mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)]
Abstract
:1. Introduction
2. Materials and Methods
2.1. Families
2.2. Hematological Parameters
2.3. DNA Molecular Screening
2.4. α-Globin Haplotype
2.5. cDNA
2.6. Semiquantitative mRNA Analysis by Restriction Enzymes
2.7. Database
2.8. In Silico Analysis
3. Results
3.1. Hb Campania [α1 cod95 (−C)]
3.1.1. Molecular Characterization and cDNA Analysis
3.1.2. 3D Modeling
3.1.3. In Silico Analyses
3.2. Hb Sciacca [α1 cod109 (−C)]
3.2.1. Molecular Characterization and cDNA Analysis
3.2.2. 3D Modeling
3.2.3. In Silico Analyses
4. Discussion
4.1. Hb Campania [α1 cod95 (−C)]
4.2. Hb Sciacca [α1 cod109 (−C)]
4.3. mRNA Variant in Globin Mutants
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weatherall, D.J.; Clegg, J.B. The Thalassaemia Syndromes, 4th ed.; Blackwell Scientific Publications: Oxford, UK, 2001; pp. 508–612. ISBN 978-0-470-69594-4. [Google Scholar]
- Lacerra, G.; Fiorito, M.; Musollino, G.; Di Noce, F.; Esposito, M.; Nigro, V.; Gaudiano, C.; Carestia, C. Sequence variations of the α-globin genes: Scanning of high CG content genes with DHPLC and DG-DGGE. Hum. Mutat. 2004, 24, 338–349. [Google Scholar] [CrossRef]
- Wajcman, H.; Traeger-Synodinos, J.; Papassotiriou, I.; Giordano, P.C.; Harteveld, C.L.; Baudin-Creuza, V.; Old, J. Unstable and Thalassemic α Chain Hemoglobin Variants: A Cause of Hb H Disease and Thalassemia Intermedia. Hemoglobin 2008, 32, 327–349. [Google Scholar] [CrossRef]
- Thein, S.L.; Hesketh, C.; Taylor, P.; Temperley, I.J.; Hutchinson, R.M.; Old, J.M.; Wood, W.G.; Clegg, J.B.; Weatherall, D.J. Molecular basis for dominantly inherited inclusion body beta-thalassemia. Proc. Natl. Acad. Sci. USA 1990, 87, 3924–3928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, L.; Gell, D.A.; Zhou, S.; Gu, L.; Kong, Y.; Li, J.; Hu, M.; Yan, N.; Lee, C.; Rich, A.M.; et al. Molecular Mechanism of AHSP-Mediated Stabilization of α-Hemoglobin. Cell 2004, 119, 629–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, G.; Thein, S. Nonsense codon mutations in the terminal exon of the beta-globin gene are not associated with a reduction in beta-mRNA accumulation: A mechanism for the phenotype of dominant beta-thalassemia. Blood 1994, 83, 2031–2037. [Google Scholar] [CrossRef] [Green Version]
- Wernersson, R. Virtual Ribosome—A comprehensive DNA translation tool with support for integration of sequence feature annotation. Nucleic Acids Res. 2006, 34, W385–W388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacerra, G.; Friscia, M.G.; Musollino, G.; Di Noce, F.; Virruso, L.; Ciaccio, C.; Di Girgenti, C.; Carestia, C. A new alpha1 mutation with a frameshift in the third exon. In Proceedings of the 9th International Conference on Thalassaemia and the Haemoglobinopathies, Città del Mare, Terrasini (PA), Italy, 15–19 October 2003. Abstracts P031. [Google Scholar]
- Cardiero, G.; Prezioso, R.; Matarese, C.; Diana, E.; Dembech, S.; Virruso, L.; Friscia, M.G.; Di Girgenti, C.; Ciaccio, C.; Caldora, M.; et al. Six new alpha-thalassemia mutants identified in Southern Italy. In Proceedings of the Biochimica clinica, 50° Congresso Nazionale SIBioC — Riassunti Poster, Napoli, Italy, 16–18 October 2018; Volume 42, pp. S78–S79, P107, SS1. [Google Scholar]
- Lacerra, G.; Testa, R.; De Angioletti, M.; Schilirò, G.; Carestia, C. Hb Bronte or α93(FG5)Val→Gly: A New Unstable Variant of the α2-Globin Gene, Associated with a Mild α+-Thalassemia Phenotype. Hemoglobin 2003, 27, 149–159. [Google Scholar] [CrossRef]
- Lacerra, G.; Musollino, G.; Di Noce, F.; Prezioso, R.; Carestia, C. Genotyping for known Mediterranean -thalassemia point mutations using a multiplex amplification refractory mutation system. Haematol. 2007, 92, 254–255. [Google Scholar] [CrossRef] [Green Version]
- Bongiovanni, A.; Colotti, G.; Liguori, G.L.; Di Carlo, M.; Digilio, F.A.; Lacerra, G.; Mascia, A.; Cirafici, A.M.; Barra, A.; Lanati, A.; et al. Applying Quality and Project Management methodologies in biomedical research laboratories: A public research network’s case study. Accreditation Qual. Assur. 2015, 20, 203–213. [Google Scholar] [CrossRef]
- Digilio, F.A.; Lanati, A.; Bongiovanni, A.; Mascia, A.; Di Carlo, M.; Barra, A.; Cirafici, A.M.; Colotti, G.; Kisslinger, A.; Lacerra, G.; et al. Quality-based model for Life Sciences research guidelines. Accreditation Qual. Assur. 2016, 21, 221–230. [Google Scholar] [CrossRef]
- Cardiero, G.; Scarano, C.; Musollino, G.; Di Noce, F.; Prezioso, R.; Dembech, S.; La Porta, G.; Caldora, M.; Bisconte, M.G.; Bisogno, R.C.; et al. Role of nonsense-mediated decay and nonsense-associated altered splicing in the mRNA pattern of two new α-thalassemia mutants. Int. J. Biochem. Cell Biol. 2017, 91, 212–222. [Google Scholar] [CrossRef]
- Bisconte, M.G.; Caldora, M.; Musollino, G.; Cardiero, G.; Flagiello, A.; La Porta, G.; Lagona, L.; Prezioso, R.; Qualtieri, G.; Gaudiano, C.; et al. α-Thalassemia Associated with Hb Instability: A Tale of Two Features. The Case of Hb Rogliano or α1 Cod 108(G15)Thr→Asn and Hb Policoro or α2 Cod 124(H7)Ser→Pro. PLoS ONE 2015, 10, e0115738. [Google Scholar] [CrossRef] [Green Version]
- Cardiero, G.; Musollino, G.; Friscia, M.G.; Testa, R.; Virruso, L.; Di Girgenti, C.; Caldora, M.; Bisogno, R.C.; Gaudiano, C.; Manco, G.; et al. Effect of Mutations on mRNA and Globin Stability: The Cases of Hb Bernalda/Groene Hart and Hb Southern Italy. Genes 2020, 11, 870. [Google Scholar] [CrossRef]
- Lacerra, G.; Scarano, C.; Lagona, L.F.; Testa, R.; Caruso, D.G.; Medulla, E.; Friscia, M.G.; Mastrullo, L.; Caldora, M.; Prezioso, R.; et al. Genotype-Phenotype Relationship of the δ-Thalassemia and Hb A2Variants: Observation of 52 Genotypes. Hemoglobin 2010, 34, 407–423. [Google Scholar] [CrossRef] [PubMed]
- Buchan, D.W.A.; Jones, D.T. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res. 2019, 47, W402–W407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger, E.; Vriend, G. YASARA View—Molecular graphics for all devices—From smartphones to workstations. Bioinform. 2014, 30, 2981–2982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guex, N.; Peitsch, M.; Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophor. 2009, 30, S162–S173. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Zhou, S.; Gu, L.; Gell, D.A.; Mackay, J.P.; Weiss, M.J.; Gow, A.J.; Shi, Y. Structure of oxidized alpha-haemoglobin bound to AHSP reveals a protective mechanism for haem. Nature 2005, 435, 697–701. [Google Scholar] [CrossRef]
- Fermi, G.; Perutz, M.F.; Shaanan, B.; Fourme, R. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J. Mol. Biol. 1984, 175, 159–174. [Google Scholar] [CrossRef]
- Sim, N.-L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Reese, M.G.; Eeckman, F.H.; Kulp, D.; Haussler, D. Improved Splice Site Detection in Genie. J. Comput. Biol. 1997, 4, 311–323. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook; Springer: Totowa, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Puigbò, P.; Bravo, I.G.; Garcia-Vallve, S. CAIcal: A combined set of tools to assess codon usage adaptation. Biol. Direct 2008, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Stothard, P. The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Protein and DNA Sequences. Biotech. 2000, 28, 1102–1104. [Google Scholar] [CrossRef] [Green Version]
- Gruber, A.; Lorenz, R.; Bernhart, S.H.F.; Neuböck, R.; Hofacker, I.L. The Vienna RNA Websuite. Nucleic Acids Res. 2008, 36, W70–W74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sack, J.; Andrews, L.; Magnus, K.; Hanson, J.; Rubin, J.; Love, W. Location of Amino Acid Residues in Human Deoxy Hemoglobin. Hemoglobin 1978, 2, 153–169. [Google Scholar] [CrossRef] [PubMed]
- Domingues-Hamdi, E.; Vasseur, C.; Fournier, J.-B.; Marden, M.C.; Wajcman, H.; Baudin-Creuza, V. Role of α-Globin H Helix in the Building of Tetrameric Human Hemoglobin: Interaction with α-Hemoglobin Stabilizing Protein (AHSP) and Heme Molecule. PLOS ONE 2014, 9, e111395. [Google Scholar] [CrossRef] [PubMed]
- Karamyshev, A.L.; Karamysheva, Z.N. Lost in Translation: Ribosome-Associated mRNA and Protein Quality Controls. Front. Genet. 2018, 9, 431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, K.T.; Szeto, J.-Y.A.; Schaffitzel, C. New insights into no-go, non-stop and nonsense-mediated mRNA decay complexes. Curr. Opin. Struct. Biol. 2020, 65, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Mauro, V.P.; Chappell, S.A. A critical analysis of codon optimization in human therapeutics. Trends Mol. Med. 2014, 20, 604–613. [Google Scholar] [CrossRef] [Green Version]
- Thermann, R.; Neu-Yilik, G.; Deters, A.; Frede, U.; Wehr, K.; Hagemeier, C.; Hentze, M.; Kulozik, A.E. Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J. 1998, 17, 3484–3494. [Google Scholar] [CrossRef]
- Hamanaka, K.; Imagawa, E.; Koshimizu, E.; Miyatake, S.; Tohyama, J.; Yamagata, T.; Miyauchi, A.; Ekhilevitch, N.; Nakamura, F.; Kawashima, T.; et al. De Novo Truncating Variants in the Last Exon of SEMA6B Cause Progressive Myoclonic Epilepsy. Am. J. Hum. Genet. 2020, 106, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Isidor, B.; Lindenbaum, P.; Pichon, O.; Bézieau, S.; Dina, C.; Jacquemont, S.; Martin-Coignard, D.; Thauvin-Robinet, C.; Le Merrer, M.; Mandel, J.L.; et al. Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat. Genet. 2011, 43, 306–308. [Google Scholar] [CrossRef] [PubMed]
- Salter, C.G.; Beijer, D.; Hardy, H.; Barwick, K.E.; Bower, M.; Mademan, I.; De Jonghe, P.; Deconinck, T.; Russell, M.A.; McEntagart, M.M.; et al. Truncating SLC5A7 mutations underlie a spectrum of dominant hereditary motor neuropathies. Neurol. Genet. 2018, 4, e222. [Google Scholar] [CrossRef] [Green Version]
- Popp, M.W.; Maquat, L.E. Organizing Principles of Mammalian Nonsense-Mediated mRNA Decay. Annu. Rev. Genet. 2013, 47, 139–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Sun, X.; Qian, Y.; Maquat, L. Intron function in the nonsense-mediated decay of β-globin mRNA: Indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA 1998, 4, 801–815. [Google Scholar] [CrossRef]
- Pagani, F.; Baralle, F.E. Genomic variants in exons and introns: Identifying the splicing spoilers. Nat. Rev. Genet. 2004, 5, 389–396. [Google Scholar] [CrossRef]
- Oron-Karni, V.; Filon, D.; Shifrin, Y.; Fried, E.; Pogrebijsky, G.; Oppenheim, A.; Rund, D. Diversity of α-globin mutations and clinical presentation of α-thalassemia in Israel. Am. J. Hematol. 2000, 65, 196–203. [Google Scholar] [CrossRef]
- Henderson, S.J.; Timbs, A.T.; McCarthy, J.; Gallienne, A.E.; Proven, M.; Rugless, M.J.; Lopez, H.; Eglinton, J.; Dziedzic, D.; Beardsall, M.; et al. Ten Years of Routine α- and β-Globin Gene Sequencing in UK Hemoglobinopathy Referrals Reveals 60 Novel Mutations. Hemoglobin 2015, 40, 75–84. [Google Scholar] [CrossRef]
- A Liebhaber, S.; Coleman, M.B.; Adams, J.G.; E Cash, F.; Steinberg, M.H. Molecular basis for nondeletion alpha-thalassemia in American blacks. Alpha 2(116GAG----UAG). J. Clin. Investig. 1987, 80, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Préhu, C.; Pissard, S.; Al-Sheikh, M.; Le Niger, C.; Bachir, D.; Galactéros, F.; Wajcman, H. Two French Caucasian Families with Dominant Thalassemia-Like Phenotypes Due to Hyper Unstable Hemoglobin Variants: Hb Sainte Seve [Codon 118 (− T)] and Codon 127 [CAG→TAG (Gln→Stop]). Hemoglobin 2005, 29, 229–233. [Google Scholar] [CrossRef]
- Thein, S.L. Dominant beta thalassaemia: Molecular basis and pathophysiology. Br. J. Haematol. 1992, 80, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Hopmeier, P.; Krugluger, W.; Gu, L.; Smetanina, N.; Huisman, T. A newly discovered frameshift at codons 120-121 (+A) of the beta gene is not associated with a dominant form of beta-thalassemia [letter]. Blood 1996, 87, 5393–5394. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, L.; Tian, M.; Qin, T.; Wu, X. Detection of Hb H disease caused by a novel mutation and -- SEA deletion using capillary electrophoresis. J. Clin. Lab. Anal. 2019, 33, e22949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finlayson, J.; Ghassemifar, R.; Holmes, P.; Grey, D.; Newbound, C.; Pell, N.; Jennens, M.; Macaulay, C.; Greenwood, L.; Beilby, J. Hb Lynwood [α107(G14) (–T) (α2) HBA2:c.323delT)] in Conjunction with the α3.7 Deletion Produces a Moderately Severe α-Thalassemia Phenotype. Hemoglobin 2011, 35, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Eng, B.; Patterson, M.; Walker, L.; Hoppe, C.; Azimi, M.; Lee, H.; Giordano, P.C.; Waye, J.S. Three New α-Thalassemia Point Mutations Ascertained Through Newborn Screening. Hemoglobin 2006, 30, 149–153. [Google Scholar] [CrossRef]
- Saller, E.; Dutly, F.; Frischknecht, H. Two Novel α2 Gene Mutations Causing Altered Amino Acid Sequences Produce a Mild (Hb Kinshasa,HBA2: c.428A > T) and Severe (HBA2: c.342-345insCC) α-Thalassemia Phenotype. Hemoglobin 2015, 39, 144–146. [Google Scholar] [CrossRef]
- Brennan, S.O.; Chan, T.; Duncan, J. Novel α2 Gene Deletion (c.349_359 del GAGTTCACCCC) Identified in Association with the –α3.7 Deletion. Hemoglobin 2011, 36, 93–97. [Google Scholar] [CrossRef]
- Qadah, T.; Finlayson, J.; North, E.; Ghassemifar, R. Molecular Characterization of Hb Hamilton Hill (HBA2: c.388delC), a Novel HBA2 Variant Generating a Premature Termination Codon and Truncated HBA2 Chain. Hemoglobin 2015, 39, 88–94. [Google Scholar] [CrossRef]
- Préhu, C.; Moradkhani, K.; Riou, J.; Bahuau, M.; Launay, P.; Martin, N.; Wajcman, H.; Goossens, M.; Galactéros, F. Chronic hemolytic anemia due to novel -globin chain variants: Critical location of the mutation within the gene sequence for a dominant effect. Haematol. 2009, 94, 1624–1625. [Google Scholar] [CrossRef]
- Viprakasit, V.; Tanphaichitr, V.S.; Veerakul, G.; Chinchang, W.; Petrarat, S.; Pung-Amritt, P.; Higgs, D.R. Co-inheritance of Hb Pak Num Po, a novel α1 gene mutation, and α0 thalassemia associated with transfusion-dependent Hb H disease. Am. J. Hematol. 2004, 75, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Grimholt, R.M.; Fjeld, B.; Selsås, H.; Schwettmann, L.; Klingenberg, O. Hb Aalesund (HBA2: c.400_406delAGCACCG), an Unstable α-Globin Variant Found in a Norwegian Patient Causing Moderate Hemolytic Anemia and Falsely High Hb A1c Using Ion Exchange High Performance Liquid Chromatography. Hemoglobin 2019, 43, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Huisman, T.H.J.; Headlee, M.G.; Wilson, J.B.; Lam, H.; Johnson, S.E.N.; Webber, B.B. HB Wayne, the Frameshift Variant with Extended α Chains Observed in a Caucasian Family from Alabama. Hemoglobin 1984, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
Name | Direction, Sequence | Position from the α1 Cap Site | Application | Used with Primer | Amplicon Length (bp) |
---|---|---|---|---|---|
A For | 5′-TGGAGGGTGGAGACGTCCTG-3′ | –202/–183 | PCR | B Rev | 980 bp |
B Rev | 5′-GGGGGGAGGCCCAAGGGGCAAGAA-3′ | +755/+778 | PCR | ||
C For | 5′-ACAGGCCACCCTCAACCGTCCT-3′ | +183/+204 | RE DNA (cod95) | D Rev | 352 bp |
D Rev | 5′-GCAACCCGCGTGATCCTCTGCCCT-3′ | +511/+534 | RE DNA (cod95) | ||
E For | 5′-GGCAAGAAGGTGGCCGACGC-3′ | +332/+351 | RE cDNA (cod95) | G Rev | 293 bp |
F For | 5’- TGACCCTCTTCTCTGCACAGCTC-3’ | +584/+606 | RE DNA (cod109) | G Rev | |
G Rev | 5’-GAGGCCCAAGGGGCAAGAAGCAT-3’ | +751/+773 | Seq α1; RT-PCR α1; RE DNA and cDNA | 194 bp | |
H For | 5′ -CGCCCTGAGCGACCTGCACGCG-3′ | +400/+421 | RE cDNA (cod109) | G Rev | 230 bp |
Family Relationship | I-1 | I-2 | II-1 | II-2 | II-3 |
---|---|---|---|---|---|
Sex/Age (years) | M/56 | F/54 | F/25 | M/22 | F/21 |
RBC (1012/L) | 4.55 | 5.16 | 4.71 | 5.75 | 4.55 |
Hb (g/dL) | 13.9 | 12.7 | 12.5 | 13.6 | 12.5 |
Ht (L/L) | 44.2 | 41.2 | 38.8 | 43.8 | 38.9 |
MCV (fL) | 97 | 80 | 82 | 76 | 85 |
MCH (pg) | 30.5 | 24.6 | 26.6 | 23.6 | 27.5 |
MCHC (%) | 31.4 | 30.8 | 32.3 | 31 | 32.2 |
Serum iron (µg/dL) | 72 | 155 | 80 | 96 | 62 |
Ferritin (ng/mL) | 78 | 315 | 43 | 154 | 10 |
Transferrin (mg/dL) | 370 | 303 | 232 | 276 | 324 |
Bil tot (mg/dL) | 0.38 | 0.18 | 0.14 | 0.22 | 0.15 |
Ret (%) | nor | nor | nor | nor | nor |
GOR | − − − | + + − | − − − | − − − | − − − |
Hb A2 (%) | 2.7 | 2.4 | 2.5 | 2.3 | 2.7 |
Hb F (%) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
α1 cod95 (−C) carrier | no | yes | no | yes | no |
Family | A | B | C | D | E | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | I-1 | I-2 | II-1 | II-2 | I-1 | II-1 | II-2 * | II-2 * | II-3 | I-1 | I-2 | II-1 | II-1 | II-2 | I-1 |
Sex/Age (yrs) | M/38 | F/29 | F/09 | M/05 | M/69 | M/39 | F/35 | F/35 | M/32 | M/56 | F/50 | M/31 | M/30 | F/23 | F/21 |
RBC (1012/L) | 5.1 | 5.10 | 5.30 | 5.20 | 4.77 | 4.76 | 4.66 | 5.13 | 5.07 | 5.65 | 5.07 | 6.30 | 6.32 | 5.63 | 4.62 |
Hb (g/dL) | 16.1 | 13.2 | 13.4 | 13.1 | 14.6 | 12.9 | 12.1 | 13.4 | 15.6 | 15.3 | 15 | 16.4 | 15.1 | 13.4 | 12.3 |
Ht (L/L) | 45.4 | 39.1 | 41.0 | 38.4 | 40.5 | 37.4 | 37.0 | 40.6 | 44 | 46.2 | 44.9 | 49.5 | 47.3 | 41.2 | 34.6 |
MCV (fL) | 89.3 | 76.3 | 77.7 | 74.2 | 84.9 | 78.6 | 79.4 | 79.1 | 86.8 | 81.8 | 88.5 | 78.6 | 74.8 | 73.2 | 75.0 |
MCH (pg) | 31.7 | 25.8 | 25.4 | 25.3 | 30.6 | 27.1 | 26.0 | 26.1 | 30.8 | 27.1 | 29.6 | 26.0 | 23.9 | 23.8 | 26.6 |
MCHC (%) | 35.5 | 33.8 | 32.7 | 34.1 | 36 | 34.5 | 32.7 | 33.0 | 35.5 | 33.1 | 33.4 | 33.1 | 31.9 | 32.5 | 35.6 |
Heinz body | nt | nt | nt | nt | nt | nt | nt | absent | nt | nt | nt | nt | nt | nt | nt |
Erytho morph | nt | nt | nt | nt | nt | nt | nt | nt | nt | nt | nt | nt | nt | nt | A;P;H |
Pink test (%) | nt | nt | nt | nt | nt | nt | nt | 3.0 | nt | nt | nt | nt | nt | nt | nt |
Transferrin (mg/dL) | nt | nt | nt | nt | nt | nt | nt | 262 | nt | nt | nt | nt | nt | nt | nt |
Bilir tot (mg/dL) | nt | nt | nt | nt | nt | nt | nt | 0.5 | nt | nt | nt | nt | nt | nt | nt |
Bilir dir (mg/dL) | nt | nt | nt | nt | nt | nt | nt | 0.14 | nt | nt | nt | nt | nt | nt | nt |
Hapt (mg %) | nt | nt | nt | nt | nt | nt | nt | 175 | nt | nt | nt | nt | nt | nt | nt |
LDH (U/L) | nt | nt | nt | nt | nt | nt | nt | 279 | nt | nt | nt | nt | nt | nt | nt |
Ret (%) | nt | nt | nt | nt | nt | nt | nt | 1.04 | nt | nt | nt | nt | nt | nt | nt |
ZPP (µg/dL) | nt | nt | nt | nt | nt | nt | nt | nt | nt | nt | nt | nt | nt | nt | 34 |
Ferritin (ng/mL) | 131 | 72 | 56 | 24 | 48 | 102 | 127 | nt | 0 | 113 | 17 | 78 | 67 | 19 | 0 |
Hb A2 (%) | 2.9 | 2.9 | 3.1 | 2.9 | 2.9 | 2.4 | 2.3 | nt | 3 | 3.1 | 2.7 | 2.8 | 2.7 | 2.7 | 2.7 |
Hb F (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | nt | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.3 |
α1 cod109 (−C)carrier | no | yes | no | yes | no | yes | yes | yes | no | yes | no | yes | yes | yes | yes |
Name Current Name HGVS Name | Variant Chain | Stop at Cod | Var % | mRNA % | Genotype–Phenotype Relationship | Abnormal Helices | Ref. |
---|---|---|---|---|---|---|---|
α2 cod90-93 (−8bp); HBA2: c.272_279 delAGCTTCGG | Fs from cod91 and extension of the α-chain from 141 to 170 residues. | 170 | absent | nt | -SEA/-αCD90-93: HbH disease | FG3–HC3 + 29 aa | [48] |
Hb Campania; α1 cod95 (G2) (−C); HBA1: c.286delC or HBA1: c.287delC | α(95)R-S-T-S-S-S-(102)COOH | 102 | absent | 34 | Heter: α-thal | G2–G8 | p.a. |
Hb Lynwood; α2 cod107 (G14) (−T); HBA2: c.323delT | α(107)G-P-W-P-P-T-S-P-P-S-S-P-L-R-C-T-P-P-W-T-S-S-W-L-L-(132)COOH | 133 | absent | nt | -α3.7/Hb Lynwood: severe α-thal | G14–H15 | [49] |
Hb Sciacca; α1 cod109 (G16) (−C); HBA1: c.327delC or HBA1: c.328delC | α(109)W-P-P-T-S-P-P-S-S-P-L-R-C-T-P-P-W-T-S-S-W-L-L-(132)COOH | 133 | absent | 15 | Heter: α-thal | G16–H15 | [2,8,9] p.a. |
α1 cod111-115 (−13bp); HBA1: c.333_345delCGCCCACCTCCCC | α(110)A-P-S-S-P-L-R-C-T-P-P-L-R-C-T-P-P-W-T-S-P-W-T-S-S-W-L-L-(128)COOH | 128(133) | absent | nt | Heter: α-thal | G17–H11 | [43] |
α2 cod114 (GH2) (−C); HBA2: c.342delC or HBA2: c.345delC | α(114)P-P-S-S-P-L-R-C-T-P-P-W-T-S-S-W-L-L-(132)COOH | 133 | absent | nt | -α3.7/α2 cod 113/114–C: severe α-thal, 15% Hb Bart’s | GH2–H15 | [50] |
α2 cod115 (GH3) (+CC); HBA2: c.343_344insCC or HBA2: c.342-345insCC or HBA2: c.344_345dup | α(114)P-P-P-S-S-P-L-R-C-T-P-P-W-T-S-S-W-L-L-(133)COOH | 134(133) | absent | nt | Heter: dominant α-thal | GH3–H16 | [51] |
α2 cod116 (GH4) GAG>TAG Glu>Stop*; HBA2: c.349G>T | α116(Stop) | 116 | absent | normal | Heter: α-thal | GH4 | [44] |
α2 cod116-119 (−11bp); HBA2: c.349_359delGAGTTCACCCC | Fs from cod 115 and extension of the α-chain from 141 to 166 residues. | 166 | absent | nt | -α3.7/α2 cod116-119 del: Marked microcytosis, Hb H inclusion | GH3–HC3 | [52] |
α2 cod 127 (H10) GAG>TAG Lys>Stop*; HBA2: c.382A>T | α127(stop) | 127 | absent | nt | Heter: α-thal | H10 | [45] |
Hb Hamilton Hill; α2 cod129 (H12) (−C); HBA2: c.388delC | α(129)W, L, L (132)COOH | 133 | absent | nt; 75 in vitro | Heter: α-thal | H12–H14 | [53] |
Hb Fez; α1 cod131 (H14) (−T); HBA1: c.396delT | α(131)S-(132)COOH | 133 | absent | nt | Heter: CHA Very unstable | H14 | [54] |
Hb Pak Num Po; α1 cod132 (+T); HBA1: c.396_397insT | α(132)C-E-H-R-A-D-L-Q-I-P-L-S-W-S-L-G-G-H-A-S-C-P-L-G-L-P-P-A-P-P-P-L-P-A-P-V-P-P-W-S-L-N-K-(175)V-COOH | 175 | absent | nt | Heter: α-thal;−SEA/Hb Pak Num Po: tran. dep. HbH | H15–HC3+ 34 aa | [55] |
Hb Aalesund; α2 cod133-135 (−7bp); HBA2: c.400_406delAGCACCG | α(133)C-(134)COOH | 134(137) | ~3 Hb A1c | nt | Heter: balanced hemolytic anemia | H16 | [56] |
Hb Senlis; α1 cod134 (H17) (−C); HBA1: c.404delC | α(134)T-C-(136)COOH | 137 | absent | nt | Heter: CHA, very unstable | H17–H18 | [54] |
Hb Wayne; α2 or α1 cod139 (HC1) (−A); HBA2: c.420delA(or HBA1) | α(139)N-T-V-K-L-E-P-(146)R-COOH | 147 | 12-16 | nt | Heter: normal, but absence of a Bohr effect, increased oxygen affinity | HC1–HC3+ 5 aa | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardiero, G.; Musollino, G.; Prezioso, R.; Lacerra, G. mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)]. Biomedicines 2021, 9, 1390. https://doi.org/10.3390/biomedicines9101390
Cardiero G, Musollino G, Prezioso R, Lacerra G. mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)]. Biomedicines. 2021; 9(10):1390. https://doi.org/10.3390/biomedicines9101390
Chicago/Turabian StyleCardiero, Giovanna, Gennaro Musollino, Romeo Prezioso, and Giuseppina Lacerra. 2021. "mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)]" Biomedicines 9, no. 10: 1390. https://doi.org/10.3390/biomedicines9101390
APA StyleCardiero, G., Musollino, G., Prezioso, R., & Lacerra, G. (2021). mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)]. Biomedicines, 9(10), 1390. https://doi.org/10.3390/biomedicines9101390