The Effect of Training-Induced Visual Imageability on Electrophysiological Correlates of Novel Word Processing
Abstract
:1. Introduction
2. Materials and Method
2.1. Participants
2.2. Material
2.2.1. Visual Stimuli
2.2.2. Verbal Stimuli
2.3. Procedure
2.3.1. Training Sessions
2.3.2. EEG Session
2.3.3. Learning Performance Questionnaires
2.4. EEG Recording and Preprocessing
2.4.1. Recording
2.4.2. Preprocessing
2.4.3. ERP Analyses
2.5. Statistical Data Analyses
3. Results
3.1. Behavioral Data
3.1.1. Learning Performance
Free Reproduction
Multiple-Choice
Picture Assignment
3.1.2. Concreteness-Judgment Task in the EEG Session
Error Rates for Real Words
Error Rates for Novel Words
3.2. Electrophysiological Data
3.2.1. ERP Effects for Real Words
Real Word N400
Real Word N700
3.2.2. ERP Effects for Novel Words
Novel Word N400
Novel Word N700
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kiefer, M.; Pulvermuller, F. Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex 2012, 48, 805–825. [Google Scholar] [CrossRef] [PubMed]
- Buccino, G.; Colage, I.; Gobbi, N.; Bonaccorso, G. Grounding meaning in experience: A broad perspective on embodied language. Neurosci. Biobehav. Rev. 2016, 69, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, P. The meaning of ‘life’ and other abstract words: Insights from neuropsychology. J. Neuropsychol. 2016, 10, 317–343. [Google Scholar] [CrossRef] [PubMed]
- Paivio, A. Mental Representations: A Dual-Coding Approach; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Ghio, M.; Vaghi, M.M.; Tettamanti, M. Fine-grained semantic categorization across the abstract and concrete domains. PLoS ONE 2013, 8, e67090. [Google Scholar] [CrossRef] [PubMed]
- Binder, J.R.; Desai, R.H. The neurobiology of semantic memory. Trends Cogn. Sci. 2011, 15, 527–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troche, J.; Crutch, S.; Reilly, J. Clustering, hierarchical organization, and the topography of abstract and concrete nouns. Front. Psychol. 2014, 5, 360. [Google Scholar] [CrossRef] [PubMed]
- Schwanenflugel, P.J.; Akin, C.; Luh, W.M. Context availability and the recall of abstract and concrete words. Mem. Cognit. 1992, 20, 96–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paivio, A. Dual coding theory: Retrospect and current status. Can. J. Psychol. Rev. Can. Psychol. 1991, 45, 255–287. [Google Scholar] [CrossRef]
- Holcomb, P.J.; Kounios, J.; Anderson, J.E.; West, W.C. Dual-coding, context-availability, and concreteness effects in sentence comprehension: An electrophysiological investigation. J. Exp. Psychol. Learn. Mem. Cogn. 1999, 25, 721–742. [Google Scholar] [CrossRef] [PubMed]
- Levy-Drori, S.; Henik, A. Concreteness and context availability in lexical decision tasks. Am. J. Psychol. 2006, 119, 45–65. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, P.; Binney, R.J.; Lambon Ralph, M.A. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex 2015, 63, 250–266. [Google Scholar] [CrossRef] [PubMed]
- Schwanenflugel, P.J.; Stowe, R.W. Context availability and the processing of abstract and concrete words in sentences. Read. Res. Q. 1989, 24, 114–126. [Google Scholar] [CrossRef]
- Rinaldi, P.; Barca, L.; Burani, C. A database for semantic, grammatical, and frequency properties of the first words acquired by italian children. Behav. Res. Methods Instrum. Comput. 2004, 36, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Bergelson, E.; Swingley, D. The acquisition of abstract words by young infants. Cognition 2013, 127, 391–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonough, C.; Song, L.; Hirsh-Pasek, K.; Golinkoff, R.M.; Lannon, R. An image is worth a thousand words: Why nouns tend to dominate verbs in early word learning. Dev. Sci. 2011, 14, 181–189. [Google Scholar] [CrossRef] [PubMed]
- van der Veur, B.W. Imagery rating of 1000 frequently used words. J. Educ. Psychol. 1975, 67, 44–56. [Google Scholar] [CrossRef]
- Jefferies, E.; Patterson, K.; Jones, R.W.; Lambon Ralph, M.A. Comprehension of concrete and abstract words in semantic dementia. Neuropsychology 2009, 23, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, P.; Jones, R.W.; Lambon Ralph, M.A. Be concrete to be comprehended: Consistent imageability effects in semantic dementia for nouns, verbs, synonyms and associates. Cortex 2013, 49, 1206–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crutch, S.J.; Warrington, E.K. Word form access dyslexia: Understanding the basis of visual reading errors. Q. J. Exp. Psychol. 2007, 60, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Barry, C.; Gerhand, S. Both concreteness and age-of-acquisition affect reading accuracy but only concreteness affects comprehension in a deep dyslexic patient. Brain Lang. 2003, 84, 84–104. [Google Scholar] [CrossRef]
- Gerhand, S.; Barry, C. When does a deep dyslexic make a semantic error? The roles of age-of-acquisition, concreteness, and frequency. Brain Lang. 2000, 74, 26–47. [Google Scholar] [CrossRef] [PubMed]
- Marchand, Y.; Friedman, R.B. Impaired oral reading in two atypical dyslexics: A comparison with a computational lexical-analogy model. Brain Lang. 2005, 93, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.V. Predicability (ease of predication) as semantic substrate of imageability in reading and retrieval. Brain Lang. 2002, 82, 159–166. [Google Scholar] [CrossRef]
- Jones, G.V. Deep dyslexia, imageability, and ease of predication. Brain Lang. 1985, 24, 1–19. [Google Scholar] [CrossRef]
- Cuetos, F.; Arce, N.; Martinez, C.; Ellis, A.W. Word recognition in alzheimer's disease: Effects of semantic degeneration. J. Neuropsychol. 2017, 11, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, R.T.; Olive, T.; Piolat, A. Verbal, visual, and spatial working memory in written language production. Acta Psychol. 2007, 124, 382–397. [Google Scholar] [CrossRef] [PubMed]
- Paivio, A.; Yuille, J.C.; Madigan, S.A. Concreteness, imagery, and meaningfulness values for 925 nouns. J. Exp. Psychol. 1968, 76, 1–25. [Google Scholar] [CrossRef]
- Palmer, S.D.; Macgregor, L.J.; Havelka, J. Concreteness effects in single-meaning, multi-meaning and newly acquired words. Brain Res. 2013, 1538, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W.; Federmeier, K.D. Imaginative language: What event-related potentials have revealed about the nature and source of concreteness effects. Lang. Linguist. (Taipei) 2015, 16, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Kutas, M.; Federmeier, K.D. Thirty years and counting: Finding meaning in the n400 component of the event-related brain potential (erp). Annu. Rev. Psychol. 2011, 62, 621–647. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.F.; Phillips, C.; Poeppel, D. A cortical network for semantics: (de)constructing the n400. Nat. Rev. Neurosci. 2008, 9, 920–933. [Google Scholar] [CrossRef] [PubMed]
- Kounios, J.; Holcomb, P.J. Concreteness effects in semantic processing: Erp evidence supporting dual-coding theory. J. Exp. Psychol. Learn. Mem. Cogn. 1994, 20, 804–823. [Google Scholar] [CrossRef] [PubMed]
- West, W.C.; Holcomb, P.J. Imaginal, semantic, and surface-level processing of concrete and abstract words: An electrophysiological investigation. J. Cogn. Neurosci. 2000, 12, 1024–1037. [Google Scholar] [CrossRef] [PubMed]
- Gullick, M.M.; Mitra, P.; Coch, D. Imagining the truth and the moon: An electrophysiological study of abstract and concrete word processing. Psychophysiology 2013, 50, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Barber, H.A.; Otten, L.J.; Kousta, S.T.; Vigliocco, G. Concreteness in word processing: Erp and behavioral effects in a lexical decision task. Brain Lang. 2013, 125, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Welcome, S.E.; Paivio, A.; McRae, K.; Joanisse, M.F. An electrophysiological study of task demands on concreteness effects: Evidence for dual coding theory. Exp. Brain Res. 2011, 212, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Bellebaum, C.; Tettamanti, M.; Marchetta, E.; Della Rosa, P.; Rizzo, G.; Daum, I.; Cappa, S.F. Neural representations of unfamiliar objects are modulated by sensorimotor experience. Cortex 2013, 49, 1110–1125. [Google Scholar] [CrossRef] [PubMed]
- Altarriba, J.; Bauer, L.M.; Benvenuto, C. Concreteness, context availability, and imageability ratings and word associations for abstract, concrete, and emotion words. Behav. Res. Methods Instrum. Comput. 1999, 31, 578–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Rosa, P.A.; Catricala, E.; Vigliocco, G.; Cappa, S.F. Beyond the abstract-concrete dichotomy: Mode of acquisition, concreteness, imageability, familiarity, age of acquisition, context availability, and abstractness norms for a set of 417 italian words. Behav. Res. Methods 2010, 42, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Reilly, J.; Kean, J. Formal distinctiveness of high- and low-imageability nouns: Analyses and theoretical implications. Cogn. Sci. 2007, 31, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W.; Lee, C.L.; Federmeier, K.D. Imagine that! Erps provide evidence for distinct hemispheric contributions to the processing of concrete and abstract concepts. NeuroImage 2010, 49, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, R.C. The assessment and analysis of handedness: The edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Ruther, N.N.; Brown, E.C.; Klepp, A.; Bellebaum, C. Observed manipulation of novel tools leads to mu rhythm suppression over sensory-motor cortices. Behav. Brain Res. 2014, 261, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Ruther, N.N.; Tettamanti, M.; Cappa, S.F.; Bellebaum, C. Observed manipulation enhances left fronto-parietal activations in the processing of unfamiliar tools. PLoS ONE 2014, 9, e99401. [Google Scholar] [CrossRef] [PubMed]
- Ghio, M.; Schulze, P.; Suchan, B.; Bellebaum, C. Neural representations of novel objects associated with olfactory experience. Behav. Brain Res. 2016, 308, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Bechtold, L.; Ghio, M.; Lange, J.; Bellebaum, C. Event-related desynchronization of mu and beta oscillations during the processing of novel tool names. Brain Lang. 2018, 177–178, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Peirce, J.W. Psychopy—Psychophysics software in python. J. Neurosci. Methods 2007, 162, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Chatrian, G.E.; Lettich, E.; Nelson, P.L. Ten percent electrode system for topographic studies of spontaneous and evoked eeg activities. Am. J. EEG Technol. 1985, 25, 83–92. [Google Scholar]
- Hennighausen, E.; Heil, M.; Rosler, F. A correction method for dc drift artifacts. Electroencephalogr. Clin. Neurophysiol. 1993, 86, 199–204. [Google Scholar] [CrossRef]
- Malhi, S.K.; Buchanan, L. A test of the symbol interdependency hypothesis with both concrete and abstract stimuli. PLoS ONE 2018, 13, e0192719. [Google Scholar] [CrossRef] [PubMed]
- Nittono, H.; Suehiro, M.; Hori, T. Word imageability and N400 in an incidental memory paradigm. Int. J. Psychophysiol. 2002, 44, 219–229. [Google Scholar] [CrossRef]
- Picton, T.W. The p300 wave of the human event-related potential. J. Clin. Neurophysiol. 1992, 9, 456–479. [Google Scholar] [CrossRef] [PubMed]
- Marina, I.V.; Strelets, V.B. Verbal stimuli semantics and relevance of erps. Zhurnal Vyssh. Nerv. Deiat. Im. IP Pavlova 2010, 60, 22–31. [Google Scholar]
- Mestres-Misse, A.; Munte, T.F.; Rodriguez-Fornells, A. Functional neuroanatomy of contextual acquisition of concrete and abstract words. J. Cogn. Neurosci. 2009, 21, 2154–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, H.D.; Hubbard, R.J.; Federmeier, K.D. Flexible conceptual combination: Electrophysiological correlates and consequences for associative memory. Psychophysiology 2017, 54, 833–847. [Google Scholar] [CrossRef] [PubMed]
- Bakker, I.; Takashima, A.; van Hell, J.G.; Janzen, G.; McQueen, J.M. Tracking lexical consolidation with erps: Lexical and semantic-priming effects on n400 and lpc responses to newly-learned words. Neuropsychologia 2015, 79, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Van Petten, C.; Luka, B.J. Prediction during language comprehension: Benefits, costs, and erp components. Int. J. Psychophysiol. 2012, 83, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Strozak, P.; Bird, C.W.; Corby, K.; Frishkoff, G.; Curran, T. Fn400 and lpc memory effects for concrete and abstract words. Psychophysiology 2016, 53, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.D.; Havelka, J.; van Hooff, J.C. Changes in recognition memory over time: An erp investigation into vocabulary learning. PLoS ONE 2013, 8, e72870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, M.; Ellis, R. On the relations between seen objects and components of potential actions. J. Exp. Psychol. Hum. Percept. Perform. 1998, 24, 830–846. [Google Scholar] [CrossRef] [PubMed]
- Borghi, A.M.; Riggio, L. Stable and variable affordances are both automatic and flexible. Front. Hum. Neurosci. 2015, 9, 351. [Google Scholar] [CrossRef] [PubMed]
- Borghi, A.M.; Flumini, A.; Cimatti, F.; Marocco, D.; Scorolli, C. Manipulating objects and telling words: A study on concrete and abstract words acquisition. Front. Psychol. 2011, 2, 15. [Google Scholar] [CrossRef] [PubMed]
Effect | df | F | p | ηp² |
---|---|---|---|---|
N400 (300–500 ms) | ||||
Concreteness | 1, 20 | 9.566 | 0.006 | 0.324 |
Concreteness × Frontality | 1.251, 25.023 | 0.472 | 0.540 | 0.023 |
Concreteness × Laterality | 1.302, 26.036 | 5.203 | 0.023 | 0.206 |
Concreteness × Frontality × Laterality | 4, 80 | 2.363 | 0.060 | 0.106 |
Frontality | 1.135, 22.691 | 21.042 | <0.001 | 0.513 |
Laterality | 2, 40 | 5.614 | 0.007 | 0.219 |
Frontality × Laterality | 2.544, 50.884 | 2.136 | 0.116 | 0.096 |
early N700 (500–700 ms) | ||||
Concreteness | 1, 20 | 6.961 | 0.016 | 0.258 |
Concreteness × Frontality | 1.173, 23.451 | 8.588 | 0.005 | 0.300 |
Concreteness × Laterality | 2, 40 | 1.039 | 0.363 | 0.049 |
Concreteness × Frontality × Laterality | 4, 80 | 1.019 | 0.403 | 0.048 |
Frontality | 1.364, 27.271 | 37.281 | <0.001 | 0.651 |
Laterality | 2, 40 | 0.849 | 0.435 | 0.041 |
Frontality × Laterality | 1.643, 32.859 | 3.326 | 0.057 | 0.143 |
late N700 (700–900 ms) | ||||
Concreteness | 1, 20 | 12.796 | 0.002 | 0.390 |
Concreteness × Frontality | 1.142, 22.845 | 0.247 | 0.656 | 0.012 |
Concreteness × Laterality | 1.346, 26.920 | 4.974 | 0.025 | 0.199 |
Concreteness × Frontality × Laterality | 4, 80 | 0.187 | 0.944 | 0.009 |
Frontality | 1.314, 26.286 | 21.153 | <0.001 | 0.514 |
Laterality | 2, 40 | 1.456 | 0.245 | 0.068 |
Frontality × Laterality | 2.178, 43.553 | 7.345 | 0.001 | 0.269 |
Effect | df | F | p | ηp² |
---|---|---|---|---|
N400 (300–500 ms) | ||||
Category | 2, 40 | 0.559 | 0.576 | 0.027 |
Category × Frontality | 2.242, 44.834 | 0.135 | 0.895 | 0.007 |
Category × Laterality | 4, 80 | 1.026 | 0.399 | 0.049 |
Category × Frontality × Laterality | 8, 160 | 0.858 | 0.554 | 0.041 |
Frontality | 1.138, 22.768 | 21.611 | <0.001 | 0.519 |
Laterality | 2, 40 | 2.387 | 0.105 | 0.107 |
Frontality × Laterality | 2.351, 47.021 | 1.924 | 0.151 | 0.088 |
early N700 (500–700 ms) | ||||
Category | 2, 40 | 0.556 | 0.578 | 0.027 |
Category × Frontality | 2.115, 42.309 | 2.033 | 0.141 | 0.092 |
Category × Laterality | 4, 80 | 0.415 | 0.797 | 0.020 |
Category × Frontality × Laterality | 5.126, 102.523 | 1.214 | 0.308 | 0.057 |
Frontality | 1.198, 23.956 | 28.031 | <0.001 | 0.584 |
Laterality | 1.328, 26.560 | 1.150 | 0.311 | 0.054 |
Frontality × Laterality | 1.747, 34.947 | 4.832 | 0.017 | 0.195 |
late N700 (700–900 ms) | ||||
Category | 2, 40 | 2.698 | 0.080 | 0.119 |
Category × Frontality | 1.912, 38.243 | 4.917 | 0.014 | 0.197 |
Category a: Repeated measures ANOVA | ||||
frontal | 2, 40 | 5.450 | 0.008 | 0.214 |
central | 1.567, 31.341 | 3.185 | 0.066 | 0.137 |
parietal | 2, 40 | 3.408 | 0.043 | 0.146 |
Category × Laterality | 4, 80 | 2.533 | 0.047 | 0.112 |
Category a: Repeated measures ANOVA | ||||
left side | 2, 40 | 1.189 | 0.315 | 0.056 |
midline | 1.509, 30.187 | 2.255 | 0.133 | 0.101 |
right side | 2, 40 | 3.941 | 0.027 | 0.165 |
Category × Frontality × Laterality | 4.367, 87.338 | 0.395 | 0.828 | 0.019 |
Frontality | 1.161, 23.225 | 27.382 | <0.001 | 0.578 |
Laterality | 1.500, 30.009 | 0.807 | 0.423 | 0.039 |
Frontality × Laterality | 2.164, 43.278 | 12.682 | <0.001 | 0.388 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bechtold, L.; Ghio, M.; Bellebaum, C. The Effect of Training-Induced Visual Imageability on Electrophysiological Correlates of Novel Word Processing. Biomedicines 2018, 6, 75. https://doi.org/10.3390/biomedicines6030075
Bechtold L, Ghio M, Bellebaum C. The Effect of Training-Induced Visual Imageability on Electrophysiological Correlates of Novel Word Processing. Biomedicines. 2018; 6(3):75. https://doi.org/10.3390/biomedicines6030075
Chicago/Turabian StyleBechtold, Laura, Marta Ghio, and Christian Bellebaum. 2018. "The Effect of Training-Induced Visual Imageability on Electrophysiological Correlates of Novel Word Processing" Biomedicines 6, no. 3: 75. https://doi.org/10.3390/biomedicines6030075
APA StyleBechtold, L., Ghio, M., & Bellebaum, C. (2018). The Effect of Training-Induced Visual Imageability on Electrophysiological Correlates of Novel Word Processing. Biomedicines, 6(3), 75. https://doi.org/10.3390/biomedicines6030075