Antimicrobial Activities of Different Fractions from Mucus of the Garden Snail Cornu aspersum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mucus Collection and Separation of Different Fractions
- Sample 1—
- fraction with compounds of Mw <3 kDa
- Sample 2—
- fraction with compounds of Mw 3–5 kDa
- Sample 3—
- fraction with compounds of Mw 5–10 kDa
- Sample 4—
- fraction with compounds of Mw <10 kDa
- Sample 5—
- fraction with compounds of Mw 10–30 kDa
- Sample 6—
- fraction with compounds of Mw <20 kDa
- Sample 7—
- fraction with compounds of Mw >20 kDa
- Sample 8—
- fraction with compounds of Mw >30 kDa
- Sample 9—
- fraction with compounds of Mw >50 kDa
2.2. Molecular Mass Analysis and de novo Sequencing of Peptides by Mass Spectrometry
2.3. Carbohydrate Test
2.4. SDS-PAGE Electrophoresis
2.5. Antimicrobial Assays
2.5.1. Microbial Strains
2.5.2. Nutrient Media and Culture Conditions
2.5.3. Studies of Antibacterial Activities
- Inoculation was carried out by mixing the standardized microbial suspension with liquid agar at a temperature below 40 °C. With this approach, microorganisms penetrate deep inside the nutrient agar. This procedure is modeling the case in which bacteria develop deeply in the skin. For inoculation, the standardized microbial suspension (50 µL with a density of 109 cell/mL) was spread over the surface of the nutrient solid agar. The peptide fractions (50 µL) were applied in the preliminary prepared wells with a diameter of 8 mm. As the negative control without antibacterial effect, 50 µL distilled water was applied in the wells.
- Cultivation was performed at 36 °C for 48–72 h for P. aureofaciens AP9 and B. laterosporus BT-271. Cultivation for these strains was in aerobic conditions. C. perfringens NBIMCC 8615 was cultivated in an anaerobic camera /Merck/ in a thermostat at 36 °C for 72 h. E. coli was cultured in a thermostat at 36 °C for 48 h.
2.6. Electron Microscopy Assays
3. Results
3.1. Purification and Characterization of Different Fractions from Mucus
3.1.1. Molecular Mass Analysis and de novo Sequencing of Peptides by Mass Spectrometry
3.1.2. Glycosylation Screening
3.2. Antibacterial Activity of Different Fractions from Mucus of the Garden Snail C. aspersum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization, 2015. Critically Important Antimicrobials for Human Medicine: Ranking of Antimicrobial Agents for Risk Management of Antimicrobial Resistance Due to Non-Human Use; 5th revision; World Health Organization: Geneva, Switzerland, 2017; Licence: CC BY-NC-SA 3.0 IGO; Available online: https://apps.who.int/iris/bitstream/handle/10665/255027/9789241512220-eng.pdf;jsessionid=DD014C6E76979E5E3ECE1BA519E14CA1?sequence=1 (accessed on 10 April 2017).
- Totsika, M. Benefits and challenges of antivirulence antimicrobials at the dawn of the post-antibiotic era. Curr. Med. Chem. 2016, 6, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, A.; Pirri, G.; Nicoletto, S.F. Antimicrobial peptides: An overview of a promising class of therapeutics. Cent. Eur. J. Biol. 2007, 2, 1–33. [Google Scholar] [CrossRef]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017. Available online: http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria (accessed on 17 April 2019).
- Wiesner, J.; Vilcinskas, A. Antimicrobial peptides: The ancient arm of the human immune system. Virulence 2010, 1, 440–464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gallo, R.L. Antimicrobial peptides. Curr. Biol. 2016, 26, R14–R19. [Google Scholar] [CrossRef] [PubMed]
- Guaní-Guerra, E.; Santos-Mendoza, T.; Lugo-Reyes, S.O.; Terán, L.M. Antimicrobial peptides: General overview and clinical implications in human health and disease. Clin. Immunol. 2010, 135, 1–11. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Hakansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Zharkova, M.; Orlov, D.S.; Golubeva, O.Y.; Chakchir, O.B.; Eliseev, I.E.; Grinchuk, T.M.; Shamova, O. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics—A Novel Way to Combat Antibiotic Resistance? Front. Microbiol. 2019, 9, 128. [Google Scholar] [CrossRef] [Green Version]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
- Smith, V.J.; Desbois, A.P.; Dyrynda, E.A. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs 2010, 8, 1213–1262. [Google Scholar] [CrossRef] [Green Version]
- Jenssen, H.; Hamill, P.; Hancock, R.E. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006, 19, 491–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, J.; Coates, C.J.; Zhu, H.; Zhu, P.; Zujian, W.; Xie, L. Identification of candidate antimicrobial peptides derived from abalone hemocyanin. Dev. Comp. Immunol. 2015, 49, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Parisi, M.G.; Parrinello, N.; Cammarata, M.; Roch, P. Molluscan antimicrobial peptides, a review from activitybased evidences to computer-assisted sequences. Invertebr. Surviv. J. 2011, 8, 85–97. [Google Scholar]
- Pitt, S.; Graham, M.A.; Dedi, C.G.; Taylor-Harris, P.M.; Gunn, A. Antimicrobial properties of mucus from the brown garden snail Helix aspersa. Br. J. Biomed. Sci. 2015, 72, 174–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolashka, P.; Moshtanska, V.; Borisova, V.; Dolashki, A.; Stevanovic, S.; Dimanov, T.; Voelter, W. Antimicrobial proline-rich peptides from the hemolymph of marine snail Rapana venosa. Peptides 2011, 32, 1477–1483. [Google Scholar] [CrossRef]
- Hubert, F.; Noël, T.; Roch, P. A Member of the Arthropod Defensin Family from Edible Mediterranean Mussels (Mytilus galloprovincialis). JBIC J. Boil. Inorg. Chem. 1996, 240, 302–306. [Google Scholar] [CrossRef]
- Charlet, M.; Chernysh, S.; Philippe, H.; Hetru, C.; Hoffmann, J.A.; Bulet, P. Innate Immunity. J. Biol. Chem. 1996, 271, 21808–21813. [Google Scholar] [CrossRef] [Green Version]
- Leoni, G.; De Poli, A.; Mardirossian, M.; Gambato, S.; Florian, F.; Venier, P.; Wilson, D.N.; Tossi, A.; Pallavicini, A.; Gerdol, M. Myticalins: A Novel Multigenic Family of Linear, Cationic Antimicrobial Peptides from Marine Mussels (Mytilus spp.). Mar. Drugs 2017, 15, 261. [Google Scholar] [CrossRef] [Green Version]
- Dolashka, P.; Dolashki, A.; Wolfgang, V.; Jozef, V.B.; Stevanovic, S. Antimicrobial activity of peptides from the hemolymph of Helix lucorum snails. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 1061–1071. [Google Scholar]
- Dolashka, P.; Dolashki, A.; Velkova, L.; Stevanovic, S.; Molin, L.; Traldi, P.; Velikova, R.; Voelter, W. Bioactive compounds isolated from garden Snails. J. BioSci. Biotechnol. 2015, 147–155. [Google Scholar]
- Pitt, S.; Hawthorne, J.A.; Garcia-Maya, M.; Alexandrovich, A.; Symonds, R.C.; Gunn, A. Identification and characterisation of anti—Pseudomonas aeruginosa proteins in mucus of the brown garden snail, Cornu aspersum. Br. J. Biomed. Sci. 2019, 76, 129–136. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, W.; Yang, X.; Yan, X.; Liu, R. A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides 2013, 39, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Velkova, L.; Nissimova, A.; Dolashki, A.; Daskalova, E.; Dolashka, P.; Topalova, Y. Glycine-rich peptides from Cornu aspersum snail with antibacterial activity. Bul Chem. Com. 2018, 50C, 169–175. [Google Scholar]
- Dolashki, A.; Nissimova, A.; Daskalova, E.; Velkova, L.; Topalova, Y.; Hristova, P.; Traldi, P.; Voelter, W.; Dolashka, P. Structure and antibacterial activity of isolated peptides from the mucus of garden snail. Cornu aspersum. Bul. Chem. Com. 2018, 50C, 195–200. [Google Scholar]
- Kostadinova, N.; Voynikov, Y.; Dolashki, A.; Krumova, E.; Abrashev, R.; Kowalewski, D.; Stevanovic, S.; Velkova, L.; Velikova, R.; Dolashka, P. Antioxidative screening of fractions from the mucus of garden snail Cornu aspersum. Bul. Chem. Com. 2018, 50C, 176–183. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Todorova, Y.; Yotinov, I.; Topalova, Y.; Marinova, P.; Benova, E.; Atanasova, M.; Bogdanov, T. Innovative sterilization technology—bacterial inactivation by cold argon plasma. BioDiscovery 2017, 20. [Google Scholar] [CrossRef]
- Hauduroy, P.; Ehringer, G.; Urbain, A.; Guillot, G.; Magrou, J. Dictionnaire des Bactéries Pathogènes; Masson et Cie: Paris, France, 1937; pp. 1–597. [Google Scholar]
- Heatley, N.G. A method for the assay of penicillin. Biochem. J. 1944, 38, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Jones, R. NCCLS guidelines: Revised performance standards for antimicrobial disk susceptibility tests. Antimicrob. Newsl. 1984, 1, 64–65. [Google Scholar] [CrossRef]
- CLSI. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, Approved Guideline; CLSI Document M44-A2; CLSI: Wayne, PA, USA, 2004. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.-W.; Stratton, C.W. Advanced Techniques in Diagnostic Microbiology; Springer Science and Business Media LLC.: Berlin, Germany, 2006; pp. 711–740. Available online: https://link.springer.com/book/10.1007%2F978-3-319-95111-9 (accessed on 6 May 2010).
- Bianchi-Bosisio, A. Proteins | Physiological Samples. In Encyclopedia of Analytical Science, 2nd ed.; Unita Socio Sanitaria: Milan, Italy, 2005; accepted 28 May 2005. [Google Scholar] [CrossRef]
- Opdenakker, G.; Rudd, P.M.; Wormald, M.R.; Dwek, R.A.; Van Damme, J. Cells regulate the activities of cytokines by glycosylation. FASEB J. 1995, 9, 453–457. [Google Scholar] [CrossRef]
- Moradi, S.V.; Hussein, W.M.; Varamini, P.; Simerska, P.; Toth, I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem. Sci. 2016, 7, 2492–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bednarska, N.G.; Wren, B.W.; Willcocks, S.J. The importance of the glycosylation of antimicrobial peptides: Natural and synthetic approaches. Drug Discov. Today 2017, 22, 919–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lele, D.S.; Talat, S.; Kumari, S.; Srivastava, N.; Kaur, K.J. Understanding the importance of glycosylated threonine and stereospecific action of Drosocin, a Proline rich antimicrobial peptide. Eur. J. Med. Chem. 2015, 92, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Talat, S.; Thiruvikraman, M.; Kumari, S.; Kaur, K.J. Glycosylated analogs of formaecin I and drosocin exhibit differential pattern of antibacterial activity. Glycoconj. J. 2011, 28, 537–555. [Google Scholar] [CrossRef]
- Huang, C.Y.; Hsu, J.-T.; Chung, P.-H.; Cheng, W.; Jiang, Y.-N.; Ju, Y.-T. Site-specific N-glycosylation of caprine lysostaphin restricts its bacteriolytic activity toward Staphylococcus aureus. Anim. Biotechnol. 2013, 24, 129–147. [Google Scholar] [CrossRef]
- Harrison, R.L.; Jarvis, D.L. Protein N-glycosylation in the baculovirus–insect cell expression system and engineering of insect cells to produce ‘mammalianized’ recombinant glycoproteins. Insect Viruses Biotechnol. Appl. 2006, 68, 159–191. [Google Scholar]
- Saikia, K.; Sravani, Y.D.; Ramakrishnan, V.; Chaudhary, N. Highly potent antimicrobial peptides from N-terminal membrane-binding region of E. coli. MreB. Sci. Rep. 2017, 7, 42994. [Google Scholar] [CrossRef] [Green Version]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef]
- Brown, K.L.; Hancock, R.E. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 2006, 18, 24–30. [Google Scholar] [CrossRef]
- Hancock, R.E.W.; Lehrer, R. Cationic peptides: A new source of antibiotics. Trends Biotechnol. 1998, 16, 82–88. [Google Scholar] [CrossRef]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919–3931. [Google Scholar] [PubMed]
- Raheem, N.; Straus, S.K. Mechanisms of Action for Antimicrobial Peptides with Antibacterial and Antibiofilm Functions. Front. Microbiol. 2019, 10, 2866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother. 2007, 51, 1398–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graf, M.; Mardirossian, M.; Nguyen, F.; Seefeldt, A.C.; Guichard, G.; Scocchi, M.; Innis, C.A.; Wilson, D.N. Proline-rich antimicrobial peptides targeting protein synthesis. Nat. Prod. Rep. 2017, 34, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Aisenbrey, C.; Marquette, A.; Bechinger, B. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. Adv. Exp. Med. Biol. 2019, 1117, 33–64. [Google Scholar]
- Krizsan, A.; Volke, D.; Weinert, S.; Sträter, N.; Knappe, D.; Hoffmann, R. Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome. Angew. Chem. Int. Ed. Engl. 2014, 53, 12236–12239. [Google Scholar] [CrossRef]
- Gagnon, M.G.; Roy, R.N.; Lomakin, I.B.; Florin, T.; Mankin, A.S.; Steitz, T.A. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucleic Acids Res. 2016, 44, 2439–2450. [Google Scholar] [CrossRef] [Green Version]
- Baumann, T.; Kämpfer, U.; Schürch, S.; Schaller, J.; Largiadèr, C.R.; Nentwig, W.; Kuhn-Nentwig, L. Ctenidins: Antimicrobial glycine-rich peptides from the hemocytes of the spider Cupiennius salei. Cell. Mol. Life Sci. 2010, 67, 2787–2798. [Google Scholar] [CrossRef] [Green Version]
- Lorenzini, D.M.; Junior, P.I.D.S.; Fogaça, A.C.; Bulet, P.; Daffre, S. Acanthoscurrin: A novel glycine-rich antimicrobial peptide constitutively expressed in the hemocytes of the spider Acanthoscurria gomesiana. Dev. Comp. Immunol. 2003, 27, 781–791. [Google Scholar] [CrossRef]
- Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides: Table 1. Nucleic Acids Res. 2015, 44, D1094–D1097. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta (BBA) Biomembr. 2009, 1788, 1687–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, F.; Dennison, S.R.; Phoenix, D. Anionic Antimicrobial Peptides from Eukaryotic Organisms. Curr. Protein Pept. Sci. 2009, 10, 585–606. [Google Scholar] [CrossRef] [PubMed]
- Dennison, S.R.; Harris, F.; Mura, M.; Phoenix, D.A. An Atlas of Anionic Antimicrobial Peptides from Amphibians. Curr. Protein Pept. Sci. 2018, 19, 823–838. [Google Scholar] [CrossRef] [PubMed]
- Brogden, K.A.; Ackermann, M.; Huttner, K.M. Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial. Antimicrob. Agents Chemother. 1997, 41, 1615–1617. [Google Scholar] [CrossRef] [Green Version]
- Malmsten, M.; Davoudi, M.; Walse, B.; Rydengard, V.; Pasupuleti, M.; Morgelin, M.; Schmidtchen, A. Antimicrobial peptides derived from growth factors. Growth Factors 2007, 25, 60–70. [Google Scholar] [CrossRef]
- Mak, P. Hemocidins in a functional and structural context of human antimicrobial peptides. Front. Biosci. 2008, 13, 6859–6871. [Google Scholar] [CrossRef]
- Dennison, S.R.; Whittaker, M.; Harris, F.; Phoenix, D.A. Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr. Protein Pept. Sci. 2006, 7, 487–499. [Google Scholar] [CrossRef]
- Pelegrini, P.B.; Quirino, B.F.; Franco, O.L. Plant cyclotides: An unusual class of defense compounds. Peptides 2007, 28, 1475–1481. [Google Scholar] [CrossRef]
- Gruber, C.W.; Cemazar, M.; Anderson, M.A.; Craik, D.J. Insecticidal plant cyclotides and related cystine knot toxins. Toxicon 2007, 49, 561–575. [Google Scholar] [CrossRef]
- Sousa, J.C.; Berto, R.F.; Gois, E.A.; Fontenele-Cardi, N.C.; Honório-Júnior, J.E.; Konno, K.; Richardson, M.; Rocha, M.F.; Camargo, A.A.; Pimenta, D.C.; et al. Leptoglycin: A new Glycine/Leucine-rich antimicrobial peptide isolated from the skin secretion of the South American frog Leptodactylus pentadactylus (Leptodactylidae). Toxicon 2009, 54, 23–32. [Google Scholar] [CrossRef]
- Markossian, K.A.; Zamyatnin, A.A.; Kurganov, B.I. Antibacterial proline-rich oligopeptides and their target proteins. Biochemistry (Mosc.) 2004, 69, 1082–1091. [Google Scholar] [CrossRef]
- Haney, E.F.; Straus, S.K.; Hancock, R.E.W. Reassessing the Host Defense Peptide Landscape. Front. Chem. 2019, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Ordóñez, A.; Begley, M.; Clifford, T.; Deasy, T.; Considine, K.; Hill, C. Structure-Activity Relationship of Synthetic Variants of the Milk-Derived Antimicrobial Peptide αs2-Casein f(183–207). Appl. Environ. Microbiol. 2013, 79, 5179–5185. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Mishra, B.; Lau, K.; Lushnikova, T.; Golla, R.; Wang, X. Antimicrobial Peptides in 2014. Pharmaceuticals 2015, 8, 123–150. [Google Scholar] [CrossRef]
- Zhang, L.; Benz, R.; Hancock, R.E.W. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. Biochemistry 1999, 38, 8102–8111. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.Y.; Lee, Y.T.; Park, C.B.; Lee, K.H.; Kim, S.C.; Choi, B.S. Structural and functional implications of a proline residue in the antimicrobial peptide gaegurin. Eur. J. Biochem. 1999, 266, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Park, C.B.; Kim, M.S.; Kim, S.C. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun. 1996, 218, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, N.; Hagiwara, K.; Nakajima, T. Brevinin-1 and -2,unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem. Biophys. Res. Commun. 1992, 189, 184–190. [Google Scholar] [CrossRef]
- Lee, S.Y.; Söderhäll, K. Processing of an Antibacterial Peptide from Hemocyanin of the Freshwater Crayfish Pacifastacus leniusculus. J. Boil. Chem. 2002, 278, 7927–7933. [Google Scholar] [CrossRef] [Green Version]
- Ullal, A.J.; Litaker, R.W.; Noga, E.J. Antimicrobial peptides derived from hemoglobin are expressed in epithelium of channel catfish (Ictalurus punctatus, Rafinesque). Dev. Comp. Immunol. 2008, 32, 1301–1312. [Google Scholar] [CrossRef]
- Herluinus, M.; Kriswandini, I.; Arijani, A.R. Antimicrobial proteins of snail mucus (Achatina fulica) against Streptococcus mutans and Aggregatibacter actinomycetemcomitans. Dent. J. 2014, 47, 31–36. [Google Scholar]
No | Amino Acid Sequence of Peptides | Exper.Mass [M+H]+, Da | Calcul. Monois. Mass, Da | pI | Grand Average of Hydropathicity (GRAVY) | Net Charge |
---|---|---|---|---|---|---|
1 | DLTLNGLSPK | 1057.58 | 1056.58 | 5.84 | −0.300 (hydrophilic) | −1/+1 |
2 | MPDGALLGGGGD | 1059.71 | 1058.47 | 3.56 | +0.058 (hydrophobic) | −2/0 |
3 | DGPADNAQGAVG | 1071.44 | 1070.46 | 3.56 | −0.600 (hydrophilic) | −2/0 |
4 | SLEERDIQS | 1076.44 | 1075.49 | 4.14 | −0.980 (hydrophilic) | −3/+1 |
5 | GGLLAAGAGGGGAAV | 1098.53 | 1097.58 | 5.52 | +1.200 (hydrophobic) | 0/0 |
6 | LGLGNGGAGGGLVGG | 1155.57 | 1154.60 | 5.52 | +0.687 (hydrophobic) | 0/0 |
7 | LNLGLDAGGGDPGG | 1212.57 | 1211.58 | 3.56 | −0.093 (hydrophilic) | −2/0 |
8 | FNHKSLPKLEN | 1326.64 | 1325.64 | 8.60 | −1.227 (hydrophilic) | −1/+2 |
9 | NLVGGLSGGGRGGAPGG | 1382.70 | 1381.71 | 9.75 | −0.024 (hydrophilic) | 0/+1 |
10 | LGGLGGGGAGGGGLVGEPG | 1438.86 | 1437.72 | 4.00 | +0.439 (hydrophobic) | −1/0 |
11 | NLVGGSGGGGRGGANPLG | 1496.73 | 1495.75 | 9.75 | −0.217 (hydrophilic) | 0/+1 |
12 | NGPNGGLGGSLVNGDPK | 1552.76 | 1551.76 | 5.84 | −0.735 (hydrophilic) | −1/+1 |
13 | GLLGGGGGAGGGGLVGGLLNG | 1609.94 | 1608.86 | 5.52 | +0.776 (hydrophobic) | 0/+1 |
14 | MGGLLGGVNGGGKGGGGPGAP | 1666.83 | 1665.83 | 8.50 | +0.005 (hydrophobic) | 0/+1 |
15 | MLLNAKWAPHSTGPPNA | 1804.91 | 1803.91 | 8.52 | −0.400 (hydrophilic) | 0/+1 |
16 | LPFLGLVGGLLGGSVGGGGGGGGPAL | 2136.20 | 2135.17 | 5.52 | +1.023 (hydrophobic) | 0/0 |
17 | DVESLPVGGLGGGGGGAGGGGLVGGNLGGGAG | 2479.20 | 2478.21 | 3.67 | +0.353 (hydrophobic) | −2/0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolashki, A.; Velkova, L.; Daskalova, E.; Zheleva, N.; Topalova, Y.; Atanasov, V.; Voelter, W.; Dolashka, P. Antimicrobial Activities of Different Fractions from Mucus of the Garden Snail Cornu aspersum. Biomedicines 2020, 8, 315. https://doi.org/10.3390/biomedicines8090315
Dolashki A, Velkova L, Daskalova E, Zheleva N, Topalova Y, Atanasov V, Voelter W, Dolashka P. Antimicrobial Activities of Different Fractions from Mucus of the Garden Snail Cornu aspersum. Biomedicines. 2020; 8(9):315. https://doi.org/10.3390/biomedicines8090315
Chicago/Turabian StyleDolashki, Aleksandar, Lyudmila Velkova, Elmira Daskalova, N. Zheleva, Yana Topalova, Ventseslav Atanasov, Wolfgang Voelter, and Pavlina Dolashka. 2020. "Antimicrobial Activities of Different Fractions from Mucus of the Garden Snail Cornu aspersum" Biomedicines 8, no. 9: 315. https://doi.org/10.3390/biomedicines8090315
APA StyleDolashki, A., Velkova, L., Daskalova, E., Zheleva, N., Topalova, Y., Atanasov, V., Voelter, W., & Dolashka, P. (2020). Antimicrobial Activities of Different Fractions from Mucus of the Garden Snail Cornu aspersum. Biomedicines, 8(9), 315. https://doi.org/10.3390/biomedicines8090315