The Abnormal Expression of Tubular SGLT2 and GULT2 in Diabetes Model Mice with Malocclusion-Induced Hyperglycemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Real-Time PCR
2.3. Immunohistochemistry
2.4. Measurements of the Immunostained Areas of Tissue Sections
2.5. Statistics
3. Results
3.1. Changes in Blood Glucose Levels
3.2. Expression of SGLT2 and GULT2 in the Mouse Renal Tissue
3.3. Gene Expressions of TNF-α and IL-6 in Gingival Tissue with Malocclusion and Large Intestine
4. Discussion
4.1. Effect of Malocclusion on Blood Glucose Levels
4.2. Effect of Malocclusion on the SGLT2 and GULT2 Expression in the Renal Tissue
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riente, A.; Abeltino, A.; Bianchetti, G.; Serantoni, C.; De Spirito, M.; Pitocco, D.; Capezzone, S.; Esposito, R.; Maulucci, G. Assessment of the influence of chewing pattern on glucose homeostasis through linear regression model. Nutrition 2024, 125, 112481. [Google Scholar] [CrossRef]
- Bayram, Y.E.; Eskan, M.A. Mastication inefficiency due to diminished or lack of occlusal support is associated with increased blood glucose levels in patients with type 2 diabetes. PLoS ONE 2023, 18, e0284319. [Google Scholar] [CrossRef]
- Ahmadinia, A.R.; Rahebi, D.; Mohammadi, M.; Ghelichi-Ghojogh, M.; Jafari, A.; Esmaielzadeh, F.; Rajabi, A. Association between type 2 diabetes (T2D) and tooth loss: A systematic review and meta-analysis. BMC Endocr. Disord. 2022, 22, 100. [Google Scholar] [CrossRef] [PubMed]
- Da, D.; Ge, S.; Zhang, H.; Zeng, X.; Jiang, Y.; Yu, J.; Wang, H.; Wu, W.; Xiao, Z.; Liang, X.; et al. Association of occlusal support with type 2 diabetes: A community-based study. Front. Endocrinol. 2022, 13, 934274. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Abramovich, I.; Agranovich, B.; Nemirovski, A.; Gottlieb, E.; Hinden, L.; Tam, J. Kidney proximal tubule GLUT2-more than meets the eye. Cells 2022, 12, 94. [Google Scholar] [CrossRef]
- Ghezzi, C.; Loo, D.D.F.; Wright, E.M. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 2018, 61, 2087–2097. [Google Scholar] [CrossRef]
- Vestri, S.; Okamoto, M.M.; de Freitas, H.S.; Aparecida Dos Santos, R.; Nunes, M.T.; Morimatsu, M.; Heimann, J.C.; Machado, U.F. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J. Membr. Biol. 2001, 182, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Tabatabai, N.M.; Sharma, M.; Blumenthal, S.S.; Petering, D.H. Enhanced expressions of sodium-glucose cotransporters in the kidneys of diabetic Zucker rats. Diabetes Res. Clin. Pract. 2009, 83, e27–e30. [Google Scholar] [CrossRef] [PubMed]
- Freitas, H.S.; Anhê, G.F.; Melo, K.F.; Okamoto, M.M.; Oliveira-Souza, M.; Bordin, S.; Machado, U.F. Na+-glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: Involvement of hepatocyte nuclear factor-1α expression and activity. Endocrinology 2008, 149, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.D.; Crouse, D.A.; Prentice, E.D. Appropriate animal numbers in biomedical research in light of animal welfare considerations. Lab. Anim. Sci. 1991, 41, 6–14. [Google Scholar]
- Furman, B.L. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc. 2021, 1, e78. [Google Scholar] [CrossRef]
- Wszola, M.; Klak, M.; Kosowska, A.; Tymicki, G.; Berman, A.; Adamiok-Ostrowska, A.; Olkowska-Truchanowicz, J.; Uhrynowska-Tyszkiewicz, I.; Kaminski, A. Streptozotocin-induced diabetes in a mouse model (BALB/c) is not an effective model for research on transplantation procedures in the treatment of type 1 diabetes. Biomedicines 2021, 9, 1790. [Google Scholar] [CrossRef]
- Sawa, Y.; Takata, S.; Hatakeyama, Y.; Ishikawa, H.; Tsuruga, E. Expression of toll-like receptor 2 in glomerular endothelial cells and promotion of diabetic nephropathy by Porphyromonas gingivalis lipopolysaccharide. PLoS ONE 2014, 9, e97165. [Google Scholar] [CrossRef] [PubMed]
- Simpson, T.C.; Clarkson, J.E.; Worthington, H.V.; MacDonald, L.; Weldon, J.C.; Needleman, I.; Iheozor-Ejiofor, Z.; Wild, S.H.; Qureshi, A.; Walker, A.; et al. Treatment of periodontitis for glycaemic control in people with diabetes mellitus. Cochrane Database Syst. Rev. 2022, 4, CD004714. [Google Scholar] [PubMed]
- Leite, R.S.; Marlow, N.M.; Fernandes, J.K.; Hermayer, K. Oral health and type 2 diabetes. Am. J. Med. Sci. 2013, 345, 271–273. [Google Scholar] [CrossRef]
- Yarandi, S.S.; Srinivasan, S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: Current status and future directions. Neurogastroenterol. Motil. 2014, 26, 611–624. [Google Scholar] [CrossRef]
- de Souza Cordeiro, L.M.; Bainbridge, L.; Devisetty, N.; McDougal, D.H.; Peters, D.J.M.; Chhabra, K.H. Loss of function of renal Glut2 reverses hyperglycaemia and normalises body weight in mouse models of diabetes and obesity. Diabetologia 2022, 65, 1032–1047. [Google Scholar] [CrossRef]
- Pontoglio, M.; Prié, D.; Cheret, C.; Doyen, A.; Leroy, C.; Froguel, P.; Velho, G.; Yaniv, M.; Friedlander, G. HNF1α controls renal glucose reabsorption in mouse and man. EMBO Rep. 2000, 1, 359–365. [Google Scholar] [CrossRef]
- Cha, J.Y.; Kim, H.; Kim, K.S.; Hur, M.W.; Ahn, Y. Identification of transacting factors responsible for the tissue-specific expression of human glucose transporter type 2 isoform gene. Cooperative role of hepatocyte nuclear factors 1α and 3β. J. Biol. Chem. 2000, 275, 18358–18365. [Google Scholar] [CrossRef]
- Sucajtys-Szulc, E.; Debska-Slizien, A.; Rutkowski, B.; Szolkiewicz, M.; Swierczynski, J.; Smolenski, R.T. Hepatocyte nuclear factor 1α proinflammatory effect linked to the overexpression of liver nuclear factor-κB in experimental model of chronic kidney disease. Int. J. Mol. Sci. 2022, 23, 8883. [Google Scholar] [CrossRef]
- Maldonado-Cervantes, M.I.; Galicia, O.G.; Moreno-Jaime, B.; Zapata-Morales, J.R.; Montoya-Contreras, A.; Bautista-Perez, R.; Martinez-Morales, F. Autocrine modulation of glucose transporter SGLT2 by IL-6 and TNF-α in LLC-PK(1) cells. J. Physiol. Biochem. 2012, 68, 411–420. [Google Scholar] [CrossRef]
- Shaked, I.; Foo, C.; Mächler, P.; Liu, R.; Cui, Y.; Ji, X.; Broggini, T.; Kaminski, T.; Suryakant Jadhav, S.; Sundd, P.; et al. A lone spike in blood glucose can enhance the thrombo-inflammatory response in cortical venules. J. Cereb. Blood Flow Metab. 2024, 44, 252–271. [Google Scholar] [CrossRef] [PubMed]
Proteins | bp | Upper (5′–3′) | Lower (5′–3′) | NM |
---|---|---|---|---|
GLUT2 | 217 | GATAAATTCGCCTGGATGAGTTACG | GCCCAAGGAAGTCCGCAATG | 031197 |
SGLT2 | 209 | CCCATCCCTCAGAAGCATCTCC | CTCATCCCACAGAACCAAAGCA | 133254 |
β-actin | 411 | GTTCTACAAATGTGGCTGAGGA | ATTGGTCTCAAGTCAGTGTACAG | 7393 |
IL-6 | 263 | ATGTTCTCTGGGAAATCGTGGAAAT | TCTCTGAAGGACTCTGGCTTTGT | 031168 |
TNF-α | 355 | GCGAGGACAGCAAGGGACT | GAGGCCATTTGGGAACTTCTCAT | 013693 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kajiwara, K.; Tamaoki, S.; Sawa, Y. The Abnormal Expression of Tubular SGLT2 and GULT2 in Diabetes Model Mice with Malocclusion-Induced Hyperglycemia. Biomedicines 2025, 13, 267. https://doi.org/10.3390/biomedicines13020267
Kajiwara K, Tamaoki S, Sawa Y. The Abnormal Expression of Tubular SGLT2 and GULT2 in Diabetes Model Mice with Malocclusion-Induced Hyperglycemia. Biomedicines. 2025; 13(2):267. https://doi.org/10.3390/biomedicines13020267
Chicago/Turabian StyleKajiwara, Koichiro, Sachio Tamaoki, and Yoshihiko Sawa. 2025. "The Abnormal Expression of Tubular SGLT2 and GULT2 in Diabetes Model Mice with Malocclusion-Induced Hyperglycemia" Biomedicines 13, no. 2: 267. https://doi.org/10.3390/biomedicines13020267
APA StyleKajiwara, K., Tamaoki, S., & Sawa, Y. (2025). The Abnormal Expression of Tubular SGLT2 and GULT2 in Diabetes Model Mice with Malocclusion-Induced Hyperglycemia. Biomedicines, 13(2), 267. https://doi.org/10.3390/biomedicines13020267