The Potential of Steroid Profiling by Mass Spectrometry in the Management of Adrenocortical Carcinoma
Abstract
:1. Introduction
2. The Clinical Challenge in the Diagnosis and Management of Adrenocortical Carcinoma
3. Diagnostic Workup and Treatment
3.1. Imaging
3.2. Endocrine Workup
3.3. Treatment
4. Steroid Measurement by Immunoassay
4.1. Advantages of IA
4.2. Disadvantages of IA
4.3. Potential Pitfalls of Steroid Measurement by Immunoassay
5. Steroid Profiling by Mass Spectrometry-Based Approach
5.1. GC-MS in Steroid Analysis
5.2. LC-MS/MS in Steroid Analysis
5.3. Imaging Approaches with MALDI Mass Spectrometry in Steroid Analysis
6. Steroid Profiling as a Diagnostic Tool in Adrenocortical Carcinoma
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Else, T.; Kim, A.C.; Sabolch, A.; Raymond, V.M.; Kandathil, A.; Caoili, E.M.; Jolly, S.; Miller, B.S.; Giordano, T.J.; Hammer, G.D. Adrenocortical carcinoma. Endocr. Rev. 2014, 35, 282–326. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, M.; Kroiss, M.; Allolio, B. Update in adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 2013, 98, 4551–4564. [Google Scholar] [CrossRef] [PubMed]
- Fassnacht, M.; Arlt, W.; Bancos, I.; Dralle, H.; Newell-Price, J.; Sahdev, A.; Tabarin, A.; Terzolo, M.; Tsagarakis, S.; Dekkers, O.M. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 2016, 175, G1–G34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweitzer, S.; Kunz, M.; Kurlbaum, M.; Vey, J.; Kendl, S.; Deutschbein, T.; Hahner, S.; Fassnacht, M.; Dandekar, T.; Kroiss, M. Plasma steroid metabolome profiling for the diagnosis of adrenocortical carcinoma. Eur. J. Endocrinol. 2019, 180, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creemers, S.G.; Hofland, L.J.; Korpershoek, E.; Franssen, G.J.; van Kemenade, F.J.; de Herder, W.W.; Feelders, R.A. Future directions in the diagnosis and medical treatment of adrenocortical carcinoma. Endocr. Relat. Cancer 2016, 23, R43–R69. [Google Scholar] [CrossRef]
- Arlt, W.; Biehl, M.; Taylor, A.E.; Hahner, S.; Libe, R.; Hughes, B.A.; Schneider, P.; Smith, D.J.; Stiekema, H.; Krone, N.; et al. Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J. Clin. Endocrinol. Metab. 2011, 96, 3775–3784. [Google Scholar] [CrossRef]
- Taylor, D.R.; Ghataore, L.; Couchman, L.; Vincent, R.P.; Whitelaw, B.; Lewis, D.; Diaz-Cano, S.; Galata, G.; Schulte, K.M.; Aylwin, S.; et al. A 13-Steroid Serum Panel Based on LC-MS/MS: Use in Detection of Adrenocortical Carcinoma. Clin. Chem. 2017, 63, 1836–1846. [Google Scholar] [CrossRef] [Green Version]
- Stigliano, A.; Chiodini, I.; Giordano, R.; Faggiano, A.; Canu, L.; Della, S.; Loli, P.; Luconi, M.; Mantero, F.; Terzolo, M. Management of adrenocortical carcinoma: A consensus statement of the Italian Society of Endocrinology (SIE). J. Endocrinol. Investig. 2016, 39, 103–121. [Google Scholar] [CrossRef]
- Kerkhofs, T.M.; Verhoeven, R.H.; Van der Zwan, J.M.; Dieleman, J.; Kerstens, M.N.; Links, T.P.; Van de Poll-Franse, L.V.; Haak, H.R. Adrenocortical carcinoma: A population-based study on incidence and survival in the Netherlands since 1993. Eur. J. Cancer 2013, 49, 2579–2586. [Google Scholar] [CrossRef]
- Michalkiewicz, E.; Sandrini, R.; Figueiredo, B.; Miranda, E.C.; Caran, E.; Oliveira-Filho, A.G.; Marques, R.; Pianovski, M.A.; Lacerda, L.; Cristofani, L.M.; et al. Clinical and outcome characteristics of children with adrenocortical tumors: A report from the International Pediatric Adrenocortical Tumor Registry. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2004, 22, 838–845. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, T.; Wrzesinski, T. The molecular basis of adrenocortical cancer. Cancer Genet. 2012, 205, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Dworakowska, D.; Drabarek, A.; Wenzel, I.; Babinska, A.; Swiatkowska-Stodulska, R.; Sworczak, K. Adrenocortical cancer (ACC)–literature overview and own experience. Endokrynol. Polska 2014, 65, 492–502. [Google Scholar]
- Varley, J.M. Germline TP53 mutations and Li-Fraumeni syndrome. Hum. Mutat. 2003, 21, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Rechache, N.; Kebebew, E. Molecular markers of adrenocortical tumors. J. Surg. Oncol. 2012, 106, 549–556. [Google Scholar] [CrossRef]
- Seccia, T.M.; Fassina, A.; Nussdorfer, G.G.; Pessina, A.C.; Rossi, G.P. Aldosterone-producing adrenocortical carcinoma: An unusual cause of Conn’s syndrome with an ominous clinical course. Endocr. Relat. Cancer 2005, 12, 149–159. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, C.J.; McDermott, S.; Blake, M.A. Adrenal Imaging: Magnetic Resonance Imaging and Computed Tomography. Front. Horm. Res. 2016, 45, 55–69. [Google Scholar]
- Fassnacht, M.; Dekkers, O.M.; Else, T.; Baudin, E.; Berruti, A.; de Krijger, R.; Haak, H.R.; Mihai, R.; Assie, G.; Terzolo, M. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 2018, 179, G1–G46. [Google Scholar] [CrossRef]
- Arnaldi, G.; Boscaro, M. Adrenal incidentaloma, Best practice & research. Clin. Endocrinol. Metab. 2012, 26, 405–419. [Google Scholar]
- Petersenn, S.; Richter, P.A.; Broemel, T.; Ritter, C.O.; Deutschbein, T.; Beil, F.U.; Allolio, B.; Fassnacht, M.; German ACC Study Group. Computed tomography criteria for discrimination of adrenal adenomas and adrenocortical carcinomas: Analysis of the German ACC registry. Eur. J. Endocrinol. 2015, 172, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.M.; Perrier, N.D.; Grubbs, E.G.; Sircar, K.; Ye, Z.X.; Lee, J.E.; Ng, C.S. CT features and quantification of the characteristics of adrenocortical carcinomas on unenhanced and contrast-enhanced studies. Clin. Radiol. 2012, 67, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Akkus, G.; Guney, I.B.; Ok, F.; Evran, M.; Izol, V.; Erdogan, S.; Bayazit, Y.; Sert, M.; Tetiker, T. Diagnostic efficacy of 18F-FDG PET/CT in patients with adrenal incidentaloma. Endocr. Connect. 2019, 8, 838–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardito, A.; Massaglia, C.; Pelosi, E.; Zaggia, B.; Basile, V.; Brambilla, R.; Vigna-Taglianti, F.; Duregon, E.; Arena, V.; Perotti, P.; et al. 18F-FDG PET/CT in the post-operative monitoring of patients with adrenocortical carcinoma. Eur. J. Endocrinol. 2015, 173, 749–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieman, L.K.; Biller, B.M.; Findling, J.W.; Newell-Price, J.; Savage, M.O.; Stewart, P.M.; Montori, V.M. The diagnosis of Cushing’s syndrome: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2008, 93, 1526–1540. [Google Scholar] [CrossRef] [PubMed]
- Ceccato, F.; Marcelli, G.; Martino, M.; Concettoni, C.; Brugia, M.; Trementino, L.; Michetti, G.; Arnaldi, G. The diagnostic accuracy of increased late night salivary cortisol for Cushing’s syndrome: A real-life prospective study. J. Endocrinol. Investig. 2019, 42, 327–335. [Google Scholar] [CrossRef]
- Abiven, G.; Coste, J.; Groussin, L.; Anract, P.; Tissier, F.; Legmann, P.; Dousset, B.; Bertagna, X.; Bertherat, J. Clinical and biological features in the prognosis of adrenocortical cancer: Poor outcome of cortisol-secreting tumors in a series of 202 consecutive patients. J. Clin. Endocrinol. Metab. 2006, 91, 2650–2655. [Google Scholar] [CrossRef]
- Berruti, A.; Fassnacht, M.; Haak, H.; Else, T.; Baudin, E.; Sperone, P.; Kroiss, M.; Kerkhofs, T.; Williams, A.R.; Ardito, A.; et al. Prognostic role of overt hypercortisolism in completely operated patients with adrenocortical cancer. Eur. Urol. 2014, 65, 832–838. [Google Scholar] [CrossRef]
- Funder, J.W.; Carey, R.M.; Fardella, C.; Gomez-Sanchez, C.E.; Mantero, F.; Stowasser, M.; Young, W.F., Jr.; Montori, V.M.; Endocrine, S. Case detection, diagnosis, and treatment of patients with primary aldosteronism: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2008, 93, 3266–3281. [Google Scholar] [CrossRef] [Green Version]
- Lenders, J.W.; Duh, Q.Y.; Eisenhofer, G.; Gimenez-Roqueplo, A.P.; Grebe, S.K.; Murad, M.H.; Naruse, M.; Pacak, K.; Young, W.F., Jr.; Endocrine, S. Pheochromocytoma and paraganglioma: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2014, 99, 1915–1942. [Google Scholar] [CrossRef]
- Uchida, T.; Nishimoto, K.; Fukumura, Y.; Asahina, M.; Goto, H.; Kawano, Y.; Shimizu, F.; Tsujimura, A.; Seki, T.; Mukai, K.; et al. Watada, Disorganized Steroidogenesis in Adrenocortical Carcinoma, a Case Study. Endocr. Pathol. 2017, 28, 27–35. [Google Scholar] [CrossRef]
- Libe, R. Adrenocortical carcinoma (ACC): Diagnosis, prognosis, and treatment. Front. Cell Dev. Biol. 2015, 3, 45. [Google Scholar] [CrossRef] [Green Version]
- Paragliola, R.M.; Torino, F.; Papi, G.; Locantore, P.; Pontecorvi, A.; Corsello, S.M. Role of Mitotane in Adrenocortical Carcinoma–Review and State of the art. Eur. Endocrinol. 2018, 14, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Auchus, R.J. Steroid assays and endocrinology: Best practices for basic scientists. Endocrinology 2014, 155, 2049–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, K.E.M.; Froysa, H.G.; Karlsen, O.A.; Sagen, J.V.; Mellgren, G.; Verhaegen, S.; Ropstad, E.; Goksoyr, A.; Kellmann, R. LC-MS/MS based profiling and dynamic modelling of the steroidogenesis pathway in adrenocarcinoma H295R cells. Toxicol. In Vitro 2018, 52, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.E.; Keevil, B.; Huhtaniemi, I.T. Mass spectrometry and immunoassay: How to measure steroid hormones today and tomorrow. Eur. J. Endocrinol. 2015, 173, D1–D12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wudy, S.A.; Schuler, G.; Sanchez-Guijo, A.; Hartmann, M.F. The art of measuring steroids: Principles and practice of current hormonal steroid analysis. J. Steroid Biochem. Mol. Biol. 2018, 179, 88–103. [Google Scholar] [CrossRef] [PubMed]
- Krasowski, M.D.; Drees, D.; Morris, C.S.; Maakestad, J.; Blau, J.L.; Ekins, S. Cross-reactivity of steroid hormone immunoassays: Clinical significance and two-dimensional molecular similarity prediction. BMC Clin. Pathol. 2014, 14, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddad, R.A.; Giacherio, D.; Barkan, A.L. Interpretation of common endocrine laboratory tests: Technical pitfalls, their mechanisms and practical considerations. Clin. Diabetes Endocrinol. 2019, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Herati, A.S.; Cengiz, C.; Lamb, D.J. Assays of Serum Testosterone. Urol. Clin. N. Am. 2016, 43, 177–184. [Google Scholar] [CrossRef]
- El-Farhan, N.; Rees, D.A.; Evans, C. Measuring cortisol in serum, urine and saliva–are our assays good enough? Ann. Clin. Biochem. 2017, 54, 308–322. [Google Scholar] [CrossRef]
- Deutschbein, T.; Broecker-Preuss, M.; Flitsch, J.; Jaeger, A.; Althoff, R.; Walz, M.K.; Mann, K.; Petersenn, S. Salivary cortisol as a diagnostic tool for Cushing’s syndrome and adrenal insufficiency: Improved screening by an automatic immunoassay. Eur. J. Endocrinol. 2012, 166, 613–618. [Google Scholar] [CrossRef]
- Carrozza, C.; Lapolla, R.; Gervasoni, J.; Rota, C.A.; Locantore, P.; Pontecorvi, A.; Zuppi, C.; Persichilli, S. Assessment of salivary free cortisol levels by liquid chromatography with tandem mass spectrometry (LC-MS/MS) in patients treated with mitotane. Hormones 2012, 11, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Rosner, W.; Hankinson, S.E.; Sluss, P.M.; Vesper, H.W.; Wierman, M.E. Challenges to the measurement of estradiol: An endocrine society position statement. J. Clin. Endocrinol. Metab. 2013, 98, 1376–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, V.M. The coming of age of liquid chromatography coupled to tandem mass spectrometry in the endocrinology laboratory. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 883–884, 50–58. [Google Scholar] [CrossRef]
- Storbeck, K.H.; Gilligan, L.; Jenkinson, C.; Baranowski, E.S.; Quanson, J.L.; Arlt, W.; Taylor, A.E. The utility of ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) for clinically relevant steroid analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1085, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, F.; Di Dalmazi, G. Serum steroid profiling by mass spectrometry in adrenocortical tumors: Diagnostic implications. Curr. Opin. Endocrinol. Diabetes Obes. 2019, 26, 160–165. [Google Scholar] [CrossRef]
- Couchman, L.; Vincent, R.P.; Ghataore, L.; Moniz, C.F.; Taylor, N.F. Challenges and benefits of endogenous steroid analysis by LC-MS/MS. Bioanalysis 2011, 3, 2549–2572. [Google Scholar] [CrossRef]
- Hansen, M.; Jacobsen, N.W.; Nielsen, F.K.; Björklund, E.; Styrishave, B.; Halling-Sørensen, B. Halling-Sorensen, Determination of steroid hormones in blood by GC-MS/MS. Anal. Bioanal. Chem. 2011, 400, 3409–3417. [Google Scholar] [CrossRef]
- Hill, M.; Hána, V., Jr.; Velíková, M.; Pařízek, A.; Kolátorová, L.; Vítků, J.; Skodova, T.; Simkova, T.; Simkova, M.; Simjak, P.; et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019, 68, 179–207. [Google Scholar] [CrossRef]
- Ankarberg-Lindgren, C.; Dahlgren, J.; Andersson, M.X. High-sensitivity quantification of serum androstenedione, testosterone, dihydrotestosterone, estrone and estradiol by gas chromatography-tandem mass spectrometry with sex- and puberty-specific reference intervals. J. Steroid Biochem. Mol. Biol. 2018, 183, 116–124. [Google Scholar] [CrossRef]
- Matysik, S.; Schmitz, G. Determination of steroid hormones in human plasma by GC-triple quadrupole MS. Steroids 2015, 99 Pt B, 151–154. [Google Scholar] [CrossRef]
- de Jong, W.H.A.; Buitenwerf, E.; Pranger, A.T.; Riphagen, I.J.; Wolffenbuttel, B.H.R.; Kerstens, M.N.; Kema, I.P. Determination of reference intervals for urinary steroid profiling using a newly validated GC-MS/MS method. Clin. Chem. Lab. Med. 2017, 56, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, A.S.Y.; Leung, G.N.W.; Leung, D.K.K.; Wan, T.S.M. Doping control analysis of anabolic steroids in equine urine by gas chromatography-tandem mass spectrometry. Drug Test. Anal. 2017, 9, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- Eisenhofer, G.; Fassnacht, M. Steroid Profiling for Adrenocortical Disorders: A Pathway for Omics-Based Diagnostics. Clin. Chem. 2017, 63, 1787–1789. [Google Scholar] [CrossRef] [Green Version]
- Teubel, J.; Wust, B.; Schipke, C.G.; Peters, O.; Parr, M.K. Methods in endogenous steroid profiling—A comparison of gas chromatography mass spectrometry (GC-MS) with supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS). J. Chromatogr. A 2018, 1554, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Hána, V., Jr.; Ježková, J.; Kosák, M.; Kršek, M.; Hána, V.; Hill, M. Novel GC-MS/MS Technique Reveals a Complex Steroid Fingerprint of Subclinical Hypercortisolism in Adrenal Incidentalomas. J. Clin. Endocrinol. Metab. 2019, 104, 3545–3556. [Google Scholar] [CrossRef]
- Ackermans, M.T.; Endert, E. LC-MS/MS in endocrinology: What is the profit of the last 5 years? Bioanalysis 2014, 6, 43–57. [Google Scholar] [CrossRef]
- Le Goff, C.; Farre-Segura, J.; Stojkovic, V.; Dufour, P.; Peeters, S.; Courtois, J.; Nizet, A.; De Vos, N.; Cavalier, E. The pathway through LC-MS method development: In-house or ready-to-use kit-based methods? Clin. Chem. Lab. Med. 2020, 58, 1002–1009. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.; Cicalini, I.; Zucchelli, M.; di Ioia, M.; Onofrj, M.; Federici, L.; Del Boccio, P.; Pieragostino, D. Metabolomic Signature in Sera of Multiple Sclerosis Patients during Pregnancy. Int. J. Mol. Sci. 2018, 19, 3589. [Google Scholar] [CrossRef] [Green Version]
- Pieragostino, D.; Agnifili, L.; Cicalini, I.; Calienno, R.; Zucchelli, M.; Mastropasqua, L.; Sacchetta, P.; Del Boccio, P.; Rossi, C. Tear Film Steroid Profiling in Dry Eye Disease by Liquid Chromatography Tandem Mass Spectrometry. Int. J. Mol. Sci. 2017, 18, 1349. [Google Scholar] [CrossRef] [Green Version]
- Jeanneret, F.; Tonoli, D.; Rossier, M.F.; Saugy, M.; Boccard, J.; Rudaz, S. Evaluation of steroidomics by liquid chromatography hyphenated to mass spectrometry as a powerful analytical strategy for measuring human steroid perturbations. J. Chromatogr. A 2016, 1430, 97–112. [Google Scholar] [CrossRef]
- Furey, A.; Moriarty, M.; Bane, V.; Kinsella, B.; Lehane, M. Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta 2013, 115, 104–122. [Google Scholar] [CrossRef] [PubMed]
- Manzanares-Meza, L.D.; Gutierrez-Roman, C.I.; Medina-Contreras, O. MALDI imaging: Beyond classic diagnosis. Bol. Med. Hosp. Infant. Mex. 2017, 74, 212–218. [Google Scholar] [PubMed]
- Takeo, E.; Sugiura, Y.; Uemura, T.; Nishimoto, K.; Yasuda, M.; Sugiyama, E.; Ohtsuki, S.; Higashi, T.; Nishikawa, T.; Suematsu, M.; et al. Tandem Mass Spectrometry Imaging Reveals Distinct Accumulation Patterns of Steroid Structural Isomers in Human Adrenal Glands. Anal. Chem. 2019, 91, 8918–8925. [Google Scholar] [CrossRef] [PubMed]
- Gower, D.B.; Stern, M.I. Steroid excretion and biosynthesis, with special reference to androst-16-enes, in a woman with a virilising adrenocortical carcinoma. Acta Endocrinol. 1969, 60, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Gower, D.B.; Daly, J.R.; Snodgrass, G.J.; Stern, M.I. Steroid excretion and biosynthesis with special reference to C19-delta16-steroids in an infant with a virilizing adrenocortical carcinoma. Acta Endocrinol. 1970, 63, 562–576. [Google Scholar] [CrossRef] [PubMed]
- Schoneshofer, M.; Weber, B.; Oelkers, W.; Nahoul, K.; Mantero, F. Urinary excretion rates of 15 free steroids: Potential utility in differential diagnosis of Cushing’s syndrome. Clin. Chem. 1986, 32, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Ueshiba, H.; Segawa, M.; Hayashi, T.; Miyachi, Y.; Irie, M. Serum profiles of steroid hormones in patients with Cushing’s syndrome determined by a new HPLC/RIA method. Clin. Chem. 1991, 37, 1329–1333. [Google Scholar] [CrossRef]
- Hana, V., Jr.; Jezkova, J.; Kosak, M.; Krsek, M.; Hana, V.; Hill, M. Serum steroid profiling in Cushing’s syndrome patients. J. Steroid Biochem. Mol. Biol. 2019, 192, 105410. [Google Scholar] [CrossRef]
- Keevil, B. Steroid Mass Spectrometry for the Diagnosis of PCOS. Med. Sci. 2019, 7, 78. [Google Scholar] [CrossRef] [Green Version]
- Handelsman, D.J.; Teede, H.J.; Desai, R.; Norman, J.; Moran, L.J. Performance of mass spectrometry steroid profiling for diagnosis of polycystic ovary syndrome. Hum. Reprod. 2017, 32, 418–422. [Google Scholar] [CrossRef]
- Rossi, C.; Calton, L.; Hammond, G.; Brown, H.A.; Wallace, A.M.; Sacchetta, P.; Morris, M. Serum steroid profiling for congenital adrenal hyperplasia using liquid chromatography-tandem mass spectrometry. Clin. Chim. Acta Int. J. Clin. Chem. 2010, 411, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Lacey, J.M.; Minutti, C.Z.; Magera, M.J.; Tauscher, A.L.; Casetta, B.; McCann, M.; Lymp, J.; Hahn, S.H.; Rinaldo, P.; Matern, D. Improved specificity of newborn screening for congenital adrenal hyperplasia by second-tier steroid profiling using tandem mass spectrometry. Clin. Chem. 2004, 50, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.; Calton, L.; Brown, H.A.; Gillingwater, S.; Wallace, A.M.; Petrucci, F.; Ciavardelli, D.; Urbani, A.; Sacchetta, P.; Morris, M. Confirmation of congenital adrenal hyperplasia by adrenal steroid profiling of filter paper dried blood samples using ultra-performance liquid chromatography-tandem mass spectrometry. Clin. Chem. Lab. Med. 2011, 49, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Cicalini, A.; Tumini, S.; Guidone, P.I.; Pieragostino, D.; Zucchelli, M.; Franchi, S.; Lisi, G.; Lelli Chiesa, P.; Stuppia, L.; Laurenzi, V.; et al. Serum Steroid Pro fi ling by Liquid Chromatography-Tandem Mass Spectrometry for the Rapid Confirmation and Early Treatment of Congenital Adrenal Hyperplasia: A Neonatal Case Report. Metabolites 2019, 9, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chortis, V.; Bancos, I.; Nijman, T.; Gilligan, L.C.; Taylor, A.E.; Ronchi, C.L.; O’Reilly, M.W.; Schreiner, J.; Asia, M.; Riester, A.; et al. Urine Steroid Metabolomics as a Novel Tool for Detection of Recurrent Adrenocortical Carcinoma. J. Clin. Endocrinol. Metab. 2020, 105, e307–e318. [Google Scholar] [CrossRef]
- Kerkhofs, T.M.; Kerstens, M.N.; Kema, I.P.; Willems, T.P.; Haak, H.R. Diagnostic Value of Urinary Steroid Profiling in the Evaluation of Adrenal Tumors. Horm. Cancer 2015, 6, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Bancos, A.E.; Taylor, V.; Chortis, A.J.; Sitch, C.; Jenkinson, C.J.; Davidge-Pitts, K.; Lang, S.; Tsagarakis, M.; Macech, A.; Riester, T.; et al. Investigators, Urine steroid metabolomics for the differential diagnosis of adrenal incidentalomas in the EURINE-ACT study: A prospective test validation study. Lancet Diabetes Endocrinol. 2020, 8, 773–781. [Google Scholar] [CrossRef]
- Vogeser, M.; Seger, C. A decade of HPLC-MS/MS in the routine clinical laboratory–Goals for further developments. Clin. Biochem. 2008, 41, 649–662. [Google Scholar] [CrossRef]
- Rauh, M. Steroid measurement with LC-MS/MS in pediatric endocrinology. Mol. Cell. Endocrinol. 2009, 301, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Rauh, M. Steroid measurement with LC-MS/MS. Application examples in pediatrics. J. Steroid Biochem. Mol. Biol. 2010, 121, 520–527. [Google Scholar] [CrossRef]
- Shackleton, C. Clinical steroid mass spectrometry: A 45-year history culminating in HPLC-MS/MS becoming an essential tool for patient diagnosis. J. Steroid Biochem. Mol. Biol. 2010, 121, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Fiet, J.; Le, Y.; Bouc, J.; Guechot, N.; Helin, M.A.; Maubert, D.; Farabos, A.; Lamaziere, A. Liquid Chromatography/Tandem Mass Spectometry Profile of 16 Serum Steroids, Including 21-Deoxycortisol and 21-Deoxycorticosterone, for Management of Congenital Adrenal Hyperplasia. J. Endocr. Soc. 2017, 1, 186–201. [Google Scholar] [PubMed] [Green Version]
- Choi, R.; Park, H.D.; Oh, H.J.; Lee, K.; Song, J.; Lee, S.Y. Dried Blood Spot Multiplexed Steroid Profiling Using Liquid Chromatography Tandem Mass Spectrometry in Korean Neonates. Ann. Lab. Med. 2019, 39, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Peitzsch, M.; Dekkers, T.; Haase, M.; Sweep, F.C.; Quack, I.; Antoch, G.; Siegert, G.; Lenders, J.W.; Deinum, J.; Willenberg, H.S.; et al. An LC-MS/MS method for steroid profiling during adrenal venous sampling for investigation of primary aldosteronism. J. Steroid Biochem. Mol. Biol. 2015, 145, 75–84. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Dekkers, T.; Peitzsch, M.; Dietz, A.S.; Bidlingmaier, M.; Treitl, M.; Williams, T.A.; Bornstein, S.R.; Haase, M.; Rump, L.C.; et al. Mass Spectrometry-Based Adrenal and Peripheral Venous Steroid Profiling for Subtyping Primary Aldosteronism. Clin. Chem. 2016, 62, 514–524. [Google Scholar] [CrossRef] [Green Version]
- Holler, F.; Heinrich, A.; Adolf, C.; Lechner, B.; Bidlingmaier, M.; Eisenhofer, G.; Williams, T.A.; Reincke, M. Steroid Profiling and Immunohistochemistry for Subtyping and Outcome Prediction in Primary Aldosteronism—A Review. Curr. Hypertens. Rep. 2019, 21, 77. [Google Scholar] [CrossRef]
- Yang, Y.; Burrello, J.; Burrello, A.; Eisenhofer, G.; Peitzsch, M.; Tetti, M.; Knosel, T.; Beuschlein, F.; Lenders, J.W.M.; Mulatero, P.; et al. Classification of microadenomas in patients with primary aldosteronism by steroid profiling. J. Steroid Biochem. Mol. Biol. 2019, 189, 274–282. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Li, S.; Zhou, W.; Ye, L.; Wang, L.; Tao, T.; Gu, J.; Yang, Z.; Zhao, D.; et al. Steroid hormone profiling in obese and nonobese women with polycystic ovary syndrome. Sci. Rep. 2017, 7, 14156. [Google Scholar] [CrossRef] [Green Version]
- Wooding, K.M.; Auchus, R.J. Mass spectrometry theory and application to adrenal diseases. Mol. Cell. Endocrinol. 2013, 371, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, P.; Fenton, H.; Morris-Stiff, G.; Ahmad, N.; Fisher, J.; Prasad, K.R. Metabonomics: A useful tool for the future surgeon. J. Surg. Res. 2010, 160, 122–132. [Google Scholar] [CrossRef]
Methods | Advantages | Disadvantages |
---|---|---|
IA | very accessible and economic technique thanks to the large availability of ready-to-use kits for “traditional” steroids (cortisol, estradiol and testosterone) | the development of the less frequently used tests in routine clinical practice, could become laborious and expensive |
IA steroids quantification requires small quantities of samples, and very simple steps of sample preparation, thanks to the availability of reagents and low-cost instrumentation | only one analyte can be measured per immunoassay | |
IA is considered an accessible technique, even to unskilled technicians | lack of specificity | |
reference ranges of some steroids are fully accepted by the clinician community | the quantification of the steroids in IA is limited to the linear portion of the standard curve | |
cross-reactivity between similar steroids | ||
GC-MS | multiplexing analysis | time consuming analysis |
high specificity and sensibility | complexity of sample preparation; derivatization step is a prerequisite | |
high resolution chromatographic separation, especially for steroids with similar chemical structures | cost effective analysis | |
analysis not suitable for the routine laboratory | ||
LC-MS/MS | analytical method of choice for steroids quantification | the development of an internal method is not easy to achieve and requires the presence of highly specialized personnel |
the use of ready-to-use kits allows a faster installation even for non-MS specialists | analytes detection is subject to matrix effects and ion suppression, decreasing analytic performance | |
derivatization phase during sample preparation is not considered as a prerequisite | isobaric interference may occur | |
reduced times for analysis | reference intervals, essential for the interpretation of the results, are not yet well defined | |
high specificity and sensibility | ||
multiplexing analysis | ||
MALDI-MSI | visualize the tissue distribution of steroid hormones | complex and crucial sample handling and preparation, applicable only to tissues |
Correlation of steroid distribution with anatomical composition of the tissue | Chromatographic techniques, which allow for the separation of steroid isomers, are not available in MSI. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, C.; Cicalini, I.; Verrocchio, S.; Di Dalmazi, G.; Federici, L.; Bucci, I. The Potential of Steroid Profiling by Mass Spectrometry in the Management of Adrenocortical Carcinoma. Biomedicines 2020, 8, 314. https://doi.org/10.3390/biomedicines8090314
Rossi C, Cicalini I, Verrocchio S, Di Dalmazi G, Federici L, Bucci I. The Potential of Steroid Profiling by Mass Spectrometry in the Management of Adrenocortical Carcinoma. Biomedicines. 2020; 8(9):314. https://doi.org/10.3390/biomedicines8090314
Chicago/Turabian StyleRossi, Claudia, Ilaria Cicalini, Sara Verrocchio, Giulia Di Dalmazi, Luca Federici, and Ines Bucci. 2020. "The Potential of Steroid Profiling by Mass Spectrometry in the Management of Adrenocortical Carcinoma" Biomedicines 8, no. 9: 314. https://doi.org/10.3390/biomedicines8090314
APA StyleRossi, C., Cicalini, I., Verrocchio, S., Di Dalmazi, G., Federici, L., & Bucci, I. (2020). The Potential of Steroid Profiling by Mass Spectrometry in the Management of Adrenocortical Carcinoma. Biomedicines, 8(9), 314. https://doi.org/10.3390/biomedicines8090314