Differentially Expressed Proteins in Intra Synovial Compared to Extra Synovial Flexor Tendon Grafts in a Rabbit Tendon Transplantation Model
Abstract
:1. Introduction
2. Experimental Section
2.1. Surgical Procedures
2.2. Protein Extraction and Digestion
2.3. LC-MS/MS Analysis
2.4. Database Searches and Data Evaluation
2.5. Statistics
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Woon, C.Y.-L.; Farnebo, S.; Schmitt, T.; Kraus, A.; Megerle, K.; Pham, H.; Yan, X.; Gambhir, S.S.; Chang, J. Human Flexor Tendon Tissue Engineering: Revitalization of Biostatic Allograft Scaffolds. Tissue Eng. Part A 2012, 18, 2406–2417. [Google Scholar] [CrossRef]
- Ark, J.W.; Gelberman, R.H.; Abrahamsson, S.-O.; Seiler, J.G.; Amiel, D. Cellular survival and proliferation in autogenous flexor tendon grafts. J. Hand Surg. 1994, 19, 249–258. [Google Scholar] [CrossRef]
- Gelberman, R.H.; Seiler, J.G.; Rosenberg, A.E.; Heyman, P.; Amiel, D. Intercalary Flexor Tendon Grafts:A Morphological Study of Intrasynovial and Extrasynovial Donor Tendons. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1992, 26, 257–264. [Google Scholar] [CrossRef]
- Seiler, J.G.; Chu, C.R.; Amiel, D.; Woo, S.L.; Gelberman, R.H. The Marshall R. Urist Young Investigator Award. Autogenous flexor tendon grafts. Biologic mechanisms for incorporation. Clin. Orthop. Relat. Res. 1997, 345, 239–247. [Google Scholar] [CrossRef]
- Berglund, M.; Wiig, M.; Torstensson, M.; Reno, C.; Hart, D.A. Assessment of mRNA levels for matrix molecules and TGF- beta1 in rabbit flexor and peroneus tendons reveals regional differences in steady-state expression. J. Hand Surg. 2004, 29, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Farnebo, S.; Woon, C.Y.; Schmitt, T.; Joubert, L.-M.; Kim, M.; Pham, H.; Chang, J. Design and Characterization of an Injectable Tendon Hydrogel: A Novel Scaffold for Guided Tissue Regeneration in the Musculoskeletal System. Tissue Eng. Part A 2014, 20, 1550–1561. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Thomas, C.E.; Birk, D.E. Pericellular proteins of the developing mouse tendon: A proteomic analysis. Connect. Tissue Res. 2011, 53, 2–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peffers, M.J.; Thorpe, C.T.; Collins, J.A.; Eong, R.; Wei, T.K.J.; Screen, H.R.C.; Clegg, P.D. Proteomic Analysis Reveals Age-related Changes in Tendon Matrix Composition, with Age- and Injury-specific Matrix Fragmentation. J. Biol. Chem. 2014, 289, 25867–25878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olausson, P.; Gerdle, B.; Ghafouri, N.; Sjöström, D.; Blixt, E.; Ghafouri, B. Protein alterations in women with chronic widespread pain—An explorative proteomic study of the trapezius muscle. Sci. Rep. 2015, 5, 11894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turkina, M.V.; Ghafouri, N.; Gerdle, B.; Ghafouri, B. Evaluation of dynamic changes in interstitial fluid proteome following microdialysis probe insertion trauma in trapezius muscle of healthy women. Sci. Rep. 2017, 7, 43512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheelock, A.M.; Wheelock, C.E. Trials and tribulations of ‘omics data analysis: Assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine. Mol. BioSyst. 2013, 9, 2589–2596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchiyama, S.; Amadio, P.C.; Coert, J.H.; Berglund, L.J.; An, K.-N. Gliding Resistance of Extrasynovial and Intrasynovial Tendons through the A2 Pulley*. J. Bone Jt. Surg. Am. Vol. 1997, 79, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Seiler, J.G.; Gelberman, R.H.; Williams, C.S.; Woo, S.L.-Y.; Dickersin, R.G.; Sofranko, R.; Chu, C.R.; Rosenberg, A.E. Autogenous flexor-tendon grafts. A biomechanical and morphological study in dogs. J. Bone Jt. Surg. Am. Vol. 1993, 75, 1004–1014. [Google Scholar] [CrossRef]
- Kjaer, M. Role of Extracellular Matrix in Adaptation of Tendon and Skeletal Muscle to Mechanical Loading. Physiol. Rev. 2004, 84, 649–698. [Google Scholar] [CrossRef]
- Hamilton, D.W. Functional role of periostin in development and wound repair: Implications for connective tissue disease. J. Cell Commun. Signal. 2008, 2, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Bornstein, P. Matricellular proteins: An overview. Matrix Biol. 2000, 19, 555–556. [Google Scholar] [CrossRef] [Green Version]
- Gillan, L.; Matei, D.; Fishman, D.; Gerbin, C.S.; Karlan, B.Y.; Chang, D.D. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res. 2002, 62, 5358–5364. [Google Scholar]
- Horiuchi, K.; Amizuka, N.; Takeshita, S.; Takamatsu, H.; Katsuura, M.; Ozawa, H.; Toyama, Y.; Bonewald, L.F.; Kudo, A. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J. Bone Miner. Res. 1999, 14, 1239–1249. [Google Scholar] [CrossRef]
- Li, G.; Jin, R.; Norris, R.A.; Zhang, L.; Yu, S.; Wu, F.; Markwald, R.R.; Nanda, A.; Conway, S.J.; Smyth, S.S.; et al. Periostin mediates vascular smooth muscle cell migration through the integrins alphavbeta3 and alphavbeta5 and focal adhesion kinase (FAK) pathway. Atherosclerosis 2010, 208, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Takayama, G.; Arima, K.; Kanaji, T.; Toda, S.; Tanaka, H.; Shoji, S.; McKenzie, A.N.; Nagai, H.; Hotokebuchi, T.; Izuhara, K. Periostin: A novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J. Allergy Clin. Immunol. 2006, 118, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Oku, E.; Kanaji, T.; Takata, Y.; Oshima, K.; Seki, R.; Morishige, S.; Imamura, R.; Ohtsubo, K.; Hashiguchi, M.; Osaki, K.; et al. Periostin and bone marrow fibrosis. Int. J. Hematol. 2008, 88, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.; Barbe, M.F.; Barr, A.E.; Litvin, J. Periostin-like-factor and Periostin in an animal model of work-related musculoskeletal disorder. Bone 2008, 44, 502–512. [Google Scholar] [CrossRef] [Green Version]
- Zantop, T.; Gilbert, T.W.; Yoder, M.C.; Badylak, S.F. Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction. J. Orthop. Res. 2006, 24, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Kang, R.; Fan, X.-G.; Tang, D. Release and activity of histone in diseases. Cell Death Dis. 2014, 5, e1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candelario, J.; Borrego, S.; Reddy, S.; Comai, L. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis. Exp. Cell Res. 2011, 317, 319–329. [Google Scholar] [CrossRef]
- Lefèvre, C.; Auclair, M.; Boccara, F.; Bastard, J.-P.; Capeau, J.; Vigouroux, C.; Caron-Debarle, M. Premature Senescence of Vascular Cells Is Induced by HIV Protease Inhibitors. Arter. Thromb. Vasc. Biol. 2010, 30, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Halper, J. Regulation of heat shock protein 47 and type I procollagen expression in avian tendon cells. Cell Tissue Res. 2003, 311, 373–382. [Google Scholar] [CrossRef]
- Juneja, S.C.; Schwarz, E.M.; O’Keefe, R.J.; Awad, H.A. Cellular and Molecular Factors in Flexor Tendon Repair and Adhesions: A Histological and Gene Expression Analysis. Connect. Tissue Res. 2013, 54, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Järvinen, T.A.H.; Kannus, P.; Jozsa, L.; Kalimo, H.; Järvinen, M. Tenascin-C in the pathobiology and healing process of musculoskeletal tissue injury. Scand. J. Med. Sci. Sports 2000, 10, 376–382. [Google Scholar] [CrossRef]
- Riley, G.P.; Harrall, R.L.; Cawston, T.E.; Hazleman, B.L.; Mackie, E.J. Tenascin-C and human tendon degeneration. Am. J. Pathol. 1996, 149, 933–943. [Google Scholar] [PubMed]
- Mehr, D.; Pardubsky, P.D.; Martin, J.A.; Buckwalter, J.A. Tenascin-C in tendon regions subjected to compression. J. Orthop. Res. 2000, 18, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Mackey, A.L.; Brandstetter, S.; Schjerling, P.; Bojsen-Moller, J.; Qvortrup, K.; Pedersen, M.M.; Doessing, S.; Kjaer, M.; Magnusson, S.P.; Langberg, H. Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB J. 2011, 25, 1943–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiquet-Ehrismann, R.; Kalla, P.; Pearson, C.A.; Beck, K.; Chiquet, M. Tenascin interferes with fibronectin action. Cell 1988, 53, 383–390. [Google Scholar] [CrossRef]
- Edsfeldt, S.; Holm, B.; Mahlapuu, M.; Reno, C.; Hart, D.A.; Wiig, M. PXL01 in sodium hyaluronate results in increased PRG4 expression: A potential mechanism for anti-adhesion. Upsala J. Med. Sci. 2016, 122, 28–34. [Google Scholar] [CrossRef]
- Wiig, M.E.; Dahlin, L.B.; Fridén, J.; Hagberg, L.; Larsen, S.E.; Wiklund, K.; Mahlapuu, M. PXL01 in sodium hyaluronate for improvement of hand recovery after flexor tendon repair surgery: Randomized controlled trial. PLoS ONE 2014, 9, e110735. [Google Scholar] [CrossRef] [Green Version]
Accession Number | Protein Name | Gene | Molecular Function | VIP | Alterations FDP vs. PER |
---|---|---|---|---|---|
G1TPZ1_RABIT | Galectin | LGALS1 | Carbohydrate binding | 1.54 | ↓ |
G1T1D7_RABIT | Periostin | POSTN | Heparin binding | 1.25 | ↓ |
G1U2G1_RABIT | Histone H2A | H2AFJ | DNA binding | 1.22 | ↓ |
G1SYD6_RABIT | Lamin-A/C | LMNA | Structural molecule activity | 1.09 | ↓ |
G1TV79_RABIT | Uncharacterized protein (96.4% identity to human Serpin H1) | SERPINH1 * | Collagen-binding protein | 1.06 | ↓ |
G1SXR1_RABIT | Prolargin | PRELP | Heparin binding | 1.05 | ↑ |
G1THZ6_RABIT | Uncharacterized protein (84% identity to Ig gamma chain C region rabbit) | IGHG1 *IGHG2 * | Antigen binding | 1.02 | ↑ |
G1T2Z5_RABIT | Collagen alpha-2(I) chain | COL1A2 | Extracellular matrix structural constituent | 0.98 | ↑ |
G1ST52_RABIT | Collagen alpha-3(VI) chain * | COL6A3 * | Extracellular matrix structural constituent | 0.98 | ↑ |
PGS2_RABIT | Decorin | DCN | Collagen binding | 0.96 | ↑ |
G1SP97_RABIT | Lumican | LUM | Collagen binding | 0.96 | ↓ |
G1SWS6_RABIT | Fibromodulin | FMOD | Collagen fibril organization | 0.96 | ↑ |
ANXA1_RABIT | Annexin A1 | ANXA1 | Calcium ion binding | 0.95 | ↓ |
G1SWV4_RABIT | Thrombospondin 4 | THBS4 | Calcium ion binding | 0.92 | ↓ |
PPIA_RABIT | Peptidyl-prolyl cis-trans isomerase A | PPIA | Protein folding | 0.91 | ↑ |
G1T4A5_RABIT | Collagen alpha-1(I) chain | COL1A1 | Extracellular matrix structural constituent | 0.90 | ↑ |
G1SCK5_RABIT | Serpin family F member 1 | SERPINF1 | Serine-type endopeptidase inhibitor activity | 0.90 | ↑ |
HBA_RABIT | Hemoglobin subunit alpha-1/2 | Hba1 * | Heme binding | 0.89 | ↑ |
SODE_RABIT | Extracellular superoxide dismutase [Cu-Zn] | SOD3 | Heparin binding | 0.89 | ↑ |
G1SD89_RABIT | Collagen type VI alpha 2 chain | COL6A2 | Cell-binding protein | 0.85 | ↑ |
G1U6M8_RABIT | Collagen type VI alpha 1 chain | COL6A1 | Cell-binding protein | 0.81 | ↑ |
G1T994_RABIT | Collagen alpha-1(XII) chain | COL12A1 | Extracellular matrix structural constituent conferring tensile strength | 0.80 | ↑ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farnebo, S.; Wiig, M.; Holm, B.; Ghafouri, B. Differentially Expressed Proteins in Intra Synovial Compared to Extra Synovial Flexor Tendon Grafts in a Rabbit Tendon Transplantation Model. Biomedicines 2020, 8, 408. https://doi.org/10.3390/biomedicines8100408
Farnebo S, Wiig M, Holm B, Ghafouri B. Differentially Expressed Proteins in Intra Synovial Compared to Extra Synovial Flexor Tendon Grafts in a Rabbit Tendon Transplantation Model. Biomedicines. 2020; 8(10):408. https://doi.org/10.3390/biomedicines8100408
Chicago/Turabian StyleFarnebo, Simon, Monica Wiig, Björn Holm, and Bijar Ghafouri. 2020. "Differentially Expressed Proteins in Intra Synovial Compared to Extra Synovial Flexor Tendon Grafts in a Rabbit Tendon Transplantation Model" Biomedicines 8, no. 10: 408. https://doi.org/10.3390/biomedicines8100408
APA StyleFarnebo, S., Wiig, M., Holm, B., & Ghafouri, B. (2020). Differentially Expressed Proteins in Intra Synovial Compared to Extra Synovial Flexor Tendon Grafts in a Rabbit Tendon Transplantation Model. Biomedicines, 8(10), 408. https://doi.org/10.3390/biomedicines8100408