Overview of Acute Ischemic Stroke Evaluation and Management
Abstract
:1. Introduction
2. Stroke Classification
3. Pathophysiological Mechanisms of Ischemic Stroke
4. Diagnosis and Acute Management
5. Reperfusion Therapy
5.1. Intravenous Recombinant Tissue Plasminogen Activator
- 1.
- Post-IV TPA Monitoring
- 2.
- Potential Complications of IV TPA
- 3.
- Bridging Therapy
5.2. Endovascular Thrombectomy
6. Post-Stroke Antithrombotic Therapy
6.1. Antiplatelet Therapy
6.2. Anticoagulant Therapy
7. Post-Acute Stroke Hospital Management
8. Stroke Rehabilitation
9. Special Scenarios
9.1. Sickle Cell Disease
9.2. Malignant Cerebral Infarction
9.3. Posterior Circulation Large Vessel Occlusion
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Musuka, T.D.; Wilton, S.B.; Traboulsi, M.; Hill, M.D. Diagnosis and management of acute ischemic stroke: Speed is critical. Can. Med. Assoc. J. 2015, 187, 887–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carandang, R.; Seshadri, S.; Beiser, A.; Kelly-Hayes, M.; Kase, C.S.; Kannel, W.B.; Wolf, P.A. Trends in Incidence, Lifetime Risk, Severity, and 30-Day Mortality of Stroke Over the Past 50 Years. JAMA 2006, 296, 2939–2946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly-Hayes, M.; Beiser, A.; Kase, C.S.; Scaramucci, A.; D’Agostino, R.B.; Wolf, P.A. The influence of gender and age on disability following ischemic stroke: The Framingham study. J. Stroke Cerebrovasc. Dis. 2003, 12, 119–126. [Google Scholar] [CrossRef]
- Feyissa, A.M.; Hasan, T.F.; Meschia, J.F. Stroke-related epilepsy. Eur. J. Neurol. 2019, 26, 18-e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.-H.; Ovbiagele, B. Optimal combination secondary prevention drug treatment and stroke outcomes. Neurology 2015, 84, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarenco, P.; Lavallée, P.C.; Labreuche, J.; Albers, G.W.; Bornstein, N.M.; Canhão, P.; Caplan, L.R.; Donnan, G.A.; Ferro, J.; Hennerici, M.G.; et al. One-Year Risk of Stroke after Transient Ischemic Attack or Minor Stroke. N. Engl. J. Med. 2016, 374, 1533–1542. [Google Scholar] [CrossRef]
- Balami, J.S.; Hadley, G.; Sutherland, B.A.; Karbalai, H.; Buchan, A.M. The exact science of stroke thrombolysis and the quiet art of patient selection. Brain 2013, 136, 3528–3553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, B.C.V.; Majoie, C.B.L.M.; Albers, G.W.; Menon, B.K.; Yassi, N.; Sharma, G.; van Zwam, W.H.; van Oostenbrugge, R.J.; Demchuk, A.M.; Guillemin, F.; et al. Penumbral imaging and functional outcome in patients with anterior circulation ischaemic stroke treated with endovascular thrombectomy versus medical therapy: A meta-analysis of individual patient-level data. Lancet Neurol. 2019, 18, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ay, H.; Benner, T.; Arsava, E.M.; Furie, K.L.; Singhal, A.B.; Jensen, M.B.; Ayata, C.; Towfighi, A.; Smith, E.E.; Chong, J.Y.; et al. A computerized algorithm for etiologic classification of ischemic stroke: The Causative Classification of Stroke System. Stroke 2007, 38, 2979–2984. [Google Scholar] [CrossRef] [Green Version]
- Arsava, E.M.; Ballabio, E.; Benner, T.; Cole, J.W.; Delgado-Martinez, M.P.; Dichgans, M.; Fazekas, F.; Furie, K.L.; Illoh, K.; Jood, K.; et al. The Causative Classification of Stroke system: An international reliability and optimization study. Neurology 2010, 75, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.M. The arterial lesions underlying lacunes. Acta Neuropathol. 1969, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.M. Lacunar strokes and infarcts: A review. Neurology 1982, 32, 871. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.G.; Diener, H.-C.; Coutts, S.B.; Easton, J.D.; Granger, C.B.; O’Donnell, M.; Sacco, R.L.; Connolly, S.J. Embolic strokes of undetermined source: The case for a new clinical construct. Lancet Neurol. 2014, 13, 429–438. [Google Scholar] [CrossRef]
- Saver, J.L. Time is brain--quantified. Stroke 2006, 37, 263–266. [Google Scholar] [CrossRef] [Green Version]
- Hasan, T.F.; Rabinstein, A.A.; Middlebrooks, E.; Haranhalli, N.; Silliman, S.L.; Meschia, J.F.; Tawk, R.G. Diagnosis and Management of Acute Ischemic Stroke. Mayo Clin. Proc. 2018, 93, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Perez de la Ossa, N.; Carrera, D.; Gorchs, M.; Querol, M.; Millan, M.; Gomis, M.; Dorado, L.; Lopez-Cancio, E.; Hernandez-Perez, M.; Chicharro, V.; et al. Design and validation of a prehospital stroke scale to predict large arterial occlusion: The rapid arterial occlusion evaluation scale. Stroke 2014, 45, 87–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMullan, J.T.; Katz, B.; Broderick, J.; Schmit, P.; Sucharew, H.; Adeoye, O. Prospective Prehospital Evaluation of the Cincinnati Stroke Triage Assessment Tool. Prehospital Emerg. Care 2017, 21, 481–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidwell, C.S.; Starkman, S.; Eckstein, M.; Weems, K.; Saver, J.L. Identifying stroke in the field. Prospective validation of the Los Angeles prehospital stroke screen (LAPSS). Stroke 2000, 31, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brott, T.; Adams, H.P.; Olinger, C.P.; Marler, J.R.; Barsan, W.G.; Biller, J.; Spilker, J.; Holleran, R.; Eberle, R.; Hertzberg, V. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989, 20, 864–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.B.; Peterson, E.D.; Smith, E.E.; Saver, J.L.; Liang, L.; Xian, Y.; Olson, D.M.; Shah, B.R.; Hernandez, A.F.; Schwamm, L.H.; et al. Emergency Medical Service Hospital Prenotification Is Associated With Improved Evaluation and Treatment of Acute Ischemic Stroke. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 514–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Parikh, N.S.; Jiao, B.; Willey, J.Z.; Boehme, A.K.; Elkind, M.S.V. Decision Analysis Model for Prehospital Triage of Patients With Acute Stroke. Stroke 2019, 50, 970–977. [Google Scholar] [CrossRef]
- Gerschenfeld, G.; Muresan, I.-P.; Blanc, R.; Obadia, M.; Abrivard, M.; Piotin, M.; Alamowitch, S. Two Paradigms for Endovascular Thrombectomy After Intravenous Thrombolysis for Acute Ischemic Stroke. JAMA Neurol. 2017, 74, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, H.; Oka, F.; Oku, T.; Shinoyama, M.; Suehiro, E.; Sugimoto, K.; Suzuki, M. Safety and Time Course of Drip-and-Ship in Treatment of Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2017, 26, 2477–2481. [Google Scholar] [CrossRef]
- Froehler, M.T.; Saver, J.L.; Zaidat, O.O.; Jahan, R.; Aziz-Sultan, M.A.; Klucznik, R.P.; Haussen, D.C.; Hellinger, F.R.; Yavagal, D.R.; Yao, T.L.; et al. Interhospital Transfer Before Thrombectomy Is Associated with Delayed Treatment and Worse Outcome in the STRATIS Registry (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke). Circulation 2017, 136, 2311–2321. [Google Scholar] [CrossRef] [PubMed]
- Fassbender, K.; Grotta, J.C.; Walter, S.; Grunwald, I.Q.; Ragoschke-Schumm, A.; Saver, J.L. Mobile stroke units for prehospital thrombolysis, triage, and beyond: Benefits and challenges. Lancet Neurol. 2017, 16, 227–237. [Google Scholar] [CrossRef]
- Walter, S.; Kostopoulos, P.; Haass, A.; Keller, I.; Lesmeister, M.; Schlechtriemen, T.; Roth, C.; Papanagiotou, P.; Grunwald, I.; Schumacher, H.; et al. Diagnosis and treatment of patients with stroke in a mobile stroke unit versus in hospital: A randomised controlled trial. Lancet Neurol. 2012, 11, 397–404. [Google Scholar] [CrossRef]
- Ebinger, M.; Winter, B.; Wendt, M.; Weber, J.E.; Waldschmidt, C.; Rozanski, M.; Kunz, A.; Koch, P.; Kellner, A.; Gierhake, M.; et al. Effect of the use of ambulance-based thrombolysis on time to thrombolysis in acute ischemic stroke: A randomized clinical trial. JAMA 2014, 311, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Ospel, J.M.; Southerland, A.M.; Wira, C.; Amin-Hanjani, S.; Fraser, J.F.; Panagos, P. AHA/ASA Stroke Council Science Subcommittees: Emergency Neurovascular Care (ENCC), the Telestroke and the Neurovascular Intervention Committees. Prehospital Triage of Acute Stroke Patients during the COVID-19 Pandemic. Stroke 2020, 51, 2263–2267. [Google Scholar] [CrossRef]
- Audebert, H.J.; Boy, S.; Jankovits, R.; Pilz, P.; Klucken, J.; Fehm, N.P.; Schenkel, J. Is Mobile Teleconsulting Equivalent to Hospital-Based Telestroke Services? Stroke 2008, 39, 3427–3430. [Google Scholar] [CrossRef]
- Audebert, H.J.; Kukla, C.; Vatankhah, B.; Gotzler, B.; Schenkel, J.; Hofer, S.; Furst, A.; Haberl, R.L. Comparison of tissue plasminogen activator administration management between Telestroke Network hospitals and academic stroke centers: The Telemedical Pilot Project for Integrative Stroke Care in Bavaria/Germany. Stroke 2006, 37, 1822–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwamm, L.H.; Holloway, R.G.; Amarenco, P.; Audebert, H.J.; Bakas, T.; Chumbler, N.R.; Handschu, R.; Jauch, E.C.; KnightIV, W.A.; Levine, S.R.; et al. A review of the evidence for the use of telemedicine within stroke systems of care: A scientific statement from the American Heart Association/American Stroke Association. Stroke 2009, 40, 2616–2634. [Google Scholar] [CrossRef]
- Baratloo, A.; Rahimpour, L.; Abushouk, A.I.; Safari, S.; Lee, C.W.; Abdalvand, A. Effects of Telestroke on Thrombolysis Times and Outcomes: A Meta-analysis. Prehospital Emerg. Care 2018, 22, 472–484. [Google Scholar] [CrossRef]
- Müller-Barna, P.; Schwamm, L.; Haberl, R.L. Telestroke increases use of acute stroke therapy. Curr. Opin. Neurol. 2012, 25, 5–10. [Google Scholar] [CrossRef]
- LaMonte, M.P.; Bahouth, M.N.; Xiao, Y.; Hu, P.; Baquet, C.R.; MacKenzie, C.F. Outcomes from a Comprehensive Stroke Telemedicine Program. Telemed. e-Health 2008, 14, 339–344. [Google Scholar] [CrossRef]
- Casaubon, L.K.; Boulanger, J.-M.; Blacquiere, D.; Boucher, S.; Brown, K.; Goddard, T.; Gordon, J.; Horton, M.; LaLonde, J.; Larivière, C.; et al. Canadian Stroke Best Practice Recommendations: Hyperacute Stroke Care Guidelines, Update 2015. Int. J. Stroke 2015, 10, 924–940. [Google Scholar] [CrossRef]
- Coutts, S.B.; Wein, T.H.; Lindsay, M.P.; Buck, B.; Cote, R.; Ellis, P.; Foley, N.; Hill, M.D.; Jaspers, S.; Jin, A.Y.; et al. Canadian Stroke Best Practice Recommendations: Secondary Prevention of Stroke Guidelines, Update 2014. Int. J. Stroke 2014, 10, 282–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar]
- Barber, A.P.; Hill, M.; Eliasziw, M.; Demchuk, A.M.; Pexman, J.H.W.; Hudon, M.E.; Tomanek, A.; Frayne, R.; Buchan, A. Imaging of the brain in acute ischaemic stroke: Comparison of computed tomography and magnetic resonance diffusion-weighted imaging. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Kidwell, C.S.; Alger, J.R.; Di Salle, F.; Starkman, S.; Villablanca, P.; Bentson, J.; Saver, J.L. Diffusion MRI in patients with transient ischemic attacks. Stroke 1999, 30, 1174–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidwell, C.S.; Chalela, J.A.; Saver, J.; Starkman, S.; Hill, M.; Demchuk, A.M.; Butman, J.; Patronas, N.; Alger, J.R.; Latour, L.L.; et al. Comparison of MRI and CT for Detection of Acute Intracerebral Hemorrhage. JAMA 2004, 292, 1823–1830. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, J.M.; Mielke, O. Early Signs of Brain Infarction at CT: Observer Reliability and Outcome after Thrombolytic Treatment—Systematic Review. Radiology 2005, 235, 444–453. [Google Scholar] [CrossRef]
- Barber, A.P.; Demchuk, A.M.; Zhang, J.; Buchan, A.M. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet 2000, 355, 1670–1674. [Google Scholar] [CrossRef]
- Coutts, S.B.; Modi, J.; Patel, S.K.; Demchuk, A.M.; Goyal, M.; Hill, M.D. CT/CT angiography and MRI findings predict recurrent stroke after transient ischemic attack and minor stroke: Results of the prospective CATCH study. Stroke 2012, 43, 1013–1017. [Google Scholar] [CrossRef]
- Demchuk, A.M.; Dowlatshahi, D.; Rodriguez-Luna, D.; A Molina, C.; Blas, Y.S.; Dzialowski, I.; Kobayashi, A.; Boulanger, J.-M.; Lum, C.; Gubitz, G.; et al. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): A prospective observational study. Lancet Neurol. 2012, 11, 307–314. [Google Scholar] [CrossRef]
- Haranhalli, N.; Mbabuike, N.; Grewal, S.S.; Hasan, T.F.; Heckman, M.G.; Freeman, W.D.; Gupta, V.; Vibhute, P.; Brown, B.L.; Miller, D.A.; et al. Topographic correlation of infarct area on CT perfusion with functional outcome in acute ischemic stroke. J. Neurosurg. 2019, 132, 33–41. [Google Scholar] [CrossRef]
- Merino, J.G.; Luby, M.; Benson, R.T.; Davis, L.A.; Hsia, A.W.; Latour, L.L.; Lynch, J.K.; Warach, S. Predictors of Acute Stroke Mimics in 8187 Patients Referred to a Stroke Service. J. Stroke Cerebrovasc. Dis. 2013, 22, e397–e403. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.F.; Hubert, G.J.; Switzer, J.A.; Majersik, J.J.; Backhaus, R.; Shepard, L.W.; Vedala, K.; Schwamm, L.H. Validating the TeleStroke Mimic Score: A Prediction Rule for Identifying Stroke Mimics Evaluated Over Telestroke Networks. Stroke 2018, 49, 688–692. [Google Scholar] [CrossRef]
- McClelland, G.; Rodgers, H.; Flynn, D.; Price, C. The frequency, characteristics and aetiology of stroke mimic presentations: A narrative review. Eur. J. Emerg. Med. 2019, 26, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Liberman, A.L.; Prabhakaran, S. Stroke Chameleons and Stroke Mimics in the Emergency Department. Curr. Neurol. Neurosci. Rep. 2017, 17, 15. [Google Scholar] [CrossRef]
- National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 1995, 333, 1581–1587. [Google Scholar] [CrossRef] [PubMed]
- Khatri, P.; Kleindorfer, D.O.; Yeatts, S.D.; Saver, J.L.; Levine, S.R.; Lyden, P.D.; Moomaw, C.J.; Palesch, Y.Y.; Jauch, E.C.; Broderick, J.P. Strokes with minor symptoms: An exploratory analysis of the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator trials. Stroke 2010, 41, 2581–2586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarraj, A.; Hassan, A.; Savitz, S.I.; Grotta, J.C.; Cai, C.; Parsha, K.; Farrell, C.M.; Imam, B.; Sitton, C.W.; Reddy, S.T.; et al. Endovascular Thrombectomy for Mild Strokes: How Low Should We Go? Stroke 2018, 49, 2398–2405. [Google Scholar] [CrossRef] [PubMed]
- Hacke, W.; Kaste, M.; Bluhmki, E.; Brozman, M.; Dávalos, A.; Guidetti, D.; Larrue, V.; Lees, K.R.; Medeghri, Z.; Machnig, T.; et al. Thrombolysis with Alteplase 3 to 4.5 Hours after Acute Ischemic Stroke. N. Engl. J. Med. 2008, 359, 1317–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lees, K.R.; Bluhmki, E.; von Kummer, R.; Brott, T.G.; Toni, D.; Grotta, J.C.; Albers, G.W.; Kaste, M.; Marler, J.R.; A Hamilton, S.; et al. Time to treatment with intravenous alteplase and outcome in stroke: An updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 2010, 375, 1695–1703. [Google Scholar] [CrossRef]
- Saver, J.L.; Levine, S.R. Alteplase for ischaemic stroke—much sooner is much better. Lancet 2010, 375, 1667–1668. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, D.; Zhao, X.; Ma, R.; Guo, X.; Wang, C.; Liu, L.; Zhao, W.; Wang, Y. Hospital resources for urokinase/recombinant tissue-type plasminogen activator therapy for acute stroke in Beijing. Surg. Neurol. 2009, 72, S2–S7. [Google Scholar] [CrossRef]
- Adams, H.P., Jr.; del Zoppo, G.; Alberts, M.J.; Bhatt, D.L.; Brass, L.; Furlan, A.; Grubb, R.L.; Higashida, R.T.; Jauch, E.C.; Kidwell, C.; et al. Guidelines for the early management of adults with ischemic stroke: A guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Circulation 2007, 115, e478–e534. [Google Scholar]
- Reeves, M.; Bhatt, A.; Jajou, P.; Brown, M.; Lisabeth, L. Sex differences in the use of intravenous rt-PA thrombolysis treatment for acute ischemic stroke: A meta-analysis. Stroke 2009, 40, 1743–1749. [Google Scholar] [CrossRef]
- Strong, B.; Lisabeth, L.D.; Reeves, M. Sex differences in IV thrombolysis treatment for acute ischemic stroke: A systematic review and meta-analysis. Neurology 2020, 95, e11–e22. [Google Scholar] [CrossRef]
- Kleindorfer, D.; Kissela, B.; Schneider, A.; Woo, D.; Khoury, J.; Miller, R.; Alwell, K.; Gebel, J.; Szaflarski, J.; Pancioli, A.; et al. Eligibility for recombinant tissue plasminogen activator in acute ischemic stroke: A population-based study. Stroke 2004, 35, e27–e29. [Google Scholar] [CrossRef] [Green Version]
- Tong, D.; Reeves, M.J.; Hernandez, A.F.; Zhao, X.; Olson, D.M.; Fonarow, G.C.; Schwamm, L.H.; Smith, E.E. Times from symptom onset to hospital arrival in the Get with the Guidelines—Stroke Program 2002 to 2009: Temporal trends and implications. Stroke 2012, 43, 1912–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacke, W.; Kaste, M.; Fieschi, C.; von Kummer, R.; Davalos, A.; Meier, D.; Larrue, V.; Bluhmki, E.; Davis, S.; Donnan, G.; et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Lancet 1998, 352, 1245–1251. [Google Scholar] [CrossRef]
- Emberson, J.; Lees, K.R.; Lyden, P.; Blackwell, L.; Albers, G.; Bluhmki, E.; Brott, T.; Cohen, G.; Davis, S.; Donnan, G.; et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: A meta-analysis of individual patient data from randomised trials. Lancet 2014, 384, 1929–1935. [Google Scholar] [CrossRef] [Green Version]
- The ATLANTIS, ECASS, and NINDS rt-PA Study Group Investigators. Association of outcome with early stroke treatment: Pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet 2004, 363, 768–774. [Google Scholar] [CrossRef]
- Thomalla, G.; Simonsen, C.Z.; Boutitie, F.; Andersen, G.; Berthezene, Y.; Cheng, B.; Cheripelli, B.; Cho, T.-H.; Fazekas, F.; Fiehler, J.; et al. MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset. N. Engl. J. Med. 2018, 379, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsivgoulis, G.; Katsanos, A.H.; Mavridis, D.; Gdovinova, Z.; Karliński, M.; MacLeod, M.J.; Strbian, D.; Ahmed, N. Intravenous Thrombolysis for Ischemic Stroke Patients on Dual Antiplatelets. Ann. Neurol. 2018, 84, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J. Acute Ischemic Stroke. N. Engl. J. Med. 2020, 383, 252–260. [Google Scholar] [CrossRef]
- Kheiri, B.; Osman, M.; Abdalla, A.; Haykal, T.; Ahmed, S.; Hassan, M.; Bachuwa, G.; Al Qasmi, M.; Bhatt, D.L. Tenecteplase versus alteplase for management of acute ischemic stroke: A pairwise and network meta-analysis of randomized clinical trials. J. Thromb. Thrombolysis 2018, 46, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Tenecteplase in Stroke Patients between 4.5 and 24 Hours (TIMELESS). 2018. Available online: https://clinicaltrials.gov/ct2/show/NCT03785678 (accessed on 20 November 2020).
- Anderson, C.S.; Huang, Y.; Lindley, R.I.; Chen, X.; Arima, H.; Chen, G.; Li, Q.; Billot, L.; Delcourt, C.; Bath, P.M.; et al. Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): An international, randomised, open-label, blinded-endpoint, phase 3 trial. Lancet 2019, 393, 877–888. [Google Scholar] [CrossRef] [Green Version]
- Anadani, M.; Arthur, A.S.; Tsivgoulis, G.; Simpson, K.N.; Alawieh, A.; Orabi, Y.; Goyal, N.; Alexandrov, A.V.; Maier, I.L.; Psychogios, M.; et al. Blood Pressure Goals and Clinical Outcomes after Successful Endovascular Therapy: A Multicenter Study. Ann. Neurol. 2020, 87, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, S.; Eisenberger, A.; Willey, J.Z. Symptomatic intracerebral hemorrhage in acute ischemic stroke after thrombolysis with intravenous recombinant tissue plasminogen activator: A review of natural history and treatment. JAMA Neurol. 2014, 71, 1181–1185. [Google Scholar] [CrossRef]
- Yaghi, S.; Boehme, A.K.; Dibu, J.; Leon Guerrero, C.R.; Ali, S.; Martin-Schild, S.; Sands, K.A.; Reza Noorian, A.; Blum, A.; Chaudhary, S.; et al. Treatment and Outcome of Thrombolysis-Related Hemorrhage: A Multicenter Retrospective Study. JAMA Neurol. 2015, 72, 1451–1457. [Google Scholar] [CrossRef] [Green Version]
- French, K.F.; White, J.; Hoesch, R.E. Treatment of Intracerebral Hemorrhage with Tranexamic Acid after Thrombolysis with Tissue Plasminogen Activator. Neurocritical Care 2012, 17, 107–111. [Google Scholar] [CrossRef]
- Yaghi, S.; Willey, J.Z.; Cucchiara, B.; Goldstein, J.N.; Gonzales, N.R.; Khatri, P.; Kim, L.J.; Mayer, S.A.; Sheth, K.N.; Schwamm, L.H. Treatment and Outcome of Hemorrhagic Transformation After Intravenous Alteplase in Acute Ischemic Stroke: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2017, 48, e343–e361. [Google Scholar] [CrossRef]
- Hill, M.D.; Buchan, A.M. Canadian Alteplase for Stroke Effectiveness Study I. Thrombolysis for acute ischemic stroke: Results of the Canadian Alteplase for Stroke Effectiveness Study. Can. Med. Assoc. J. 2005, 172, 1307–1312. [Google Scholar] [CrossRef] [Green Version]
- Hurford, R.; Rezvani, S.; Kreimei, M.; Herbert, A.; Vail, A.; Parry-Jones, A.R.; Douglass, C.; Molloy, J.; Alachkar, H.; Tyrrell, P.J.; et al. Incidence, predictors and clinical characteristics of orolingual angio-oedema complicating thrombolysis with tissue plasminogen activator for ischaemic stroke. J. Neurol. Neurosurg. Psychiatry 2015, 86, 520–523. [Google Scholar] [CrossRef]
- Myslimi, F.; Caparros, F.; Dequatre-Ponchelle, N.; Moulin, S.; Gautier, S.; Girardie, P.; Cordonnier, C.; Bordet, R.; Leys, D. Orolingual Angioedema During or After Thrombolysis for Cerebral Ischemia. Stroke 2016, 47, 1825–1830. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.D.; Lye, T.; Moss, H.; Barber, P.A.; Demchuk, A.M.; Newcommon, N.J.; Green, T.L.; Kenney, C.; Cole-Haskayne, A.; Buchan, A.M. Hemi-orolingual angioedema and ACE inhibition after alteplase treatment of stroke. Neurology 2003, 60, 1525–1527. [Google Scholar] [CrossRef] [Green Version]
- Chodirker, W.B. Reactions to alteplase in patients with acute thrombotic stroke. Can. Med Assoc. J. 2000, 163, 387–389. [Google Scholar]
- Riedel, C.H.; Zimmermann, P.; Jensen-Kondering, U.; Stingele, R.; Deuschl, G.; Jansen, O. The importance of size: Successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 2011, 42, 1775–1777. [Google Scholar] [CrossRef]
- Alexandrov, A.V.; Grotta, J.C. Arterial reocclusion in stroke patients treated with intravenous tissue plasminogen activator. Neurolology 2002, 59, 862–867. [Google Scholar] [CrossRef]
- Ahmed, N.; Mazya, M.; Nunes, A.P.; Moreira, T.; Ollikainen, J.P.; Escudero-Martínez, I.; Bigliardi, G.; Dorado, L.; Dávalos, A.; Egido, J.A.; et al. Safety and Outcomes of Thrombectomy in Ischemic Stroke With vs Without IV Thrombolysis. Neurology 2021, 97, e765–e776. [Google Scholar] [CrossRef] [PubMed]
- Katsanos, A.H.; Turc, G.; Psychogios, M.; Kaesmacher, J.; Palaiodimou, L.; Stefanou, M.I.; Magoufis, G.; Shoamanesh, A.; Themistocleous, M.; Sacco, S.; et al. Utility of Intravenous Alteplase Prior to Endovascular Stroke Treatment: A Systematic Review and Meta-analysis of RCTs. Neurology 2021, 97, e777–e784. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.S.; Sung, G.; Starkman, S.; Saver, J.L.; Kidwell, C.S.; Gobin, Y.P.; Lutsep, H.L.; Nesbit, G.M.; Grobelny, T.; Rymer, M.M.; et al. Safety and efficacy of mechanical embolectomy in acute ischemic stroke: Results of the MERCI trial. Stroke 2005, 36, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.S.; Sung, G.; Saver, J.; Budzik, R.; Duckwiler, G.; Liebeskind, D.S.; Lutsep, H.L.; Rymer, M.M.; Higashida, R.T.; Starkman, S.; et al. Mechanical thrombectomy for acute ischemic stroke: Final results of the Multi MERCI trial. Stroke 2008, 39, 1205–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccone, A.; Valvassori, L.; Nichelatti, M.; Sgoifo, A.; Ponzio, M.; Sterzi, R.; Boccardi, E. Endovascular treatment for acute ischemic stroke. N. Engl. J. Med. 2013, 368, 904–913. [Google Scholar] [CrossRef] [Green Version]
- Broderick, J.P.; Palesch, Y.Y.; Demchuk, A.M.; Yeatts, S.D.; Khatri, P.; Hill, M.; Jauch, E.C.; Jovin, T.G.; Yan, B.; Silver, F.L.; et al. Endovascular Therapy after Intravenous t-PA versus t-PA Alone for Stroke. N. Engl. J. Med. 2013, 368, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Kidwell, C.S.; Jahan, R.; Gornbein, J.; Alger, J.R.; Nenov, V.; Ajani, Z.; Feng, L.; Meyer, B.C.; Olson, S.; Schwamm, L.; et al. A Trial of Imaging Selection and Endovascular Treatment for Ischemic Stroke. N. Engl. J. Med. 2013, 368, 914–923. [Google Scholar] [CrossRef] [Green Version]
- Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.-C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Stent-Retriever Thrombectomy after Intravenous t-PA vs. t-PA Alone in Stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [CrossRef] [Green Version]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; De Miquel, M.A.; Molina, C.A.; Rovira, A.; Román, L.S.; Serena, J.; Abilleira, S.; Ribo, M.; et al. Thrombectomy within 8 Hours after Symptom Onset in Ischemic Stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.; Mitchell, P.J.; Kleinig, T.; Dewey, H.M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R.J.; Parsons, M.W.; Oxley, T.; et al. Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection. N. Engl. J. Med. 2015, 372, 1009–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkhemer, O.A.; Fransen, P.S.S.; Beumer, D.; Berg, L.A.V.D.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.H.; et al. A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke. N. Engl. J. Med. 2015, 372, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Menon, B.K.; Van Zwam, W.H.; Dippel, D.W.J.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.L.M.; Van Der Lugt, A.; De Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef]
- Albers, G.W.; Marks, M.P.; Kemp, S.; Christensen, S.; Tsai, J.P.; Ortega-Gutierrez, S.; McTaggart, R.A.; Torbey, M.T.; Kim-Tenser, M.; Leslie-Mazwi, T.; et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N. Engl. J. Med. 2018, 378, 708–718. [Google Scholar]
- SELECT 2: A Randomized Controlled Trial to Optimize Patient’s Selection for Endovascular Treatment in Acute Ischemic Stroke. 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT03876457 (accessed on 10 November 2020).
- Kim, B.J.; Menon, B.K.; Kim, J.Y.; Shin, D.-W.; Baik, S.H.; Jung, C.; Han, M.-K.; Demchuk, A.; Bae, H.-J. Endovascular Treatment after Stroke Due to Large Vessel Occlusion for Patients Presenting Very Late From Time Last Known Well. JAMA Neurol. 2021, 78, 21–29. [Google Scholar] [CrossRef]
- Coutinho, J.M.; Groot, A.E.; Treurniet, K.M.; Jansen, I.G.H.; Lingsma, H.F.; Hinsenveld, W.; Van De Graaf, R.A.; Roozenbeek, B.; Willems, H.C.; Schonewille, W.J.; et al. Data from: Endovascular treatment in older adults with acute ischemic stroke in the MR CLEAN Registry. Neurology 2020, 95, e131–e139. [Google Scholar]
- Hasan, T.F.; Todnem, N.; Gopal, N.; Miller, D.A.; Sandhu, S.S.; Huang, J.F.; Tawk, R.G. Endovascular Thrombectomy for Acute Ischemic Stroke. Curr. Cardiol. Rep. 2019, 21, 112. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.V.; Donnan, A.G.; Mitchell, P.J.; Davis, S.M. Endovascular thrombectomy for stroke: Current best practice and future goals. Stroke Vasc. Neurol. 2016, 1, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CAST (Chinese Acute Stroke Trial) Collaborative Group. CAST: Randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. Lancet 1997, 349, 1641–1649. [Google Scholar]
- International Stroke Trial Collaborative Group. The International Stroke Trial (IST): A randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. Lancet 1997, 349, 1569–1581. [Google Scholar]
- Wang, Y.; Zhao, X. Clopidogrel with Aspirin in Acute Minor Stroke or Transient Ischemic Attack. J. Vasc. Surg. 2013, 58, 1140. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.C.; Easton, J.D.; Farrant, M.; Barsan, W.; Conwit, R.A.; Elm, J.J.; Kim, A.S.; Lindblad, A.S.; Palesch, Y.Y. Clopidogrel and Aspirin in Acute Ischemic Stroke and High-Risk TIA. N. Engl. J. Med. 2018, 379, 215–225. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Fox, K.A.; Hacke, W.; Berger, P.B.; Black, H.R.; Boden, W.E.; Cacoub, P.; Cohen, E.A.; Creager, M.A.; Easton, J.D.; et al. Clopidogrel and Aspirin versus Aspirin Alone for the Prevention of Atherothrombotic Events. N. Engl. J. Med. 2006, 354, 1706–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diener, H.-C.; Bogousslavsky, J.; Brass, L.M.; Cimminiello, C.; Csiba, L.; Kaste, M.; Leys, D.; Matias-Guiu, J.; Rupprecht, H.-J. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): Randomised, double-blind, placebo-controlled trial. Lancet 2004, 364, 331–337. [Google Scholar] [CrossRef]
- Ezekowitz, M.D.; James, K.E.; Nazarian, S.M.; Davenport, J.; Broderick, J.P.; Gupta, S.R.; Thadani, V.; Meyer, M.L.; Bridgers, S.L. Silent Cerebral Infarction in Patients With Nonrheumatic Atrial Fibrillation. Circulation 1995, 92, 2178–2182. [Google Scholar] [CrossRef] [PubMed]
- Kempster, A.P.; Gerraty, R.P.; Gates, P.C. Asymptomatic cerebral infarction in patients with chronic atrial fibrillation. Stroke 1988, 19, 955–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullinane, M.; Wainwright, R.; Brown, A.; Monaghan, M.; Markus, H.S. Asymptomatic embolization in subjects with atrial fibrillation not taking anticoagulants: A prospective study. Stroke 1998, 29, 1810–1815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.-J.; Wolf, P.A.; Kelly-Hayes, M.; Beiser, A.S.; Kase, C.S.; Benjamin, E.J.; D’Agostino, R.B. Stroke Severity in Atrial Fibrillation. Stroke 1996, 27, 1760–1764. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, H.S.; Nakayama, H.; Reith, J.; Raaschou, H.O.; Olsen, T.S. Acute Stroke With Atrial Fibrillation. Stroke 1996, 27, 1765–1769. [Google Scholar] [CrossRef]
- Lamassa, M.; Di Carlo, A.; Pracucci, G.; Basile, A.M.; Trefoloni, G.; Vanni, P.; Spolveri, S.; Baruffi, M.C.; Landini, G.; Ghetti, A.; et al. Characteristics, outcome, and care of stroke associated with atrial fibrillation in Europe: Data from a multicenter multinational hospital-based registry (The European Community Stroke Project). Stroke 2001, 32, 392–398. [Google Scholar] [CrossRef]
- Hylek, E.M.; Go, A.S.; Chang, Y.; Jensvold, N.G.; Henault, L.E.; Selby, J.V.; Singer, D.E. Effect of Intensity of Oral Anticoagulation on Stroke Severity and Mortality in Atrial Fibrillation. N. Engl. J. Med. 2003, 349, 1019–1026. [Google Scholar] [CrossRef]
- Saxena, R.; Lewis, S.; Berge, E.; Sandercock, P.A.; Koudstaal, P.J.; for the International Stroke Trial Collaborative Group. Risk of Early Death and Recurrent Stroke and Effect of Heparin in 3169 Patients With Acute Ischemic Stroke and Atrial Fibrillation in the International Stroke Trial. Stroke 2001, 32, 2333–2337. [Google Scholar] [CrossRef] [Green Version]
- EAFT (European Atrial Fibrillation Trial) Study Group. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. Lancet 1993, 342, 1255–1262. [Google Scholar]
- Sandercock, P.; Bamford, J.; Dennis, M.; Burn, J.; Slattery, J.; Jones, L.; Boonyakarnkul, S.; Warlow, C. Atrial fibrillation and stroke: Prevalence in different types of stroke and influence on early and long term prognosis (Oxfordshire community stroke project). BMJ 1992, 305, 1460–1465. [Google Scholar] [CrossRef] [Green Version]
- Coppens, M.; Eikelboom, J.; Hart, R.G.; Yusuf, S.; Lip, G.Y.; Dorian, P.; Shestakovska, O.; Connolly, S.J. The CHA2DS2-VASc score identifies those patients with atrial fibrillation and a CHADS2 score of 1 who are unlikely to benefit from oral anticoagulant therapy. Eur. Heart J. 2012, 34, 170–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisters, R.; Lane, D.A.; Nieuwlaat, R.; de Vos, C.B.; Crijns, H.J.; Lip, G.Y. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: The Euro Heart Survey. Chest 2010, 138, 1093–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paciaroni, M.; Agnelli, G.; Ageno, W.; Caso, V. Timing of anticoagulation therapy in patients with acute ischaemic stroke and atrial fibrillation. Thromb. Haemost. 2016, 116, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N.; et al. 2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation. Europace 2021, 23, 1676. [Google Scholar] [CrossRef]
- Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B.; Castella, M.; Diener, H.-C.; Heidbuchel, H.; Hendriks, J.; et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 2016, 18, 1609–1678. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, T.; Tanaka, K.; Toyoda, K.; Yoshimura, S.; Itabashi, R.; Takagi, M.; Todo, K.; Shiozawa, M.; Yagita, Y.; Yoshimoto, T.; et al. Early Initiation of Direct Oral Anticoagulants after Onset of Stroke and Short- and Long-Term Outcomes of Patients with Nonvalvular Atrial Fibrillation. Stroke 2020, 51, 883–891. [Google Scholar] [CrossRef]
- Seiffge, D.; Werring, D.J.; Paciaroni, M.; Dawson, J.; Warach, S.; Milling, T.J.; Engelter, S.T.; Fischer, U.; Norrving, B. Timing of anticoagulation after recent ischaemic stroke in patients with atrial fibrillation. Lancet Neurol. 2019, 18, 117–126. [Google Scholar] [CrossRef]
- Escudero-Martinez, I.; Mazya, M.; Teutsch, C.; Lesko, N.; Gdovinova, Z.; Barbarini, L.; Fryze, W.; Karlinski, M.; Kobayashi, A.; Krastev, G.; et al. Dabigatran initiation in patients with non-valvular AF and first acute ischaemic stroke: A retrospective observational study from the SITS registry. BMJ Open 2020, 10, e037234. [Google Scholar] [CrossRef]
- Seiffge, D.J.; Paciaroni, M.; Wilson, D.; Koga, M.; Macha, K.; Cappellari, M.; Schaedelin, S.; Shakeshaft, C.; Takagi, M.; Tsivgoulis, G.; et al. Direct oral anticoagulants versus vitamin K antagonists after recent ischemic stroke in patients with atrial fibrillation. Ann. Neurol. 2019, 85, 823–834. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. Corrigendum to: 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar]
- Klijn, C.J.; Paciaroni, M.; Berge, E.; Korompoki, E.; Kõrv, J.; Lal, A.; Putaala, J.; Werring, D.J. Antithrombotic treatment for secondary prevention of stroke and other thromboembolic events in patients with stroke or transient ischemic attack and non-valvular atrial fibrillation: A European Stroke Organisation guideline. Eur. Stroke J. 2019, 4, 198–223. [Google Scholar] [CrossRef] [Green Version]
- Heidbuchel, H.; Verhamme, P.; Alings, M.; Antz, M.; Diener, H.-C.; Hacke, W.; Oldgren, J.; Sinnaeve, P.; Camm, A.J.; Kirchhof, P. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace 2015, 17, 1467–1507. [Google Scholar] [CrossRef]
- Indredavik, B.; Bakke, F.; Solberg, R.; Rokseth, R.; Haaheim, L.L.; Holme, I. Benefit of a stroke unit: A randomized controlled trial. Stroke 1991, 22, 1026–1031. [Google Scholar] [CrossRef] [Green Version]
- Stroke Unit Trialists’ Collaboration. Collaborative systematic review of the randomised trials of organised inpatient (stroke unit) care after stroke. BMJ 1997, 314, 1151–1159. [Google Scholar]
- Zhu, H.F.; Newcommon, N.N.; Cooper, M.E.; Green, T.L.; Seal, B.; Klein, G.; Weir, N.U.; Coutts, S.B.; Watson, T.; Barber, P.A.; et al. Impact of a Stroke Unit on Length of Hospital Stay and In-Hospital Case Fatality. Stroke 2009, 40, 18–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, H.S.; Nakayama, H.; Raaschou, H.O.; Larsen, K.; Hübbe, P.; Olsen, T.S. The Effect of a Stroke Unit: Reductions in Mortality, Discharge Rate to Nursing Home, Length of Hospital Stay, and Cost. Stroke 1995, 26, 1178–1182. [Google Scholar] [CrossRef]
- Candelise, L.; Gattinoni, M.; Bersano, A.; Micieli, G.; Sterzi, R.; Morabito, A. Stroke-unit care for acute stroke patients: An observational follow-up study. Lancet 2007, 369, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Seenan, P.; Long, M.; Langhorne, P. Stroke units in their natural habitat: Systematic review of observational studies. Stroke 2007, 38, 1886–1892. [Google Scholar] [CrossRef] [Green Version]
- Vingerhoets, F.; Bogousslavsky, J.; Regli, F.; Van Melle, G. Atrial fibrillation after acute stroke. Stroke 1993, 24, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, S.M. Neurogenic cardiac effects of cerebrovascular disease. Curr. Opin. Neurol. 1994, 7, 20–24. [Google Scholar] [CrossRef]
- Korpelainen, J.T.; Sotaniemi, K.A.; Mäkikallio, A.; Huikuri, H.V.; Myllylä, V.V. Dynamic Behavior of Heart Rate in Ischemic Stroke. Stroke 1999, 30, 1008–1013. [Google Scholar] [CrossRef] [Green Version]
- Lane, R.D.; Wallace, J.D.; Petrosky, P.P.; E Schwartz, G.; Gradman, A.H. Supraventricular tachycardia in patients with right hemisphere strokes. Stroke 1992, 23, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Tokgözoglu, S.L.; Batur, M.K.; Topçuoglu, M.A.; Saribas, O.; Kes, S.; Oto, A. Effects of Stroke Localization on Cardiac Autonomic Balance and Sudden Death. Stroke 1999, 30, 1307–1311. [Google Scholar] [CrossRef] [Green Version]
- De Abreu, T.T.; Mateus, S.; Correia, J. Therapy Implications of Transthoracic Echocardiography in Acute Ischemic Stroke Patients. Stroke 2005, 36, 1565–1566. [Google Scholar] [CrossRef] [Green Version]
- Pearson, A.; Labovitz, A.J.; Tatineni, S.; Gomez, C.R. Superiority of transesophageal echocardiography in detecting cardiac source of embolism in patients with cerebral ischemia of uncertain etiology. J. Am. Coll. Cardiol. 1991, 17, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, M.; Marttila, R.J.; Helenius, H.; Hartiala, J. Transoesophageal echocardiography in selecting patients for anticoagulation after ischaemic stroke or transient ischaemic attack. J. Neurol. Neurosurg. Psychiatry 2002, 73, 29–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, H.R.; Tunick, P.A.; Kronzon, I. Role of transesophageal echocardiography in the evaluation of patients with stroke. Curr. Opin. Cardiol. 2003, 18, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Kent, D.M.; Ruthazer, R.; Weimar, C.; Mas, J.-L.; Serena, J.; Homma, S.; Di Angelantonio, E.; Di Tullio, M.R.; Lutz, J.S.; Elkind, M.S.; et al. An index to identify stroke-related vs incidental patent foramen ovale in cryptogenic stroke. Neurology 2013, 81, 619–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harloff, A.; Handke, M.; Reinhard, M.; Geibel, A.; Hetzel, A. Therapeutic Strategies After Examination by Transesophageal Echocardiography in 503 Patients With Ischemic Stroke. Stroke 2006, 37, 859–864. [Google Scholar] [CrossRef] [Green Version]
- Haq, S.; Mathur, M.; Singh, J.; Kaur, N.; Sibia, R.S.; Badhan, R. Colour Doppler Evaluation of Extracranial Carotid Artery in Patients Presenting with Acute Ischemic Stroke and Correlation with Various Risk Factors. J. Clin. Diagn. Res. 2017, 11, TC01–TC05. [Google Scholar] [CrossRef]
- Sitzer, M.; Müller, W.; Siebler, M.; Hort, W.; Kniemeyer, H.-W.; Jäncke, L.; Steinmetz, H. Plaque Ulceration and Lumen Thrombus Are the Main Sources of Cerebral Microemboli in High-grade Internal Carotid Artery Stenosis. Stroke 1995, 26, 1231–1233. [Google Scholar] [CrossRef]
- Spencer, M.P.; I Thomas, G.; Nicholls, S.C.; Sauvage, L.R. Detection of middle cerebral artery emboli during carotid endarterectomy using transcranial Doppler ultrasonography. Stroke 1990, 21, 415–423. [Google Scholar] [CrossRef] [Green Version]
- Markus, H.S.; MacKinnon, A. Asymptomatic Embolization Detected by Doppler Ultrasound Predicts Stroke Risk in Symptomatic Carotid Artery Stenosis. Stroke 2005, 36, 971–975. [Google Scholar] [CrossRef] [Green Version]
- Ebersole, J.; Pedley, T. Current practice of clinical electroencephalography, 3rd edn. Eur. J. Neurol. 2003, 10, 604–605. [Google Scholar] [CrossRef]
- Hartings, A.J.; Williams, A.J.; Tortella, F.C. Occurrence of nonconvulsive seizures, periodic epileptiform discharges, and intermittent rhythmic delta activity in rat focal ischemia. Exp. Neurol. 2003, 179, 139–149. [Google Scholar] [CrossRef]
- Sundt, T.M.; Sharbrough, F.W.; Piepgras, D.G.; Kearns, T.P.; Messick, J.M.; O’Fallon, W.M. Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy: With results of surgery and hemodynamics of cerebral ischemia. Mayo Clin. Proc. 1981, 56, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.S.; Jordan, S.E.; Nuwer, M.R.; Marcus, D.R.; Moore, W.S. Computed electroencephalographic topographic brain mapping. A new and accurate monitor of cerebral circulation and function for patients having carotid endarterectomy. J. Vasc. Surg. 1988, 8, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Nagata, K.; Tagawa, K.; Hiroi, S.; Shishido, F.; Uemura, K. Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction. Electroencephalogr. Clin. Neurophysiol. 1989, 72, 16–30. [Google Scholar] [CrossRef]
- Vespa, P.M.; Nuwer, M.R.; Juhász, C.; Alexander, M.; Nenov, V.; Martin, N.; Becker, D.P. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 607–615. [Google Scholar] [CrossRef]
- MacDonell, R.A.L.; Donnan, G.; Bladin, P.F.; Berkovic, S.F.; Wriedt, C.H.R. The Electroencephalogram and Acute Ischemic Stroke. Arch. Neurol. 1988, 45, 520–524. [Google Scholar] [CrossRef]
- Alberto, P.; Elisabetta, F.; Paola, R.; Uberto, R.; Alfredo, B. The EEG in lacunar strokes. Stroke 1984, 15, 579–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belagaje, S.R. Stroke Rehabilitation. Continuum 2017, 23, 238–253. [Google Scholar] [CrossRef]
- Langhorne, P.; Coupar, F.; Pollock, A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef]
- van de Port, I.G.; Wood-Dauphinee, S.; Lindeman, E.; Kwakkel, G. Effects of exercise training programs on walking competency after stroke: A systematic review. Am. J. Phys. Med. Rehabil. 2007, 86, 935–951. [Google Scholar] [CrossRef]
- Kwakkel, G.; Wagenaar, R.C.; Twisk, J.W.; Lankhorst, G.J.; Koetsier, J.C. Intensity of leg and arm training after primary middle-cerebral-artery stroke: A randomised trial. Lancet 1999, 354, 191–196. [Google Scholar] [CrossRef]
- Govender, P.; Kalra, L. Benefits of occupational therapy in stroke rehabilitation. Expert Rev. Neurother. 2007, 7, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Kwakkel, G.; Kollen, B.; Lindeman, E. Understanding the pattern of functional recovery after stroke: Facts and theories. Restor. Neurol. Neurosci. 2004, 22, 281–299. [Google Scholar] [PubMed]
- Levin, M.F.; Kleim, J.A.; Wolf, S.L. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural. Repair. 2009, 23, 313–319. [Google Scholar] [CrossRef]
- Murphy, T.H.; Corbett, D. Plasticity during stroke recovery: From synapse to behaviour. Nat. Rev. Neurosci. 2009, 10, 861–872. [Google Scholar] [CrossRef]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef]
- Bernhardt, J.; Thuy, M.N.; Collier, J.M.; Legg, L.A. Very early versus delayed mobilisation after stroke. Cochrane Database Syst. Rev. 2009, CD006187. [Google Scholar] [CrossRef] [PubMed]
- European Stroke Organisation (ESO) Executive Committee; ESO Writing Committee. Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cereb. Dis. 2008, 25, 457–507. [Google Scholar] [CrossRef] [PubMed]
- Dromerick, A.W.; Lang, C.E.; Birkenmeier, R.L.; Wagner, J.M.; Miller, J.P.; Videen, T.O.; Powers, W.J.; Wolf, S.L.; Edwards, D.F. Very Early Constraint-Induced Movement during Stroke Rehabilitation (VECTORS): A single-center RCT. Neurology 2009, 73, 195–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langhorne, P.; Wu, O.; Rodgers, H.; Ashburn, A.; Bernhardt, J. A Very Early Rehabilitation Trial after stroke (AVERT): A Phase III, multicentre, randomised controlled trial. Heal. Technol. Assess. 2017, 21, 1–120. [Google Scholar] [CrossRef] [PubMed]
- Stroke Unit Trialists’ Collaboration, Organised inpatient (stroke unit) care for stroke. Cochrane Database Syst. Rev. 2007; CD000197. [CrossRef]
- Fearon, P.; Langhorne, P.; Early Supported Discharge Trialists. Services for reducing duration of hospital care for acute stroke patients. Cochrane Database Syst. Rev. 2005, CD000443. [Google Scholar] [CrossRef] [Green Version]
- Chollet, F.; Tardy, J.; Albucher, J.-F.; Thalamas, C.; Berard, E.; Lamy, C.; Bejot, Y.; Deltour, S.; Jaillard, A.; Niclot, P.; et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): A randomised placebo-controlled trial. Lancet Neurol. 2011, 10, 123–130. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, E.-J.; Chang, D.-I.; Park, J.-H.; Ahn, S.H.; Cha, J.-K.; Heo, J.H.; Sohn, S.-I.; Lee, B.-C.; Kim, D.-E.; et al. Efficacy of early administration of escitalopram on depressive and emotional symptoms and neurological dysfunction after stroke: A multicentre, double-blind, randomised, placebo-controlled study. Lancet Psychiatry 2017, 4, 33–41. [Google Scholar] [CrossRef]
- FOCUS Trial Collaboration. Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): A pragmatic, double-blind, randomised, controlled trial. Lancet 2019, 393, 265–274. [Google Scholar]
- Russell, M.O.; Goldberg, H.I.; Reis, L.; Friedman, S.; Slater, R.; Reivich, M.; Schwartz, E. Transfusion therapy for cerebrovascular abnormalities in sickle cell disease. J. Pediatr. 1976, 88, 382–387. [Google Scholar] [CrossRef]
- Lusher, J.M.; Haghighat, H.; Khalifa, A.S. A prophylactic transfusion program for children with sickle cell anemia complicated by CNS infarction. Am. J. Hematol. 1976, 1, 265–273. [Google Scholar] [CrossRef]
- Sarnaik, S.; Soorya, D.; Kim, J.; Ravindranath, Y.; Lusher, J. Periodic transfusions for sickle cell anemia and CNS infarction. Am. J. Dis. Child. 1979, 133, 1254–1257. [Google Scholar] [CrossRef]
- Uchida, K.; Rackoff, W.R.; Ohene-Frempong, K.; Kim, H.C.; Reilly, M.P.; Asakura, T. Effect of erythrocytapheresis on arterial oxygen saturation and hemoglobin oxygen affinity in patients with sickle cell disease. Am. J. Hematol. 1998, 59, 5–8. [Google Scholar] [CrossRef]
- Powars, D.; Wilson, B.; Imbus, C.; Pegelow, C.; Allen, J. The natural history of stroke in sickle cell disease. Am. J. Med. 1978, 65, 461–471. [Google Scholar] [CrossRef]
- Pegelow, C.H.; Adams, R.J.; McKie, V.; Abboud, M.; Berman, B.; Miller, S.T.; Olivieri, N.; Vichinsky, E.; Wang, W.; Brambilla, D. Risk of recurrent stroke in patients with sickle cell disease treated with erythrocyte transfusions. J. Pediatr. 1995, 126, 896–899. [Google Scholar] [CrossRef]
- Walters, M.C.; Patience, M.; Leisenring, W.; Eckman, J.R.; Scott, J.P.; Mentzer, W.C.; Davies, S.C.; Ohene-Frempong, K.; Bernaudin, F.; Matthews, D.C.; et al. Bone marrow transplantation for sickle cell disease. N. Engl. J. Med. 1996, 335, 369–376. [Google Scholar] [CrossRef]
- Walters, M.C.; Storb, R.; Patience, M.; Leisenring, W.; Taylor, T.; E Sanders, J.; Buchanan, G.E.; Rogers, Z.R.; Dinndorf, P.; Davies, S.C.; et al. Impact of bone marrow transplantation for symptomatic sickle cell disease: An interim report. Multicenter investigation of bone marrow transplantation for sickle cell disease. Blood 2000, 95, 1918–1924. [Google Scholar] [PubMed]
- Steen, R.G.; Helton, K.J.; Horwitz, E.M.; Benaim, E.; Thompson, S.; Bowman, L.C.; Krance, R.; Wang, W.C.; Cunningham, J.M. Improved cerebrovascular patency following therapy in patients with sickle cell disease: Initial results in 4 patients who received HLA-identical hematopoietic stem cell allografts. Ann. Neurol. 2001, 49, 222–229. [Google Scholar] [CrossRef]
- Gladwin, M.T.; Shelhamer, J.H.; Ognibene, F.P.; Pease-Fye, M.E.; Nichols, J.S.; Link, B.; Patel, D.B.; Jankowski, M.A.; Pannell, L.K.; Schechter, A.N.; et al. Nitric oxide donor properties of hydroxyurea in patients with sickle cell disease. Br. J. Haematol. 2002, 116, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Dover, G.J.; Humphries, R.K.; Moore, J.G.; Ley, T.J.; Young, N.S.; Charache, S.; Nienhuis, A.W. Hydroxyurea induction of hemoglobin F production in sickle cell disease: Relationship between cytotoxicity and F cell production. Blood 1986, 67, 735–738. [Google Scholar] [CrossRef] [Green Version]
- Ware, R.E.; Helms, R.W. Stroke with Transfusions Changing to Hydroxyurea (SWiTCH). Blood 2012, 119, 3925–3932. [Google Scholar] [CrossRef] [PubMed]
- Ware, E.R.; Davis, B.R.; Schultz, W.H.; Brown, R.C.; Aygun, B.; Sarnaik, S.; Odame, I.; Fuh, B.; George, A.; Owen, W.; et al. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia—TCD With Transfusions Changing to Hydroxyurea (TWiTCH): A multicentre, open-label, phase 3, non-inferiority trial. Lancet 2016, 387, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Ryoo, J.W.; Na, D.G.; Kim, S.S.; Lee, K.H.; Lee, S.J.; Chung, C.S.; Choi, D.S. Malignant middle cerebral artery infarction in hyperacute ischemic stroke: Evaluation with multiphasic perfusion computed tomography maps. J. Comput. Assist. Tomogr. 2004, 28, 55–62. [Google Scholar] [CrossRef]
- García-Morales, E.J.; Cariappa, R.; Parvin, C.A.; Scott, M.G.; Diringer, M.N. Osmole gap in neurologic-neurosurgical intensive care unit: Its normal value, calculation, and relationship with mannitol serum concentrations. Crit. Care Med. 2004, 32, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.S.; Rehncrona, S.; Siesjö, B.K. Barbiturates as protective agents in brain ischemia and as free radical scavengers in vitro. Acta Physiol. Scand. Suppl. 1980, 492, 129–134. [Google Scholar]
- Muizelaar, J.P.; Marmarou, A.; Ward, J.D.; Kontos, H.A.; Choi, S.C.; Becker, D.P.; Gruemer, H.; Young, H.F. Adverse effects of prolonged hyperventilation in patients with severe head injury: A randomized clinical trial. J. Neurosurg. 1991, 75, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Diringer, M.; Reaven, N.L.; Funk, S.E.; Uman, G.C. Elevated body temperature independently contributes to increased length of stay in neurologic intensive care unit patients. Crit. Care Med. 2004, 32, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, T.; Ginsberg, M.; Dietrich, W.; Zhao, W. Hyperthermia enhances spectrin breakdown in transient focal cerebral ischemia. Brain Res. 1997, 746, 43–51. [Google Scholar] [CrossRef]
- Baena, R.C.; Busto, R.; Dietrich, W.D.; Globus, M.Y.-T.; Ginsberg, M.D. Hyperthermia delayed by 24 hours aggravates neuronal damage in rat hippocampus following global ischemia. Neurology 1997, 48, 768–773. [Google Scholar] [CrossRef]
- Olsen, T.S.; Weber, U.J.; Kammersgaard, L.P. Therapeutic hypothermia for acute stroke. Lancet Neurol. 2003, 2, 410–416. [Google Scholar] [CrossRef]
- Vahedi, K.; Vicaut, E.; Mateo, J.; Kurtz, A.; Orabi, M.; Guichard, J.-P.; Boutron, C.; Couvreur, G.; Rouanet, F.; Touzé, E.; et al. Sequential-Design, Multicenter, Randomized, Controlled Trial of Early Decompressive Craniectomy in Malignant Middle Cerebral Artery Infarction (DECIMAL Trial). Stroke 2007, 38, 2506–2517. [Google Scholar] [CrossRef] [Green Version]
- Vahedi, K.; Hofmeijer, J.; Juettler, E.; Vicaut, E.; George, B.; Algra, A.; Amelink, G.J.; Schmiedeck, P.; Schwab, S.; Rothwell, P.M.; et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: A pooled analysis of three randomised controlled trials. Lancet Neurol. 2007, 6, 215–222. [Google Scholar] [CrossRef]
- Simard, J.M.; Sahuquillo, J.; Sheth, K.N.; Kahle, K.T.; Walcott, B.P. Managing Malignant Cerebral Infarction. Curr. Treat. Options Neurol. 2011, 13, 217–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savitz, S.I.; Caplan, L.R. Vertebrobasilar Disease. N. Engl. J. Med. 2005, 352, 2618–2626. [Google Scholar] [CrossRef]
- Caplan, L.; Chung, C.-S.; Wityk, R.; Glass, T.; Tapia, J.; Pazdera, L.; Chang, H.-M.; Dashe, J.; Chaves, C.; Vemmos, K.; et al. New England Medical Center Posterior Circulation Stroke Registry: I. Methods, Data Base, Distribution of Brain Lesions, Stroke Mechanisms, and Outcomes. J. Clin. Neurol. 2005, 1, 14–30. [Google Scholar] [CrossRef] [Green Version]
- Schonewille, W.J.; Wijman, C.A.; Michel, P.; Rueckert, C.M.; Weimar, C.; Mattle, H.P.; Engelter, S.; Tanne, D.; Muir, K.W.; A Molina, C.; et al. Treatment and outcomes of acute basilar artery occlusion in the Basilar Artery International Cooperation Study (BASICS): A prospective registry study. Lancet Neurol. 2009, 8, 724–730. [Google Scholar] [CrossRef]
- Lutsep, H.L.; Rymer, M.M.; Nesbit, G.M. Vertebrobasilar Revascularization Rates and Outcomes in the MERCI and Multi-MERCI Trials. J. Stroke Cerebrovasc. Dis. 2008, 17, 55–57. [Google Scholar] [CrossRef]
- Hacke, W.; Zeumer, H.; Ferbert, A.; Brückmann, H.; del Zoppo, G.J. Intra-arterial thrombolytic therapy improves outcome in patients with acute vertebrobasilar occlusive disease. Stroke 1988, 19, 1216–1222. [Google Scholar] [CrossRef] [Green Version]
- Dorňák, T.; Král, M.; Šaňák, D.; Kaňovský, P. Intravenous Thrombolysis in Posterior Circulation Stroke. Front. Neurol. 2019, 10, 417. [Google Scholar] [CrossRef]
- Strbian, D.; Sairanen, T.; Silvennoinen, H.; Salonen, O.; Kaste, M.; Lindsberg, P. Thrombolysis of basilar artery occlusion: Impact of baseline ischemia and time. Ann. Neurol. 2013, 73, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Writing Group for the BASILAR Group. Assessment of Endovascular Treatment for Acute Basilar Artery Occlusion via a Nationwide Prospective Registry. JAMA Neurol. 2020, 77, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Langezaal, L.C.; van der Hoeven, E.J.; Mont’Alverne, F.J.; de Carvalho, J.J.; Lima, F.O.; Dippel, D.W.; van der Lugt, A.; Lo, R.T.; Boiten, J.; Nijeholt, G.J.L.À.; et al. Endovascular Therapy for Stroke Due to Basilar-Artery Occlusion. N. Engl. J. Med. 2021, 384, 1910–1920. [Google Scholar] [CrossRef]
- Fisher, M. Endovascular Therapy for Basilar-Artery Occlusion—Still Waiting for Answers. N. Engl. J. Med. 2021, 384, 1954–1955. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Dai, Q.; Ye, R.; Zi, W.; Liu, Y.; Wang, H.; Zhu, W.; Ma, M.; Yin, Q.; Li, M.; et al. Endovascular treatment versus standard medical treatment for vertebrobasilar artery occlusion (BEST): An open-label, randomised controlled trial. Lancet Neurol. 2020, 19, 115–122. [Google Scholar] [CrossRef]
- Levy, E.I.; Siddiqui, A.H.; Crumlish, A.; Snyder, K.V.; Hauck, E.F.; Fiorella, D.J.; Hopkins, L.N.; Mocco, J. First Food and Drug Administration-approved prospective trial of primary intracranial stenting for acute stroke: SARIS (stent-assisted recanalization in acute ischemic stroke). Stroke 2009, 40, 3552–3556. [Google Scholar] [CrossRef] [Green Version]
- Markus, H.; Harshfield, E.; Compter, A.; Kuker, W.; Kappelle, L.J.; Clifton, A.; Van Der Worp, H.B.; Rothwell, P.; Algra, A. Vertebral Stenosis Trialists’ Collaboration Stenting for symptomatic vertebral artery stenosis: A preplanned pooled individual patient data analysis. Lancet Neurol. 2019, 18, 666–673. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, N.H.; Ludolph, C. Acute obstructive hydrocephalus caused by cerebellar infarction. Treatment Alternatives. Surg. Neurol. 1983, 20, 13–19. [Google Scholar] [CrossRef]
- Hornig, C.R.; Rust, D.S.; Busse, O.; Jauss, M.; Laun, A. Space-occupying cerebellar infarction. Clinical course and prognosis. Stroke 1994, 25, 372–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Description | Score | |
---|---|---|---|
1A | Level of consciousness | Alert | 0 |
Drowsy | 1 | ||
Stuporous | 2 | ||
Coma | 3 | ||
1B | Level of consciousness—questions | Answers both correctly | 0 |
Answers one correctly | 1 | ||
Answers both incorrectly | 2 | ||
1C | Loss of consciousness—commands | Performs both tasks correctly | 0 |
Performs one task correctly | 1 | ||
Performs neither task correctly | 2 | ||
2 | Best gaze | Normal | 0 |
Partial gaze palsy: can be overcome | 1 | ||
Partial gaze palsy: corrects with oculocephalic reflex | 1 | ||
Forced gaze palsy: cannot be overcome | 2 | ||
3 | Visual fields | No visual loss | 0 |
Partial hemianopia | 1 | ||
Complete hemianopia | 2 | ||
Bilateral hemianopia | 3 | ||
4 | Facial Palsy | Normal symmetric movements | 0 |
Minor paralysis | 1 | ||
Partial paralysis | 2 | ||
Complete paralysis of one or both sides | 3 | ||
5A | Left Arm Motor Drift | No drift | 0 |
Drift | 1 | ||
Some effort against gravity | 2 | ||
No effort against gravity | 3 | ||
No movement | 4 | ||
5B | Right Arm Motor Drift | No drift | 0 |
Drift | 1 | ||
Some effort against gravity | 2 | ||
No effort against gravity | 3 | ||
No movement | 4 | ||
6A | Left Leg Motor Drift | No drift | 0 |
Drift | 1 | ||
Some effort against gravity | 2 | ||
No effort against gravity | 3 | ||
No movement | 4 | ||
6B | Right Leg Motor Drift | No drift | 0 |
Drift | 1 | ||
Some effort against gravity | 2 | ||
No effort against gravity | 3 | ||
No movement | 4 | ||
7 | Limb Ataxia | Absent | 0 |
Present in one limb | 1 | ||
Present in two limbs | 2 | ||
8 | Sensation | Normal; no sensory loss | 0 |
Mild-to-moderate sensory loss | 1 | ||
Severe-to-total sensory loss | 2 | ||
9 | Best Language | No aphasia; normal | 0 |
Mild-to-moderate aphasia | 1 | ||
Severe aphasia | 2 | ||
Mute; global aphasia | 3 | ||
10 | Dysarthria | Normal | 0 |
Mild-to-moderate dysarthria | 1 | ||
Severe dysarthria | 2 | ||
11 | Extinction/Inattention | No abnormality | 0 |
Visual, tactile, auditory, spatial, or personal inattention | 1 | ||
Profound hemi-inattention or extinction | 2 | ||
Total Score = 0 to 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Indications | Additional Recommendations | Contraindications |
---|---|---|
|
|
|
Trials | N= | NIHSS | Premorbid Condition | Treatment Window (h) | Treatment vs. Control Arms | Territory of Vessel Occlusion | Neuroimaging & Selection Criteria | TICI 2b/3 (%) | Symptomatic ICH (%) | 90-Days mRS 0–2 (%) | Mortality (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
MR CLEAN [97] | 502 | ≥2 | None | ≤6 | IA UK/TPA/device + IV TPA vs. IV TPA | ICA, M1, M2, A1, or A2 | CT, MRI, CTA, MRA, DSA No criteria | 58.7 | 7.7 vs. 6.4 | 32.6 vs. 19.1 (p < 0.05) | 18.9 vs. 18.4 |
ESCAPE [98] | 316 | >5 | Barthel index ≥ 90 | ≤12 | Stent retriever + IV TPA vs. IV TPA | MCA trunk and immediate branches and intracranial ICA | NCCT, mCTA Small infarct core (ASPECTS 6–10); Good-to-moderate collateral flow | 72.4 | 3.6 vs. 2.7 | 53 vs. 29.3 (p < 0.001) | 10.4 vs. 19 |
SWIFT PRIME [94] | 196 | 8–29 | mRS 0–1 | ≤6 | Stent retriever + IV TPA vs. IV TPA | Intracranial ICA, M1, or both | NCCT, CTA, MRA, MRI-DWI, CTP, MRP Small infarct core (ASPECTS > 5) | 88 | 0 vs. 3 | 60 vs. 35 (p < 0.001) | 9 vs. 12 |
EXTEND-IA [96] | 70 | None | mRS 0–1 | ≤6 | Stent retriever + IV TPA vs. IV TPA | ICA or MCA | NCCT, CTA, CTP Evidence of salvageable tissue and ischemic core < 70 mL on CTP | 86 | 11 vs. 15 | 71 vs. 40 (p = 0.01) | 9 vs. 20 |
REVASCAT [95] | 206 | ≥6 | mRS 0–1 | ≤8 | Stent retriever + IV TPA vs. IV TPA | Intracranial ICA or M1 | NCCT, MRI-DWI Absence of large ischemic core; ASPECTS >7 on NCCT or >6 on MRI DWI | 65.7 | 1.9 vs. 1.9 | 44 vs. 28 (OR 2.1) | 19 vs. 16 |
DAWN [100] | 206 | ≥10 | mRS 0–1 | ≤24 | Trevo retriever + IV TPA vs. IV TPA | Intracranial ICA and/or MCA-M1 | NCCT, MRI, MRA, CTA, MRI-DWI, CTP <1/3 MCA territory involved Clinical Imaging Mismatch:
| 84—Modified TICI ≥ 2b 72.6—Original TICI ≥ 2b 10.4—TICI 3 | 6 vs. 3 | 49 vs. 13 (PPS > 0.999); Utility-weighted mRS mean score—5.5 vs. 3.4 (PPS > 0.999); NNT—2 and 2.8 for lower disability and functional independence, respectively | 19 vs. 18 |
DEFUSE-3 [101] | 182 | ≥6 | mRS 0–2 | ≤16 | Trevo Retriever/Solitaire device/Penumbra system + IV TPA vs. IV TPA | ICA or M1; Cervical or intracranial carotid occlusions with or without tandem MCA lesion | CTA, MRA, CTP, MRP, MRI-DWI Target Mismatch Profile:
| 13—TICI 2a 57—TICI 2b 19—TICI 3 | 7 vs. 4 | 45 vs. 17 (OR 2.67; p < 0.001) | 14 vs. 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, T.F.; Hasan, H.; Kelley, R.E. Overview of Acute Ischemic Stroke Evaluation and Management. Biomedicines 2021, 9, 1486. https://doi.org/10.3390/biomedicines9101486
Hasan TF, Hasan H, Kelley RE. Overview of Acute Ischemic Stroke Evaluation and Management. Biomedicines. 2021; 9(10):1486. https://doi.org/10.3390/biomedicines9101486
Chicago/Turabian StyleHasan, Tasneem F., Hunaid Hasan, and Roger E. Kelley. 2021. "Overview of Acute Ischemic Stroke Evaluation and Management" Biomedicines 9, no. 10: 1486. https://doi.org/10.3390/biomedicines9101486
APA StyleHasan, T. F., Hasan, H., & Kelley, R. E. (2021). Overview of Acute Ischemic Stroke Evaluation and Management. Biomedicines, 9(10), 1486. https://doi.org/10.3390/biomedicines9101486