pathology in the corpus callosum. Proc. Natl. Acad. Sci. USA 2019, 116, 17515–17524. [Google Scholar] [CrossRef]
- Kazemi, N.; Estiar, M.A.; Fazilaty, H.; Sakhinia, E. Variants in GNPTAB, GNPTG and NAGPA genes are associated with stutterers. Gene 2018, 647, 93–100. [Google Scholar] [CrossRef]
- Chen, H.; Wang, G.; Xia, J.; Zhou, Y.; Gao, Y.; Xu, J.; Huen, M.S.; Siok, W.T.; Jiang, Y.; Tan, L.H.; et al. Stuttering candidate genes DRD2 but not SLC6A3 is associated with developmental dyslexia in Chinese population. Behav. Brain Funct. 2014, 10, 29. [Google Scholar] [CrossRef]
- Lan, J.; Song, M.; Pan, C.; Zhuang, G.; Wang, Y.; Ma, W.; Chu, Q.; Lai, Q.; Xu, F.; Li, Y.; et al. Association between dopaminergic genes (SLC6A3 and DRD2) and stuttering among Han Chinese. J. Hum. Genet. 2009, 54, 457–460. [Google Scholar] [CrossRef]
- Anthoni, H.; Sucheston, L.E.; Lewis, B.A.; Tapia-Páez, I.; Fan, X.; Zucchelli, M.; Taipale, M.; Stein, C.M.; Hokkanen, M.-E.; Castrén, E.; et al. The aromatase gene CYP19A1: Several genetic and functional lines of evidence supporting a role in reading, speech and language. Behav. Genet. 2012, 42, 509–527. [Google Scholar] [CrossRef]
- Mohammadi, H.; Joghataei, M.T.; Rahimi, Z.; Faghihi, F.; Khazaie, H.; Farhangdoost, H.; Mehrpour, M. Sex steroid hormones and sex hormone binding globulin levels, CYP17 MSP AI (-34T:C) and CYP19 codon 39 (Trp:Arg) variants in children with developmental stuttering. Brain Lang 2017, 175, 47–56. [Google Scholar] [CrossRef]
- Morgan, A.T.; Scerri, T.S.; Vogel, A.P.; A Reid, C.; Quach, M.; E Jackson, V.; McKenzie, C.; Burrows, E.L.; Bennett, M.F.; Turner, S.J.; et al. Stuttering associated with a pathogenic variant in the chaperone protein cyclophilin 40. Brain 2023, 146, 5086–5097. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Gao, Y.; Zhou, Y.; Zhou, Y.; Zhang, Y.; Wang, D.; Tan, L.-H. IFNAR1 gene mutation may contribute to developmental stuttering in the Chinese population. Hereditas 2021, 158, 46. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.U.; Hamid, M.; Alam Khan, S.; Eisa, M.; Ullah, W.; Rehman, Z.U.; Khan, M.A.; Basit, S.; Muhammad, N.; Khan, S.; et al. The Expansion of the Spectrum in Stuttering Disorders to a Novel ARMC Gene Family (ARMC3). Genes 2022, 13, 2299. [Google Scholar] [CrossRef] [PubMed]
- Jacquemot, C.; Bachoud-Lévi, A.C. Striatum and language processing: Where do we stand? Cognition 2021, 213, 104785. [Google Scholar] [CrossRef]
- Kang, C.; Riazuddin, S.; Mundorff, J.; Krasnewich, D.; Friedman, P.; Mullikin, J.C.; Drayna, D. Mutations in the Lysosomal Enzyme–Targeting Pathway and Persistent Stuttering. N. Engl. J. Med. 2010, 362, 677–685. [Google Scholar] [CrossRef]
- Feldman, H.M. How Young Children Learn Language and Speech. Pediatr. Rev. 2019, 40, 398–411. [Google Scholar] [CrossRef]
- Rey, O.A.; Sánchez-Delgado, P.; Palmer, M.R.S.; De Anda, M.C.O.; Gallardo, V.P. Exploratory study on the prevalence of speech sound disorders in a group of valencian school students belonging to 3rd grade of infant school and 1st grade of primary school. Psicol. Educ. 2022, 28, 195–207. [Google Scholar] [CrossRef]
- Dodd, B. Differential Diagnosis of Pediatric Speech Sound Disorder. Curr. Dev. Disord. Rep. 2014, 1, 189–196. [Google Scholar] [CrossRef]
- Jiramongkolchai, P.; Kumar, M.S.; Chinnadurai, S.; Wootten, C.T.; Goudy, S.L. Prevalence of hearing loss in children with 22q11.2 deletion syndrome. Int. J. Pediatr. Otorhinolaryngol. 2016, 87, 130–133. [Google Scholar] [CrossRef]
- Feldman, H.M.; Messick, C. Language and speech disorders. In Developmental Behavioral Pediatrics; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008; pp. 467–482. [Google Scholar] [CrossRef]
- Newbury, D.; Monaco, A. Genetic advances in the study of speech and language disorders. Neuron 2010, 68, 309–320. [Google Scholar] [CrossRef]
- Hayiou-Thomas, M.E.; Carroll, J.M.; Leavett, R.; Hulme, C.; Snowling, M.J. When does speech sound disorder matter for literacy? The role of disordered speech errors, co-occurring language impairment and family risk of dyslexia. J. Child Psychol. Psychiatry 2017, 58, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Pauls, L.J.; Archibald, L.M.D. Executive Functions in Children With Specific Language Impairment: A Meta-Analysis. J. Speech Lang. Hear. Res. 2016, 59, 1074–1086. [Google Scholar] [CrossRef] [PubMed]
- Basilakos, A.; Fridriksson, J. Types of motor speech impairments associated with neurologic diseases. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2022; Volume 185, pp. 71–79. [Google Scholar]
- Pernon, M.; Assal, F.; Kodrasi, I.; Laganaro, M. Perceptual Classification of Motor Speech Disorders: The Role of Severity, Speech Task, and Listener’s Expertise. J. Speech Lang. Hear. Res. 2022, 65, 2727–2747. [Google Scholar] [CrossRef] [PubMed]
- Landin-Romero, R.; Liang, C.T.; A Monroe, P.; Higashiyama, Y.; E Leyton, C.; Hodges, J.R.; Piguet, O.; Ballard, K.J. Brain changes underlying progression of speech motor programming impairment. Brain Commun. 2021, 3, fcab205. [Google Scholar] [CrossRef]
- Webb, W.G. 8—Clinical Speech Syndromes of the Motor Systems. In Neurology for the Speech-Language Pathologist, 6th ed.; Webb, W.G., Ed.; Mosby: Maryland Heights, MO, USA, 2017; pp. 160–180. [Google Scholar]
- Jacks, A.; Haley, K.L. Apraxia of Speech. In The Handbook of Language and Speech Disorders; Wiley Online Library: Hoboken, NJ, USA, 2021; pp. 368–390. [Google Scholar] [CrossRef]
- Malmenholt, A.; Lohmander, A.; McAllister, A. Childhood apraxia of speech: A survey of praxis and typical speech characteristics. Logop. Phoniatr. Vocol. 2016, 42, 84–92. [Google Scholar] [CrossRef]
- Enderby, P. Disorders of communication: Dysarthria. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 110, pp. 273–281. [Google Scholar]
- Atalar, M.S.; Oguz, O.; Genc, G. Hypokinetic Dysarthria in Parkinson’s Disease: A Narrative Review. Med. Bull. Sisli Etfal Hosp. 2023, 57, 163–170. [Google Scholar] [CrossRef]
- Mitchell, C.; Bowen, A.; Tyson, S.; Butterfint, Z.; Conroy, P. Interventions for dysarthria due to stroke and other adult-acquired, non-progressive brain injury. Cochrane Database Syst. Rev. 2017, 2017, CD002088. [Google Scholar] [CrossRef]
- Neumann, K.; Euler, H.A.; Bosshardt, H.-G.; Cook, S.; Sandrieser, P.; Sommer, M. The Pathogenesis, Assessment and Treatment of Speech Fluency Disorders. Dtsch. Arztebl. Int. 2017, 114, 383–390. [Google Scholar] [CrossRef]
- Tichenor, S.; Yaruss, J.S. Repetitive Negative Thinking, Temperament, and Adverse Impact in Adults Who Stutter. Am. J. Speech-Lang. Pathol. 2020, 29, 201–215. [Google Scholar] [CrossRef]
- Türkili, S.; Aydın, Z.F. Mental well-being and related factors in individuals with stuttering. Heliyon 2022, 8, e10446. [Google Scholar] [CrossRef]
- Van Borsel, J. Acquired stuttering: A note on terminology. J. Neurolinguist. 2014, 27, 41–49. [Google Scholar] [CrossRef]
- Bóna, J. Characteristics of pausing in normal, fast and cluttered speech. Clin. Linguist. Phon. 2016, 30, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Krouse, H.J.; Reavis, C.W.; Stachler, R.J.; Francis, D.O.; O’Connor, S. Plain Language Summary: Hoarseness (Dysphonia). Otolaryngol. Neck Surg. 2018, 158, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Saniasiaya, J.; Kulasegarah, J.; Narayanan, P. New-Onset Dysphonia: A Silent Manifestation of COVID-19. Ear Nose Throat J. 2021, 102, NP201–NP202. [Google Scholar] [CrossRef]
- Aggarwal, A.; Sharma, D.D.; Kumar, R.; Sharma, R.C. Mutism as the presenting symptom: Three case reports and selective review of literature. Indian J. Psychol. Med. 2010, 32, 61–64. [Google Scholar] [CrossRef]
- Mulligan, C.A.; Shipon-Blum, E. Selective Mutism: Identification of Subtypes and Implications for Treatment. J. Educ. Hum. Dev. 2015, 4, 79–96. [Google Scholar] [CrossRef]
- Oerbeck, B.; Overgaard, K.R.; Stein, M.B.; Pripp, A.H.; Kristensen, H. Treatment of selective mutism: A 5-year follow-up study. Eur. Child Adolesc. Psychiatry 2018, 27, 997–1009. [Google Scholar] [CrossRef]
- Gudrunardottir, T.; De Smet, H.J.; Bartha-Doering, L.; van Dun, K.; Verhoeven, J.; Paquier, P.; Mariën, P. Chapter 11—Posterior Fossa Syndrome (PFS) and Cerebellar Mutism. In The Linguistic Cerebellum; Mariën, P., Manto, M., Eds.; Academic Press: San Diego, FL, USA, 2016; pp. 257–313. [Google Scholar]
- Launay, J.; Grube, M.; Stewart, L. Dysrhythmia: A specific congenital rhythm perception deficit. Front. Psychol. 2014, 5, 18. [Google Scholar] [CrossRef]
- Morgan, A.; Ttofari Eecen, K.; Pezic, A.; Brommeyer, K.; Mei, C.; Eadie, P.; Reilly, S.; Dodd, B. Who to Refer for Speech Therapy at 4 Years of Age Versus Who to “Watch and Wait”? J. Pediatr. 2017, 185, 200–204.e1. [Google Scholar] [CrossRef]
- Benítez-Burraco, A.; Lattanzi, W.; Murphy, E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front. Neurosci. 2016, 10, 373. [Google Scholar] [CrossRef]
- Ripamonti, E.; Frustaci, M.; Zonca, G.; Aggujaro, S.; Molteni, F.; Luzzatti, C. Disentangling phonological and articulatory processing: A neuroanatomical study in aphasia. Neuropsychologia 2018, 121, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Angold, A.; Costello, E.J.; Erkanli, A. Comorbidity. J. Child Psychol. Psychiatry 1999, 40, 57–87. [Google Scholar] [CrossRef] [PubMed]
- Albert, U.; Rosso, G.; Maina, G.; Bogetto, F. Impact of anxiety disorder comorbidity on quality of life in euthymic bipolar disorder patients: Differences between bipolar I and II subtypes. J. Affect. Disord. 2007, 105, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Alm, P.A. Stuttering in relation to anxiety, temperament, and personality: Review and analysis with focus on causality. J. Fluen. Disord. 2014, 40, 5–21. [Google Scholar] [CrossRef]
- Craig, A.; Blumgart, E.; Tran, Y. The impact of stuttering on the quality of life in adults who stutter. J. Fluen. Disord. 2009, 34, 61–71. [Google Scholar] [CrossRef]
- Blood, G.W.; Blood, I.M.; Tellis, G.; Gabel, R. Communication apprehension and self-perceived communication competence in adolescents who stutter. J. Fluen. Disord. 2001, 26, 161–178. [Google Scholar] [CrossRef]
- Messenger, M.; Onslow, M.; Packman, A.; Menzies, R. Social anxiety in stuttering: Measuring negative social expectancies. J. Fluen. Disord. 2004, 29, 201–212. [Google Scholar] [CrossRef]
- Tellis, G. Multicultural Considerations in Assessing and Treating Hispanic Americans who Stutter. Perspect. Fluen. Fluen. Disord. 2008, 18, 101–110. [Google Scholar] [CrossRef]
- Nwokah, E.E. The imbalance of stuttering behavior in bilingual speakers. J. Fluen. Disord. 1988, 13, 357–373. [Google Scholar] [CrossRef]
- Dale, P. Factors related to dysfluent speech in bilingual Cuban-American adolescents. J. Fluen. Disord. 1977, 2, 311–313. [Google Scholar] [CrossRef]
- Reitzes, P. Response from the editor—Stuttering: Inspiring Stories and Professional Wisdom. J. Fluen. Disord. 2013, 38, 235. [Google Scholar] [CrossRef] [PubMed]
- Ahlbach, J.; Benson, V. (Eds.) To Say What Is Ours: The Best of 13 Years of Letting Go; National Stuttering Project: San Francisco, CA, USA, 1994. [Google Scholar]
- Guitar, B. Stuttering: An Integrated Approach to Its Nature and Treatment; Lippincott Williams & Wilkins (LWW): Philadelphia, PA, USA, 2013. [Google Scholar]
- Starkweather, C.W. Fluency and Stuttering; Prentice-Hall, Inc.: London, UK, 1987. [Google Scholar]
- Tichenor, S.; Leslie, P.; Shaiman, S.; Yaruss, J.S. Speaker and Observer Perceptions of Physical Tension during Stuttering. Folia Phoniatr. Logop. 2017, 69, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Tichenor, S.; Yaruss, J.S. A Phenomenological Analysis of the Experience of Stuttering. Am. J. Speech-Lang. Pathol. 2018, 27, 1180–1194. [Google Scholar] [CrossRef]
- Bloodstein, O. Interpersonal dynamics and the treatment of the stutterer. J. Commun. Disord. 1967, 1, 58–65. [Google Scholar] [CrossRef]
- Boyle, M.P. Assessment of Stigma Associated With Stuttering: Development and Evaluation of the Self-Stigma of Stuttering Scale (4S). J. Speech Lang. Hear. Res. 2013, 56, 1517–1529. [Google Scholar] [CrossRef] [PubMed]
- Boyle, M.P. Enacted stigma and felt stigma experienced by adults who stutter. J. Commun. Disord. 2018, 73, 50–61. [Google Scholar] [CrossRef]
- Boyle, M.P.; Fearon, A.N. Self-stigma and its associations with stress, physical health, and health care satisfaction in adults who stutter. J. Fluen. Disord. 2018, 56, 112–121. [Google Scholar] [CrossRef]
- Boyle, M.P.; Cheyne, M.R.; Rosen, A.L. Self-Stigma of Stuttering: Implications for Communicative Participation and Mental Health. J. Speech Lang. Hear. Res. 2023, 66, 3328–3345. [Google Scholar] [CrossRef]
- Blanton, S. A survey of speech defects. J. Educ. Psychol. 1916, 7, 581–592. [Google Scholar] [CrossRef]
- Karniol, R. Stuttering, language, and cognition: A review and a model of stuttering as suprasegmental sentence plan alignment (SPA). Psychol. Bull. 1995, 117, 104–124. [Google Scholar] [CrossRef]
- Gollan, T.H.; Montoya, R.I.; Fennema-Notestine, C.; Morris, S.K. Bilingualism affects picture naming but not picture classification. Mem. Cogn. 2005, 33, 1220–1234. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, T.C.; Gollan, T.H.; Ferreira, V.S.; Salmon, D.P. What causes the bilingual disadvantage in verbal fluency? The dual-task analogy. Biling. Lang. Cogn. 2010, 13, 231–252. [Google Scholar] [CrossRef]
- Pelham, S.D.; Abrams, L. Cognitive advantages and disadvantages in early and late bilinguals. J. Exp. Psychol. Learn. Mem. Cogn. 2014, 40, 313–325. [Google Scholar] [CrossRef]
- Chaudhary, C.; Maruthy, S.; Guddattu, V.; Krishnan, G. A systematic review on the role of language-related factors in the manifestation of stuttering in bilinguals. J. Fluen. Disord. 2021, 68, 105829. [Google Scholar] [CrossRef] [PubMed]
- Van Borsel, J.; Maes, E.; Foulon, S. Stuttering and bilingualism. J. Fluen. Disord. 2001, 26, 179–205. [Google Scholar] [CrossRef]
- Howell, P.; Davis, S.; Williams, R. The effects of bilingualism on stuttering during late childhood. Arch. Dis. Child. 2009, 94, 42–46. [Google Scholar] [CrossRef]
- Bialystok, E.; Poarch, G.; Luo, L.; Craik, F.I.M. Effects of bilingualism and aging on executive function and working memory. Psychol. Aging 2014, 29, 696–705. [Google Scholar] [CrossRef]
- Sullivan, M.D.; Janus, M.; Moreno, S.; Astheimer, L.; Bialystok, E. Early stage second-language learning improves executive control: Evidence from ERP. Brain Lang. 2014, 139, 84–98. [Google Scholar] [CrossRef]
- Bernstein Ratner, N.; Brundage, S.B. Advances in Understanding Stuttering as a Disorder of Language Encoding. Annu. Rev. Linguist 2024, 10, 127–143. [Google Scholar] [CrossRef]
- Kornisch, M. Bilinguals who stutter: A cognitive perspective. J. Fluen. Disord. 2021, 67, 105819. [Google Scholar] [CrossRef]
- Loe, I.M.; Feldman, H.M. The Effect of Bilingual Exposure on Executive Function Skills in Preterm and Full-Term Preschoolers. J. Dev. Behav. Pediatr. 2016, 37, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Arizmendi, G.D.; Alt, M.; Gray, S.; Hogan, T.P.; Green, S.; Cowan, N. Do Bilingual Children Have an Executive Function Advantage? Results From Inhibition, Shifting, and Updating Tasks. Lang. Speech Hear. Serv. Sch. 2018, 49, 356–378. [Google Scholar] [CrossRef] [PubMed]
- Carias, S.; Ingram, D. Language and disfluency: Four case studies on Spanish-English bilingual children. J. Multiling. Commun. Disord. 2006, 4, 149–157. [Google Scholar] [CrossRef]
- Kashyap, P.; Maruthy, S. Stuttering frequency and severity in Kannada-English balanced bilingual adults. Clin. Linguist. Phon. 2020, 34, 271–289. [Google Scholar] [CrossRef]
- Tsai, C.-H. Linguistic Know-How: The Limits of Intellectualism. Theoria 2011, 77, 71–86. [Google Scholar] [CrossRef]
- Brown, S.F. The Loci of Stutterings In The Speech Sequence. J. Speech Disord. 1945, 10, 181–192. [Google Scholar] [CrossRef]
- Howell, P.; Van Borsel, J. (Eds.) Multilingual Aspects of Fluency Disorders. Multilingual Matters; 2011. Available online: https://www.degruyter.com/document/doi/10.21832/9781847693570/html (accessed on 19 December 2024).
- Ononiwu, C.A. The Impact of Syllable Structure Complexity on Stuttering Frequency for Bilinguals and Multilinguals Who Stutter. Doctoral Dissertation, University of Georgia, Athens, GA, USA, 2010. [Google Scholar]
- Jakielski, K.J. The Index of Phonetic Complexity: At-a-Glance Scoring System, Terminology, Instructions, & Data Forms. 2022. Available online: https://digitalcommons.augustana.edu/csdbuildingspeech/10 (accessed on 10 December 2024).
- Howell, P.; Au-Yeung, J. Phonetic complexity and stuttering in Spanish. Clin. Linguist. Phon. 2007, 21, 111–127. [Google Scholar] [CrossRef]
- Al-Tamimi, F.; Khamaiseh, Z.; Howell, P. Phonetic complexity and stuttering in Arabic. Clin. Linguist. Phon. 2013, 27, 874–887. [Google Scholar] [CrossRef]
- Essau, C.A.; Olaya, B.; Ollendick, T.H. Classification of Anxiety Disorders in Children and Adolescents. In The Wiley-Blackwell Handbook of The Treatment of Childhood and Adolescent Anxiety, 1st ed.; Essau, C.A., Ollendick, T.H., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 1–21. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781118315088.ch1 (accessed on 13 November 2024).
- Smith, K.A.; Iverach, L.; O’brian, S.; Kefalianos, E.; Reilly, S. Anxiety of children and adolescents who stutter: A review. J. Fluen. Disord. 2014, 40, 22–34. [Google Scholar] [CrossRef]
- McWilliams, L.A.; Cox, B.J.; Enns, M.W. Use of the Coping Inventory for Stressful Situations in a clinically depressed sample: Factor structure, personality correlates, and prediction of distress. J. Clin. Psychol. 2003, 59, 423–437. [Google Scholar] [CrossRef]
- Ingham, R.J. Stuttering and Behavior Therapy; College-Hill Pr: San Diego, CA, USA, 1984; 480p. [Google Scholar]
- Menzies, R.G.; Onslow, M.; Packman, A. Anxiety and Stuttering: Exploring a Complex Relationship. Am. J. Speech Lang. Pathol. 1999, 8, 3–10. [Google Scholar] [CrossRef]
- Craig, A.; Hancock, K.; Tran, Y.; Craig, M. Anxiety levels in people who stutter: A randomized population study. J. Speech Lang. Hear. Res. 2003, 46, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- De Nil, L.F.; Brutten, G.J. Speech-associated attitudes of stuttering and nonstuttering children. J. Speech. Hear. Res. 1991, 34, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Blood, G.W.; Blood, I.M.; Maloney, K.; Meyer, C.; Qualls, C.D. Anxiety levels in adolescents who stutter. J. Commun. Disord. 2007, 40, 452–469. [Google Scholar] [CrossRef]
- Bernard, R.; Hofslundsengen, H.; Norbury, C.F. Anxiety and Depression Symptoms in Children and Adolescents Who Stutter: A Systematic Review and Meta-Analysis. J. Speech Lang. Hear. Res. 2022, 65, 624–644. [Google Scholar] [CrossRef]
- Craig, A.; Tran, Y. Trait and social anxiety in adults with chronic stuttering: Conclusions following meta-analysis. J. Fluen. Disord. 2014, 40, 35–43. [Google Scholar] [CrossRef]
- Iverach, L.; O’brian, S.; Jones, M.; Block, S.; Lincoln, M.; Harrison, E.; Hewat, S.; Menzies, R.G.; Packman, A.; Onslow, M. Prevalence of anxiety disorders among adults seeking speech therapy for stuttering. J. Anxiety Disord. 2009, 23, 928–934. [Google Scholar] [CrossRef]
- Iverach, L.; Rapee, R.M. Social anxiety disorder and stuttering: Current status and future directions. J. Fluen. Disord. 2014, 40, 69–82. [Google Scholar] [CrossRef]
- Blomgren, M.; Roy, N.; Callister, T.; Merrill, R.M. Intensive stuttering modification therapy: A multidimensional assessment of treatment outcomes. J. Speech Lang. Hear. Res. 2005, 48, 509–523. [Google Scholar] [CrossRef]
- Menzies, R.G.; O’brian, S.; Onslow, M.; Packman, A.; Clare, T.S.; Block, S. An experimental clinical trial of a cognitive-behavior therapy package for chronic stuttering. J. Speech Lang. Hear. Res. 2008, 51, 1451–1464. [Google Scholar] [CrossRef]
- Craig, A. An investigation into the relationship between anxiety and stuttering. J. Speech Hear. Disord. 1990, 55, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Ingham, R.J.; Andrews, G. The relation between anxiety reduction and treatment. J. Commun. Disord. 1971, 4, 289–301. [Google Scholar] [CrossRef]
- Briley, P.M.; Ellis, C. The coexistence of disabling conditions in children who stutter: Evidence from the national health interview survey. J. Speech Lang. Hear. Res. 2018, 61, 2895–2905. [Google Scholar] [CrossRef] [PubMed]
- Doruk, A.; Türkbay, T.; Yelbo, Z.; Sütçigil, L.; Özflahin, A. Autonomic nervous system imbalance in young adults with developmental stuttering. Klin. Psikofarmakol. Bul. 2008, 18, 274–281. [Google Scholar]
- Bray, M.A.; Kehle, T.J.; Lawless, K.A.; Theodore, L.A. The relationship of self-efficacy and depression to stuttering. Am. J. Speech-Lang. Pathol. 2003, 12, 425–431. [Google Scholar] [CrossRef]
- Rothbart, M.K.; Ahadi, S.A.; Evans, D.E. Temperament and personality: Origins and outcomes. J. Pers. Soc. Psychol. 2000, 78, 122–135. [Google Scholar] [CrossRef]
- Cloninger, C.R. Temperament and personality. Curr. Opin. Neurobiol. 1994, 4, 266–273. [Google Scholar] [CrossRef]
- Walden, T.A.; Frankel, C.B.; Buhr, A.P.; Johnson, K.N.; Conture, E.G.; Karrass, J.M. Dual diathesis-stressor model of emotional and linguistic contributions to developmental stuttering. J. Abnorm. Child Psychol. 2012, 40, 633–644. [Google Scholar] [CrossRef]
- Côté, S.M.; Boivin, M.; Liu, X.; Nagin, D.S.; Zoccolillo, M.; Tremblay, R.E. Depression and anxiety symptoms: Onset, developmental course and risk factors during early childhood. J. Child Psychol. Psychiatry 2009, 50, 1201–1208. [Google Scholar] [CrossRef]
- Rocha, M.S.; Yaruss, J.S.; Rato, J.R. Temperament, Executive Functioning, and Anxiety in School-Age Children Who Stutter. Front. Psychol. 2019, 10, 2244. [Google Scholar] [CrossRef]
- Harris, K.S. The nature of stuttering (2nd Ed.). Charles Van Riper. Englwewood Cliffs, N.J.: Prentice-Hall, 1982. Pp. x + 468. Appl. Psycholinguist. 1983, 4, 177–179. [Google Scholar] [CrossRef]
- Jones, R.; Choi, D.; Conture, E.; Walden, T. Temperament, emotion, and childhood stuttering. Semin. Speech Lang. 2014, 35, 114–131. [Google Scholar]
- Eggers, K.; De Nil, L.F.; Bergh, B.R.V.D. Temperament dimensions in stuttering and typically developing children. J. Fluen. Disord. 2010, 35, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Kefalianos, E.; Onslow, M.; Ukoumunne, O.C.; Block, S.; Reilly, S. Temperament and Early Stuttering Development: Cross-Sectional Findings from a Community Cohort. J. Speech Lang. Hear. Res. 2017, 60, 772–784. [Google Scholar] [CrossRef] [PubMed]
- Kraft, S.J.; Lowther, E.; Beilby, J. The Role of Effortful Control in Stuttering Severity in Children: Replication Study. Am. J. Speech-Lang. Pathol. 2019, 28, 14–28. [Google Scholar] [CrossRef]
- Jo Kraft, S.; Ambrose, N.; Chon, H. Temperament and environmental contributions to stuttering severity in children: The role of effortful control. Semin. Speech Lang. 2014, 35, 80–94. [Google Scholar]
- Tumanova, V.; Zebrowski, P.M.; Throneburg, R.N.; Kayikci, M.E.K. Articulation rate and its relationship to disfluency type, duration, and temperament in preschool children who stutter. J. Commun. Disord. 2011, 44, 116–129. [Google Scholar] [CrossRef]
- Delpeche, S.; Millard, S.; Kelman, E. The role of temperament in stuttering frequency and impact in children under 7. J. Commun. Disord. 2022, 97, 106201. [Google Scholar] [CrossRef]
- Alderson, R.M.; Rapport, M.D.; Sarver, D.E.; Kofler, M.J. ADHD and behavioral inhibition: A Re-examination of the stop-signal task. J. Abnorm. Child Psychol. 2008, 36, 989–998. [Google Scholar] [CrossRef]
- Alm, P.A.; Risberg, J. Stuttering in adults: The acoustic startle response, temperamental traits, and biological factors. J. Commun. Disord. 2007, 40, 1–41. [Google Scholar] [CrossRef]
- Bental, B.; Tirosh, E. The relationship between attention, executive functions and reading domain abilities in attention deficit hyperactivity disorder and reading disorder: A comparative study. J. Child Psychol. Psychiatry 2007, 48, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Chhabildas, N.; Pennington, B.F.; Willcutt, E.G. A Comparison of the neuropsychological profiles of the DSM-IV subtypes of ADHD. J. Abnorm. Child Psychol. 2001, 29, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Donaher, J.; Richels, C. Traits of attention deficit/hyperactivity disorder in school-age children who stutter. J. Fluen. Disord. 2012, 37, 242–252. [Google Scholar] [CrossRef]
- Druker, K.; Hennessey, N.; Mazzucchelli, T.; Beilby, J. Elevated attention deficit hyperactivity disorder symptoms in children who stutter. J. Fluen. Disord. 2018, 59, 80–90. [Google Scholar] [CrossRef]
- Engelhardt, P.E.; Corley, M.; Nigg, J.T.; Ferreira, F. The role of inhibition in the production of disfluencies. Mem. Cogn. 2010, 38, 617–628. [Google Scholar] [CrossRef]
- Healey, E.; Reid, R. ADHD and stuttering: A tutorial. J. Fluen. Disord. 2003, 28, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, H.; Baik, B.; Kim, K.; Kim, R. Failure mode and effects analysis drastically reduced potential risks in clinical trial conduct. Drug Des. Dev. Ther. 2017, 11, 3035–3043. [Google Scholar] [CrossRef]
- Anderson, J.D.; Pellowski, M.W.; Conture, E.G.; Kelly, E.M. Temperamental characteristics of young children who stutter. J. Speech Lang. Hear. Res. 2003, 46, 1221–1233. [Google Scholar] [CrossRef] [PubMed]
- Karrass, J.; Walden, T.A.; Conture, E.G.; Graham, C.G.; Arnold, H.S.; Hartfield, K.N.; Schwenk, K.A. Relation of emotional reactivity and regulation to childhood stuttering. J. Commun. Disord. 2006, 39, 402–423. [Google Scholar] [CrossRef]
- Martel, M.M.; Nigg, J.T. Child ADHD and personality/temperament traits of reactive and effortful control, resiliency, and emotionality. J. Child Psychol. Psychiatry 2006, 47, 1175–1183. [Google Scholar] [CrossRef]
- Walcott, C.M.; Landau, S. The relation between disinhibition and emotion regulation in boys with attention deficit hyperactivity disorder. J. Clin. Child Adolesc. Psychol. 2004, 33, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Eggers, K.; De Nil, L.F.; Van den Bergh, B.R. Inhibitory control in childhood stuttering. J. Fluen. Disord. 2013, 38, 1–13. [Google Scholar] [CrossRef]
- Schwenk, K.A.; Conture, E.G.; Walden, T.A. Reaction to background stimulation of preschool children who do and do not stutter. J. Commun. Disord. 2007, 40, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, N.G.; Cox, N.J.; Yairi, E. The genetic basis of persistence and recovery in stuttering. J. Speech Lang. Hear. Res. 1997, 40, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Jacquemot, C.; Scott, S.K. What is relatsh. between phonol. short-term mem. speech process? Trends Cogn. Sci. 2006, 10, 480–486. [Google Scholar] [CrossRef]
- Marchetta, N.D.J.; Hurks, P.P.M.; Krabbendam, L.; Jolles, J. Interference control, working memory, concept shifting, and verbal fluency in adults with attention-deficit/hyperactivity disorder (ADHD). Neuropsychology 2008, 22, 74–84. [Google Scholar] [CrossRef]
- Martinussen, R.; Hayden, J.; Hogg-Johnson, S.; Tannock, R. A Meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 2005, 44, 377–384. [Google Scholar] [CrossRef]
- Postma, A.; Kolk, H. The covert repair hypothesis: Prearticulatory repair processes in normal and stuttered disfluencies. J. Speech Hear. Res. 1993, 36, 472–487. [Google Scholar] [CrossRef]
- Kazazi, F. Assessing Executive Function Impairments and Comorbidity between ADHD and Stuttering. Available online: https://discovery.ucl.ac.uk/id/eprint/10167729 (accessed on 10 December 2024).
- Borsboom, D.; Cramer, A.O. Network analysis: An integrative approach to the structure of psychopathology. Annu. Rev. Clin. Psychol. 2013, 9, 91–121. [Google Scholar] [CrossRef]
- Cramer, A.O.J.; Waldorp, L.J.; van der Maas, H.L.J.; Borsboom, D. Comorbidity: A network perspective. Behav Brain Sci. 2010, 33, 137–150; discussion 150–193. [Google Scholar] [CrossRef]
- Epskamp, S.; Rhemtulla, M.; Borsboom, D. Generalized network psychometrics: Combining network and latent variable models. Psychometrika 2017, 82, 904–927. [Google Scholar] [CrossRef] [PubMed]
- Borsboom, D.; Deserno, M.K.; Rhemtulla, M.; Epskamp, S.; Fried, E.I.; McNally, R.J.; Robinaugh, D.J.; Perugini, M.; Dalege, J.; Costantini, G.; et al. Network analysis of multivariate data in psychological science. Nat. Rev. Methods Prim. 2021, 1, 58. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar] [CrossRef]
- Le Couteur, A.; Szatmari, P. Autism spectrum disorder. In Rutter’s Child and Adolescent Psychiatry, 1st ed.; Thapar, A., Pine, D.S., Leckman, J.F., Scott, S., Snowling, M.J., Taylor, E., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 661–682. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781118381953.ch51 (accessed on 12 January 2025).
- Foster, T.R.; Young, R.L. Brief Report: Sentencing Outcomes for Offenders on the Autism Spectrum. J. Autism Dev. Disord. 2021, 52, 3314–3320. [Google Scholar] [CrossRef] [PubMed]
- Asenova, I. Brain Lateralization and Developmental Disorders: A New Approach to Unified Research; Routledge: London, UK, 2018. [Google Scholar]
- Tetnowski, J.A.; Donaher, J. Stuttering and autism spectrum disorders: Assessment and Treatment. Semin. Speech Lang. 2022, 43, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Tick, B.; Bolton, P.; Happé, F.; Rutter, M.; Rijsdijk, F. Heritability of autism spectrum disorders: A meta-analysis of twin studies. J. Child Psychol. Psychiatry 2016, 57, 585–595. [Google Scholar] [CrossRef]
- Sánchez Suárez, A.; Martínez Menéndez, B.; Escolar Escamilla, E.; Martínez Sarries, F.J.; Esparza Garrido, M.I.; Gil-Fournier, B.; Ramiro León, S.; Rubio Gribble, B.; Quesada Espinosa, J.F.; Alcaraz Romero, A.J. Whole Exome Sequencing and Panel-Based Analysis in 176 Spanish Children with Neurodevelopmental Disorders: Focus on Autism Spectrum Disorder and/or Intellectual Disability/Global Developmental Delay. Genes 2024, 15, 1310. [Google Scholar] [CrossRef]
- Vinci, M.; Treccarichi, S.; Rando, R.G.; Musumeci, A.; Todaro, V.; Federico, C.; Saccone, S.; Elia, M.; Calì, F. A de novo ARIH2 gene mutation was detected in a patient with autism spectrum disorders and intellectual disability. Sci. Rep. 2024, 14, 1–13. [Google Scholar] [CrossRef]
- Foster, A.L. Variance in Scores in Assessments for Autism and Stuttering; The University of Alabama: Tuscaloosa, AL, USA, 2022. [Google Scholar]
- Ambrose, N.G.; Yairi, E.; Loucks, T.M.; Seery, C.H.; Throneburg, R. Relation of motor, linguistic and temperament factors in epidemiologic subtypes of persistent and recovered stuttering: Initial findings. J. Fluen. Disord. 2015, 45, 12–26. [Google Scholar] [CrossRef]
- Scaler Scott, K.; Tetnowski, J.A.; Flaitz, J.R.; Yaruss, J.S. Preliminary study of disfluency in school-aged children with autism. Int. J. Lang. Commun. Disord. 2014, 49, 75–89. [Google Scholar] [CrossRef]
- Lee, K.; Cascella, M.; Marwaha, R. Intellectual Disability. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK547654/ (accessed on 12 January 2025).
- Purugganan, O. Intellectual Disabilities. Pediatr. Rev. 2018, 39, 299–309. [Google Scholar] [CrossRef]
- Laws, G.; Bishop, D.V.M. Verbal deficits in Down’s syndrome and specific language impairment: A comparison. Intl. J. Lang. Comm. Disor. 2004, 39, 423–451. [Google Scholar] [CrossRef] [PubMed]
- Pinborough-Zimmerman, J.; Satterfield, R.; Miller, J.; Bilder, D.; Hossain, S.; McMahon, W. Communication Disorders: Prevalence and Comorbid Intellectual Disability, Autism, and Emotional/Behavioral Disorders. Am. J. Speech-Lang. Pathol. 2007, 16, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, T.K.; Brocksen, S.; Avchen, R.N.; Van Naarden Braun, K. Prevalence of four developmental disabilities among children aged 8 years—Metropolitan Atlanta Developmental Disabilities Surveillance Program, 1996 and 2000. MMWR Surveill Summ 2006, 55, 1–9. [Google Scholar] [PubMed]
- Blood, G.W.; Seider, R. The concomitant problems of young stutterers. J. Speech Hear. Disord. 1981, 46, 31–33. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaishankar, D.; Raghuram, T.; Raju, B.K.; Swarna, D.; Parekh, S.; Chirmule, N.; Gujar, V. A Biopsychosocial Overview of Speech Disorders: Neuroanatomical, Genetic, and Environmental Insights. Biomedicines 2025, 13, 239. https://doi.org/10.3390/biomedicines13010239
Jaishankar D, Raghuram T, Raju BK, Swarna D, Parekh S, Chirmule N, Gujar V. A Biopsychosocial Overview of Speech Disorders: Neuroanatomical, Genetic, and Environmental Insights. Biomedicines. 2025; 13(1):239. https://doi.org/10.3390/biomedicines13010239
Chicago/Turabian StyleJaishankar, Diya, Tanvi Raghuram, Bhuvanesh Kumar Raju, Divyanka Swarna, Shriya Parekh, Narendra Chirmule, and Vikramsingh Gujar. 2025. "A Biopsychosocial Overview of Speech Disorders: Neuroanatomical, Genetic, and Environmental Insights" Biomedicines 13, no. 1: 239. https://doi.org/10.3390/biomedicines13010239
APA StyleJaishankar, D., Raghuram, T., Raju, B. K., Swarna, D., Parekh, S., Chirmule, N., & Gujar, V. (2025). A Biopsychosocial Overview of Speech Disorders: Neuroanatomical, Genetic, and Environmental Insights. Biomedicines, 13(1), 239. https://doi.org/10.3390/biomedicines13010239