HIF-1α Promotes Luteinization via NDRG1 Induction in the Human Ovary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Immunohistochemistry for HIF-1α and NDRG1
2.3. Cell Culture
2.4. HIF-1α Silencing with Small Interfering RNA (siRNA)
2.5. RNA Extraction and Quantitative Reverse-Transcription PCR (RT-PCR)
2.6. Western Blot Analysis
2.7. Measurement of Hormone Secretion
2.8. Statistical Analysis
3. Results
3.1. Localization of HIF-1α Protein Expression in the Human Follicles
3.2. Localization of NDRG1 Protein Expression in the Human Follicles
3.3. Regulation of NDRG1 Expression by HIF-1α
3.4. Effect of HIF-1α Silencing on Hormone Production
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anashi, L.P.E. The Ovary; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Fischer, B.; Künzel, W.; Kleinstein, J.; Gips, H. Oxygen tension in follicular fluid falls with follicle maturation. Eur. J. Obstet. Gynecol. Reprod. Biol. 1992, 43, 39–43. [Google Scholar] [CrossRef]
- Lim, M.; Thompson, J.G.; Dunning, K.R. HYPOXIA AND REPRODUCTIVE HEALTH: Hypoxia and ovarian function: Follicle development, ovulation, oocyte maturation. Reproduction 2021, 161, F33–F40. [Google Scholar] [CrossRef]
- Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 1995, 92, 5510–5514. [Google Scholar] [CrossRef] [PubMed]
- Semenza, G.L. Regulation of tissue perfusion in mammals by hypoxia-inducible factor 1. Exp. Physiol. 2007, 92, 988–991. [Google Scholar] [CrossRef] [PubMed]
- Majmundar, A.J.; Wong, W.J.; Simon, M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell. 2010, 40, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, Y.; Bhin, J.; Shin, H.J.; Nam, H.J.; Lee, S.H.; Yoon, J.B.; Binda, O.; Gozani, O.; Hwang, D.; et al. Hypoxia-induced methylation of a pontin chromatin remodeling factor. Proc. Natl. Acad. Sci. USA 2011, 108, 13510–13515. [Google Scholar] [CrossRef]
- Kim, M.R.; Choi, H.S.; Yang, J.W.; Park, B.C.; Kim, J.A.; Kang, K.W. Enhancement of vascular endothelial growth factor-mediated angiogenesis in tamoxifen-resistant breast cancer cells: Role of Pin1 overexpression. Mol. Cancer Ther. 2009, 8, 2163–2171. [Google Scholar] [CrossRef] [PubMed]
- Havelund, B.M.; Sørensen, F.B.; Pløen, J.; Lindebjerg, J.; Spindler, K.L.; Jakobsen, A. Immunohistological expression of HIF-1α, GLUT-1, Bcl-2 and Ki-67 in consecutive biopsies during chemoradiotherapy in patients with rectal cancer. APMIS 2013, 121, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Ruas, J.L.; Cao, R.; Salomons, F.A.; Cao, Y.; Poellinger, L.; Pereira, T. Cell-type-specific regulation of degradation of hypoxia-inducible factor 1 alpha: Role of subcellular compartmentalization. Mol. Cell. Biol. 2006, 26, 4628–4641. [Google Scholar] [CrossRef] [PubMed]
- Semenza, G.L. Hypoxia-inducible factor 1: Master regulator of O2 homeostasis. Curr. Opin. Genet. Dev. 1998, 8, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Salceda, S.; Caro, J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 1997, 272, 22642–22647. [Google Scholar] [CrossRef]
- Henríquez, S.; Kohen, P.; Muñoz, A.; Godoy, A.; Orge, F.; Strauss, J.F.; Devoto, L. In-vitro study of gonadotrophin signaling pathways in human granulosa cells in relation to progesterone receptor expression. Reprod. Biomed. Online 2017, 35, 363–371. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Chen, L.Y.; Wang, F.; Wu, Y.Q.; Su, J.Q.; Huang, X.H.; Wang, Z.C.; Cheng, Y. Expression of hypoxia-inducible factor-1α during ovarian follicular growth and development in Sprague-Dawley rats. Genet. Mol. Res. 2015, 14, 5896–5909. [Google Scholar] [CrossRef] [PubMed]
- Duncan, W.C.; van den Driesche, S.; Fraser, H.M. Inhibition of vascular endothelial growth factor in the primate ovary up-regulates hypoxia-inducible factor-1alpha in the follicle and corpus luteum. Endocrinology 2008, 149, 3313–3320. [Google Scholar] [CrossRef] [PubMed]
- Boonyaprakob, U.; Gadsby, J.E.; Hedgpeth, V.; Routh, P.A.; Almond, G.W. Expression and localization of hypoxia inducible factor-1alpha mRNA in the porcine ovary. Can. J. Vet. Res. 2005, 69, 215–222. [Google Scholar] [PubMed]
- Fadhillah; Yoshioka, S.; Nishimura, R.; Yamamoto, Y.; Kimura, K.; Okuda, K. Hypoxia-inducible factor 1 mediates hypoxia-enhanced synthesis of progesterone during luteinization of granulosa cells. J. Reprod. Dev. 2017, 63, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Bagchi, I.C.; Bagchi, M.K. Signaling by hypoxia-inducible factors is critical for ovulation in mice. Endocrinology 2009, 150, 3392–3400. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Yao, W.; Li, Q.; Liu, H.; Pan, Z. Initiation of follicular atresia: Gene networks during early atresia in pig ovaries. Reproduction 2018, 156, 23–33. [Google Scholar] [CrossRef]
- Baddela, V.S.; Sharma, A.; Michaelis, M.; Vanselow, J. HIF1 driven transcriptional activity regulates steroidogenesis and proliferation of bovine granulosa cells. Sci. Rep. 2020, 10, 3906. [Google Scholar] [CrossRef]
- Kurdistani, S.K.; Arizti, P.; Reimer, C.L.; Sugrue, M.M.; Aaronson, S.A.; Lee, S.W. Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage. Cancer. Res. 1998, 58, 4439–4444. [Google Scholar]
- Bae, D.H.; Jansson, P.J.; Huang, M.L.; Kovacevic, Z.; Kalinowski, D.; Lee, C.S.; Sahni, S.; Richardson, D.R. The role of NDRG1 in the pathology and potential treatment of human cancers. J. Clin. Pathol. 2013, 66, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.A.; Kovačević, Ž.; Park, K.C.; Kalinowski, D.S.; Jansson, P.J.; Lane, D.J.; Sahni, S.; Richardson, D.R. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochim. Biophys. Acta. 2014, 1845, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Angst, E.; Dawson, D.W.; Stroka, D.; Gloor, B.; Park, J.; Candinas, D.; Reber, H.A.; Hines, O.J.; Eibl, G. N-myc downstream regulated gene-1 expression correlates with reduced pancreatic cancer growth and increased apoptosis in vitro and in vivo. Surgery 2011, 149, 614–624. [Google Scholar] [CrossRef]
- Lu, W.J.; Chua, M.S.; So, S.K. Suppressing N-Myc downstream regulated gene 1 reactivates senescence signaling and inhibits tumor growth in hepatocellular carcinoma. Carcinogenesis 2014, 35, 915–922. [Google Scholar] [CrossRef]
- van Belzen, N.; Dinjens, W.N.; Diesveld, M.P.; Groen, N.A.; van der Made, A.C.; Nozawa, Y.; Vlietstra, R.; Trapman, J.; Bosman, F.T. A novel gene which is up-regulated during colon epithelial cell differentiation and down-regulated in colorectal neoplasms. Lab. Investig. 1997, 77, 85–92. [Google Scholar]
- Taketomi, Y.; Sugiki, T.; Saito, T.; Ishii, S.; Hisada, M.; Suzuki-Nishimura, T.; Uchida, M.K.; Moon, T.C.; Chang, H.W.; Natori, Y.; et al. Identification of NDRG1 as an early inducible gene during in vitro maturation of cultured mast cells. Biochem. Biophys. Res. Commun. 2003, 306, 339–346. [Google Scholar] [CrossRef]
- Nishigaki, A.; Tsubokura, H.; Ishida, M.; Hashimoto, Y.; Yoshida, A.; Hisamatsu, Y.; Tsuzuki-Nakao, T.; Murata, H.; Okada, H. NDRG1 is expressed in human granulosa cells: An implicative role of NDRG1 in the ovary. Reprod. Med. Bio.l 2022, 21, e12437. [Google Scholar] [CrossRef]
- Salnikow, K.; Kluz, T.; Costa, M.; Piquemal, D.; Demidenko, Z.N.; Xie, K.; Blagosklonny, M.V. The regulation of hypoxic genes by calcium involves c-Jun/AP-1, which cooperates with hypoxia-inducible factor 1 in response to hypoxia. Mol. Cell. Biol. 2002, 22, 1734–1741. [Google Scholar] [CrossRef]
- Said, H.M.; Stein, S.; Hagemann, C.; Polat, B.; Staab, A.; Anacker, J.; Schoemig, B.; Theobald, M.; Flentje, M.; Vordermark, D. Oxygen-dependent regulation of NDRG1 in human glioblastoma cells in vitro and in vivo. Oncol. Rep. 2009, 21, 237–246. [Google Scholar] [CrossRef]
- Kokame, K.; Kato, H.; Miyata, T. Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis. GRP78/BiP and novel genes. J. Biol. Chem. 1996, 271, 29659–29665. [Google Scholar] [CrossRef] [PubMed]
- Nishigaki, A.; Kido, T.; Kida, N.; Kakita-Kobayashi, M.; Tsubokura, H.; Hisamatsu, Y.; Okada, H. Resveratrol protects mitochondrial quantity by activating SIRT1/PGC-1α expression during ovarian hypoxia. Reprod. Med. Biol. 2020, 19, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Tsuzuki-Nakao, T.; Kida, N.; Matsuo, Y.; Maruyama, T.; Okada, H.; Hirota, K. Inflammatory Cytokine-Induced HIF-1 Activation Promotes Epithelial-Mesenchymal Transition in Endometrial Epithelial Cells. Biomedicines 2023, 11, 210. [Google Scholar] [CrossRef]
- Kowalewski, M.P.; Gram, A.; Boos, A. The role of hypoxia and HIF1α in the regulation of STAR-mediated steroidogenesis in granulosa cells. Mol. Cell. Endocrinol. 2015, 401, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, R.; Okuda, K. Hypoxia is important for establishing vascularization during corpus luteum formation in cattle. J. Reprod. Dev. 2010, 56, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Craig, Z.R.; Wang, W.; Flaws, J.A. Endocrine-disrupting chemicals in ovarian function: Effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction 2011, 142, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Devoto, L.; Kohen, P.; Vega, M.; Castro, O.; González, R.R.; Retamales, I.; Carvallo, P.; Christenson, L.K.; Strauss, J.F. Control of human luteal steroidogenesis. Mol. Cell. Endocrinol. 2002, 186, 137–141. [Google Scholar] [CrossRef]
- Thompson, W.E.; Powell, J.; Thomas, K.H.; Whittaker, J.A. Immunolocalization and expression of the steroidogenic acute regulatory protein during the transitional stages of rat follicular differentiation. J. Histochem. Cytochem. 1999, 47, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Lanfranchi, B.; Rubia, R.F.; Gassmann, M.; Schuler, G.; Kowalewski, M.P. Transcriptional regulation of HIF1α-mediated STAR expression in murine KK1 granulosa cell line involves cJUN, CREB and CBP-dependent pathways. Gen. Comp. Endocrinol. 2022, 315, 113923. [Google Scholar] [CrossRef] [PubMed]
- Devoto, L.; Kohen, P.; Muñoz, A.; Strauss, J.F. Human corpus luteum physiology and the luteal-phase dysfunction associated with ovarian stimulation. Reprod. Biomed. Online 2009, 18 (Suppl. 2), 19–24. [Google Scholar] [CrossRef] [PubMed]
- Cavender, J.L.; Murdoch, W.J. Morphological studies of the microcirculatory system of periovulatory ovine follicles. Biol. Reprod. 1988, 39, 989–997. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer (5′→3′) | Reverse Primer (5′→3′) |
---|---|---|
HIF-1α | TTCACCTGAGCCTAATAGTCC | CAAGTCTAAATCTGTGTCCTG |
NDRG1 | AGGCAGGTGACAGCAGGGAC | CGTGGCAGACGGCAAAGT |
StAR | AAACTTACGTGGCTACTCAGCATC | GACCTGGTTGATGATGCTCTTG |
p450scc | CAGGAGGGGTGGACACGAC | AGGTTGCGTGCCATCTCATAC |
EF | TCTGGTTGGAATGGTGACAACATGC | AGAGCTTCACTCAAAGCTTCATGG |
Number of Samples | ||||
---|---|---|---|---|
Total | HIF-1α + | HIF-1α - | Positive Rate (%) | |
Cytoplasmic | ||||
primary follicles | 69 | 54 | 15 | 78.3 |
secondary follicles | 11 | 8 | 3 | 72.7 |
tertiary follicle | 18 | 0 | 18 | 0.0 |
corpus luteum | 13 | 0 | 13 | 0.0 |
Nuclear | ||||
primary follicles | 69 | 1 | 68 | 1.4 |
secondary follicles | 11 | 1 | 10 | 9.1 |
tertiary follicle | 18 | 13 | 5 | 72.2 |
corpus luteum | 13 | 2 | 11 | 15.4 |
Number of Samples | ||||
---|---|---|---|---|
Total | NDRG1 + | NDRG1 - | Positive Rate (%) | |
primary follicles | 68 | 0 | 68 | 0.0 |
secondary follicles | 10 | 5 | 5 | 50.0 |
tertiary follicle | 6 | 6 | 0 | 100.0 |
corpus luteum | 12 | 12 | 0 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishigaki, A.; Ishida, M.; Tsubokura, H.; Hisamatsu, Y.; Hirose, Y.; Okada, H. HIF-1α Promotes Luteinization via NDRG1 Induction in the Human Ovary. Biomedicines 2025, 13, 328. https://doi.org/10.3390/biomedicines13020328
Nishigaki A, Ishida M, Tsubokura H, Hisamatsu Y, Hirose Y, Okada H. HIF-1α Promotes Luteinization via NDRG1 Induction in the Human Ovary. Biomedicines. 2025; 13(2):328. https://doi.org/10.3390/biomedicines13020328
Chicago/Turabian StyleNishigaki, Akemi, Mitsuaki Ishida, Hiroaki Tsubokura, Yoji Hisamatsu, Yoshinobu Hirose, and Hidetaka Okada. 2025. "HIF-1α Promotes Luteinization via NDRG1 Induction in the Human Ovary" Biomedicines 13, no. 2: 328. https://doi.org/10.3390/biomedicines13020328
APA StyleNishigaki, A., Ishida, M., Tsubokura, H., Hisamatsu, Y., Hirose, Y., & Okada, H. (2025). HIF-1α Promotes Luteinization via NDRG1 Induction in the Human Ovary. Biomedicines, 13(2), 328. https://doi.org/10.3390/biomedicines13020328