Impact of Protein Corona on the Biological Identity of Nanomedicine: Understanding the Fate of Nanomaterials in the Biological Milieu
Abstract
:1. Introduction
2. Types of Coronas and the Biological Identity of NPs
3. Separation Technique of Protein Corona
4. Impact on the Physico-Chemical Characteristics of NPs
5. Impact of PC on the Identity of NPs in the Biological Milieu
6. Impact of the Flow Dynamics on Corona Formation In Vivo
7. Impact of Incubation Time, Temperature, Shear Stress, and the pH of the Media
8. Impact on Drug Release Kinetics
9. Drug Targeting and Cellular Uptake in the Biological Milieu
10. Prediction of the NP–Cellular Interaction and Analysis
11. Impact of Corona Particles on the Biodistribution and Pharmacokinetics of Drugs
12. Impact of the Disease State on Corona Particle Formation
13. Impact on the Pharmacological Activities through Altered Protein Conformation
14. Impact on Cell Toxicity
15. Impact of Protein Corona on Immune Response
16. Lipid Corona
17. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Mahmoudi, M.; Lynch, I.; Ejtehadi, M.R.; Monopoli, M.P.; Bombelli, F.B.; Laurent, S. Protein-nanoparticle interactions: Opportunities and challenges. Chem. Rev. 2011, 111, 5610–5637. [Google Scholar] [CrossRef]
- Monopoli, M.P.; Bombelli, F.B.; Dawson, K.A. Nanobiotechnology:nanoparticle coronas take shape. Nat. Nanotechnol. 2011, 6, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C.; et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013, 8, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Hamad-Schifferli, K. Exploiting the novel properties of protein coronas: Emerging applications in nanomedicine. Nanomedicine 2015, 10, 1663–1674. [Google Scholar] [CrossRef]
- Rauscher, H.; Sokull-Klüttgen, B.; Stamm, H. The European Commission’s recommendation on the definition of nanomaterial makes an impact. Nanotoxicology 2013, 7, 1195–1197. [Google Scholar] [CrossRef] [PubMed]
- Dobrovolskaia, M.A.; Neun, B.W.; Man, S.; Ye, X.; Hansen, M.; Patri, A.K.; Crist, R.M.; McNeil, S.E. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. Nanomedicine 2014, 10, 1453–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natte, K.; Friedrich, J.F.; Wohlrab, S.; Lutzki, J.; Klitzing, R.V.; Osterle, W. Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona. Colloids Surf. B Biointerfaces 2012, 104, 213–220. [Google Scholar] [CrossRef]
- Sacchetti, C.; Motamedchaboki, K.; Magrini, A.; Palmieri, G.; Mattei, M.; Bernardini, S. Surface Polyethylene Glycol Conformation Influences the Protein Corona of Polyethylene Glycol-Modified Single-Walled Carbon Nanotubes: Potential Implications on Biological Performance. ACS Nano 2013, 7, 1974–1989. [Google Scholar] [CrossRef]
- Petrya, R.; Saboia, V.M.; Franquib, L.S.; Holanda, C.A.; Garcia, T.R.P.; Farias, M.A. On the formation of protein corona on colloidal nanoparticles stabilized by depletant polymers. Mater. Sci. Eng. C 2019, 105, 110080. [Google Scholar] [CrossRef] [PubMed]
- Batista, C.C.S.; Albuquerque, L.J.C.; Jager, A.; Stepánek, P.; Giacomelli, F.C. Probing protein adsorption onto polymer-stabilized silver nanocolloids towards a better understanding on the evolution and consequences of biomolecular coronas. Mater. Sci. Eng. C 2020, 111, 110850. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, C.; Wang, C.; Guo, L.; Zhang, T.; Zhang, Z. Polymeric micelles with α-glutamyl-terminated PEG shells show low non-specific protein adsorption and a prolonged in vivo circulation time. Mater. Sci. Eng. C 2016, 59, 766–772. [Google Scholar] [CrossRef]
- Milani, S.; Bombelli, F.B.; Pitek, A.S.; Dawson, K.A.; Radler, J. Reversible versus Irreversible Binding of Transferrin to Polystyrene Nanoparticles: Soft and Hard Corona. ACS Nano 2012, 6, 2532–2541. [Google Scholar] [CrossRef] [PubMed]
- Monopoli, M.P.; Aberg, C.; Salvati, A.; Dawson, K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012, 7, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Monopoli, M.P.; Pitek, A.S.; Lynch, I.; Dawson, K.A. Formation and characterization of the nanoparticle-protein corona. Methods Mol. Biol. 2013, 1025, 137–155. [Google Scholar] [PubMed]
- Hadjidemetriou, M.; Al-Ahmady, Z.; Mazza, M.; Collins, R.F.; Dawson, K.; Kostarelos, K. In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 2015, 9, 8142–8156. [Google Scholar] [CrossRef]
- Wang, F.; Yu, L.; Monopoli, M.P.; Sandin, P.; Mahon, E.; Salvati, A.; Dawson, K.A. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine 2013, 9, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Saie, A.A.; Ray, M.; Mahmoudi, M.; Rotello, V.M. Engineering the nanoparticle-protein interface for cancer therapeutics. Cancer Treat. Res. 2015, 166, 245–273. [Google Scholar] [PubMed]
- Cedervall, T.; Lynch, I.; Lindman, S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055. [Google Scholar] [CrossRef] [Green Version]
- Walczyk, D.; Bombelli, F.B.; Monopoli, M.P.; Lynch, I.; Dawson, K.A. What the cell “sees” in bionanoscience. J Am. Chem. Soc. 2010, 132, 5761–5768. [Google Scholar] [CrossRef]
- Walkey, C.D.; Chan, W.C. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012, 41, 2780–2799. [Google Scholar] [CrossRef]
- Sakulkhu, U.; Mahmoudi, M.; Maurizi, L.; Salaklang, J.; Hofmann, H. Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings. Sci. Rep. 2014, 4, 5020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonvin, D.; Chiappe, D.; Moniatte, M.; Hofmann, H.; Ebersold, M.M. Methods of protein corona isolation for magnetic nanoparticles. Analyst 2017, 12, 3805–3815. [Google Scholar] [CrossRef] [PubMed]
- Bohmert, L.; Vo, L.; Stock, V.; Braeuning, A.; Lampena, A.; Sieg, H. Isolation methods for particle protein corona complexes from protein-rich matrices. Nanoscale Adv. 2020, 2, 563–582. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.; Simon, J.; Mailander, V.; Morsbach, S.; Landfester, K. Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. ActaBiomater 2018, 76, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.; Morsbach, S.; Landfester, K. Possibilities and Limitations of Different Separation Techniques for the Analysis of the Protein Corona. Angew. Chem. Int. Ed. 2019, 58, 12787–12794. [Google Scholar] [CrossRef] [PubMed]
- Kokkinopoulou, M.; Simon, J.; Landfester, K.; Mailander, V.; Lieberwirth, I. Visualization of the protein corona: Towards a biomolecular understanding of nanoparticle-cell-interactions. Nanoscale 2017, 9, 8858–8870. [Google Scholar] [CrossRef] [Green Version]
- Kari, O.K.; Ndika, J.; Parkkila, P.; Louna, A.; Lajunen, T.; Puustinen, A.; Viitala, T.; Alenius, H.; Urtti, A. In situ analysis of liposome hard and soft protein corona structure and composition in a single label-free workflow. Nanoscale 2020, 12, 1728–1741. [Google Scholar] [CrossRef] [Green Version]
- Konduru, N.V.; Molina, R.M.; Swami, A.; Damiani, F.; Pyrgiotakis, G.; Lin, P.; Andreozzi, P.; Donaghey, T.C.; Demokritou, P.; Krol, S.; et al. Protein corona: Implications for nanoparticle interactions with pulmonary cells. Part Fibre Toxicol. 2017, 14, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Reiser, M.; Yu, X.; Gummuluru, S.; Wetzler, L.; Reinhard, B.M. Lipid-MediatedTargeting with Membrane Wrapped Nanoparticles in the Presence of Corona Formation. ACS Nano 2016, 10, 1189–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Alvarez, R.; Hadjidemetriou, M.; Sanchez-Iglesias, A.; Liz-Marzan, L.M.; Kostarelos, K. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale 2018, 10, 1256–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Zhang, H.; Zhang, Y.; Wu, R.; Zou, H. Nanoparticle size matters in the formation of plasma protein coronas on Fe3O4 nanoparticles. Colloids Surf. B Biointerfaces 2014, 121, 354–361. [Google Scholar] [CrossRef]
- Bewersdorff, T.; Glitscher, E.A.; Bergueiro, J.; Eravci, M.; Miceli, E.; Haase, A. The influence of shape and charge on protein corona composition in common gold nanostructures. Mater. Sci. Eng. C 2020, 117, 111270. [Google Scholar] [CrossRef] [PubMed]
- Lundqvist, M.; Augustsson, C.; Lilja, M.; Lundkvist, K.; Dahlbäck, B.; Linse, S. The nanoparticle protein corona formed in human blood or human blood fractions. PLoS ONE 2017, 12, e0175871. [Google Scholar] [CrossRef] [Green Version]
- Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265–14270. [Google Scholar] [CrossRef] [Green Version]
- Lundqvist, M.; Stigler, J.; Cedervall, T.; Berggard, T.; Flanagan, M.B.; Lynch, I. The Evolution of the Protein Corona around Nanoparticles: A Test Study. ACS Nano 2011, 5, 7503–7509. [Google Scholar] [CrossRef] [PubMed]
- Alkilany, A.M.; Thompson, L.B.; Murphy, C.J. Polyelectrolyte Coating Provides a Facile Route to Suspend Gold Nanorods in Polar Organic Solvents and Hydrophobic Polymers. ACS Appl. Mater. Interfaces 2010, 2, 3417–3421. [Google Scholar] [CrossRef] [PubMed]
- Almalik, A.; Donno, R.; Cadman, C.J.; Cellesia, F.; Day, P.J.; Tirelli, N. Hyaluronic acid-coated chitosan nanoparticles: Molecular weight-dependent effects on morphology and hyaluronic acid presentation. J. Control. Release 2013, 172, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Gessner, A.; Lieske, A.; Paulke, B.R.; Muller, R.H. Influence of surface charge density on protein adsorption on polymeric nanoparticles: Analysis by two-dimensional electrophoresis. Eur. J. Pharm. Biopharm. 2002, 54, 165–170. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Rizwanullah, M.; Ahmad, J.; Alasmary, M.Y.; Akhter, M.H.; Abdel-Wahab, B.A.; Warsi, M.H.; Haque, A. Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy. Int. J. Polym. Mater. Polym. Biomater. 2021. [Google Scholar] [CrossRef]
- Akhter, M.H.; Beg, S.; Tarique, M.; Malik, A.; Afaq, S.; Choudhry, H.; Hosawie, S. Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead. Biochim. Biophys. Acta BBAGen. Subj. 2021, 1865, 129777. [Google Scholar] [CrossRef] [PubMed]
- Zelphati, O.; Uyechi, L.S.; Barron, L.G.; Szoka, F.C. Effect of serum components on the physico-chemicalproperties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim. Biophys. Acta 1998, 1390, 119–133. [Google Scholar] [CrossRef]
- Deng, Z.J.; Liang, M.; Monteiro, M.; Toth, I.; Minchin, R.F. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol. 2011, 6, 39–44. [Google Scholar] [CrossRef]
- Foroozandeh, P.; Aziz, A.A. Merging Worlds of Nanomaterials and Biological Environment: Factors Governing Protein Corona Formation on Nanoparticles and Its Biological Consequences. Nanoscale Res. Lett. 2015, 10, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahon, E.; Salvati, A.; Bombelli, F.B.; Lynch, I.; Dawson, K.A. Designing the nanoparticle–biomolecules interface for ‘targeting and therapeutic delivery’. J.Control. Release 2012, 161, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 2001, 53, 283–318. [Google Scholar]
- Docter, D.; Westmeier, D.; Markiewicz, M.; Stolte, S.; Knauer, S.K.; Stauber, R.H. The nanoparticle biomolecules corona: Lessons learned–challenge accepted? Chem. Soc. Rev. 2015, 44, 6094–6121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dell’Orco, D.; Lundqvist, M.; Oslakovic, C.; Cedervall, T.; Linse, S. Modeling the Time Evolution of the Nanoparticle-Protein Corona in a Body Fluid. PLoS ONE 2010, 5, e10949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vroman, L. Effect of Adsorbed Proteins on the Wettability of Hydrophilic and Hydrophobic Solids. Nature 1962, 196, 476–477. [Google Scholar] [CrossRef]
- Barran-Berdon, A.L.; Pozzi, D.; Caracciolo, G.; Capriotti, A.L.; Caruso, G.; Cavaliere, C.; Riccioli, A.; Palchetti, S.; Lagan, A. Time evolution of nanoparticle-protein corona in human plasma:relevance for targeted drug delivery. Langmuir 2013, 29, 6485–6494. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Zhao, M.; Cui, M.; Pang, S.; Wang, J.; Liu, Y.; Xie, L. Probing Temperature- and pH-Dependent Binding between Quantum Dots and Bovine Serum Albumin by Fluorescence Correlation Spectroscopy. Nanomaterials 2017, 7, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, N.J.; DeBrosse, M.C.; Hussain, S.M.; Comfort, K.K. Modification of the protein corona–nanoparticle complex by physiological factors. Mater. Sci. Eng. C 2016, 64, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Pozzi, D.; Caracciolo, G.; Digiacomo, L.; Colapicchioni, V.; Palchetti, S.; Capriotti, A.L.; Cavaliere, C.; Chiozzi, R.Z.; Puglisie, A.; Laganàe, A. The biomolecular corona of nanoparticles in circulating biological media. Nanoscale 2015, 7, 13958–13966. [Google Scholar] [CrossRef] [PubMed]
- Palchetti, S.; Colapicchioni, V.; Digiacomo, L.; Caracciolo, G.; Pozzi, D.; Capriotti, A.L.; Barbera, G.L.; Laganà, A. The protein corona of circulating PEGylated liposomes. Biochim. Biophys. Acta 2016, 1858, 189–196. [Google Scholar] [CrossRef]
- Weidner, A.; Grafe, C.; Luhe, M.V.D.; Remmer, H.; Clement, J.H.; Eberbeck, D. Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles. Nanoscale Res. Lett. 2015, 10, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, D.; Chauhan, P.; Alex, S.A.; Chaudhary, S.; Ethiraj, K.R.; Chandrasekaran, N.; Mukherjee, A. Comprehensive study on biocorona formation on functionalized selenium nanoparticle and its biological implications. J. Mol. Liq. 2018, 268, 335–342. [Google Scholar] [CrossRef]
- Kennedy, L.; Mehl, T.D.; Elder, E.; Varghese, M.; Merimee, T.J. Nonenzymatic glycosylation of serum and plasma proteins. Diabetes 1982, 31, 52–56. [Google Scholar] [CrossRef]
- Hajipour, M.J.; Laurent, S.; Aghaie, A.; Rezaee, F.; Mahmoudi, M. Personalized protein coronas: A “key” factor at the nanobiointerface. Biomater. Sci. 2014, 2, 1210–1221. [Google Scholar] [CrossRef]
- Behzadi, S.; Serpooshan, V.; Sakhtianchi, R.; Muller, B.; Landfester, K.; Crespy, D. Protein corona change the drug release profile of nanocarriers: The “overlooked” factor at the nanobio interface. Colloids Surf. B Biointerfaces 2014, 123, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Paula, A.J.; Araujo, R.T.; Martinez, D.S.T.; Paredes-Gamero, E.J.; Nader, H.B.; Duran, N.; Justo, G.Z.; Alves, O.L. Influence of Protein Corona on the Transport of Molecules into Cells by Mesoporous Silica Nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 8387–8393. [Google Scholar] [CrossRef] [PubMed]
- Sebak, A.A.; Gomaa, I.E.O.; ElMeshad, A.N.; Farag, M.H.; Breitinger, U. Distinct Proteins in Protein Corona of Nanoparticles Represent a Promising Venue for EndogenousTargeting—Part I: In vitro Release and Intracellular Uptake Perspective. Int. J. Nanomed. 2020, 15, 8845–8862. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Monopoli, M.P.; Rezaei, M.; Lynch, I.; Bertoli, F.; McManus, J.J.; Dawson, K.A. The protein corona mediates the impact of nanomaterials and slows amyloid beta fibrillation. ChemBioChem 2013, 14, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Ritz, S.; Schottler, S.; Kotman, N.; Baier, G.; Musyanovych, A.; Kuharev, J. Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular Uptake. Biomacromolecules 2015, 16, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Borgognoni, C.F.; Mormann, M.; Qu, Y.; Schäfer, M.; Langer, K.; Öztürk, C.; Wagner, S.; Chen, C.; Zhao, Y.; Fuchs, H.; et al. Reaction of human macrophages on protein corona covered TiO(2) nanoparticles. Nanomedicine 2015, 11, 275–282. [Google Scholar] [CrossRef]
- Ge, C.; Du, J.; Zhao, L.; Wang, L.; Liu, Y.; Li, D.; Yang, Y. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. USA 2011, 108, 16968–16973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tekie, F.S.M.; Hajiramezanali, M.; Geramifar, P.; Raouf, M.; Dinarvand, R.; Soleimani, M. Controlling evolution of protein corona: A prosperous approach to improve chitosan-based nanoparticle biodistribution and half-life. Sci. Rep. 2020, 10, 9664. [Google Scholar] [CrossRef] [PubMed]
- Huhn, D.; Kantner, K.; Geidel, C.; Brandholt, S.; de Cock, I.; Soenen, S.J. Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge. ACS Nano 2013, 7, 3253–3263. [Google Scholar] [CrossRef]
- Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014. [Google Scholar] [CrossRef]
- Mo, Z.C.; Ren, K.; Liu, X.; Tang, Z.-L.; Yi, G.-H. A high-density lipoprotein-mediated drug delivery system. Adv. Drug Deliv. Rev. 2016, 106, 132–147. [Google Scholar] [CrossRef]
- Meghani, N.M.; Amin, H.; Park, C.; Cui, J.H.; Cao, Q.R.; Choi, K.H.; Lee, B.J. Combinatory interpretation of protein corona and shear stress for active cancer targeting of bioorthogonally clickable gelatin-oleic nanoparticles. Mater. Sci. Eng C 2020, 111, 110760. [Google Scholar] [CrossRef]
- Westmeier, D.; Chen, C.; Stauber, R.H.; Docter, D. The bio-corona and its impact on nanomaterial toxicity. Eur. J. Nanomed. 2015, 7, 153–168. [Google Scholar] [CrossRef]
- Bhogale, A.; Patel, N.; Mariam, J.; Dongre, P.; Miotello, A.; Kothari, D. Comprehensivestudies on the interaction of copper nanoparticles with bovine serum albumin using various spectroscopies. Colloids Surf. B Biointerfaces 2014, 113, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, D.; Ethiraj, K.R.; Mukherjee, A.A. Understanding the relevance of protein corona in nanoparticle-based therapeutics and diagnostics. RSC Adv. 2020, 10, 27161–27172. [Google Scholar] [CrossRef]
- Sharifi, S.; Caracciolo, G.; Mahmoudi, M. Biomolecular Corona Affects Controlled Release of Drug Payloads from Nanocarriers. Trends Pharm. Sci. 2020, 41, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P. The Collected Papers of Paul Ehrlich; Pergamon: London, UK, 1960; p. 3. [Google Scholar]
- Akhter, M.H.; Rizwanullah, M.; Ahmad, J.; Ahsan, M.J.; Mujtaba, M.A.; Amin, S. Nanocarriers in advanced drug targeting: Setting novel paradigm in cancer therapeutics. Artif. Cells Artif. Cells Nanomed. Biotechnol. 2017, 46, 873–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhter, M.H.; Madhav, N.S.; Ahmad, J. Epidermal growth factor based active targeting: A paradigm shift towards advance tumor therapy. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1–11. [Google Scholar]
- Soni, K.; Mujtaba, A.; Akhter, M.H.; Zafar, A.; Kohli, K. Optimisation of ethosomal nanogel for topical nano-CUR and Sulphoraphane delivery in effective skin cancer therapy. J. Microencapsul. 2020, 37, 91–108. [Google Scholar] [CrossRef]
- Akhter, M.H.; Ahsan, M.J.; Rahman, M.; Anwar, S.; Rizwanullah, M. Advancement in nanotheranostics for effective skin cancer therapy: State of the art. Curr. Nanomed. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Akhter, M.H.; Rizwanullah, M.; Ahmad, J.; Amin, S.; Ahmad, M.Z.; Minhaj, M.A. Molecular targets and nanoparticulate systems designed for the improved therapeutic intervention in glioblastoma multiforme. Drug Res. 2020, 71, 122–137. [Google Scholar] [CrossRef]
- Akhter, M.H.; Nomani, S.; Kumar, S. Sonication tailored enhance cytotoxicity of naringenin nanoparticle in pancreatic cancer: Design, optimization, and in vitro studies. Drug Dev. Ind. Pharm. 2020, 46, 1–14. [Google Scholar] [CrossRef]
- Nichols, J.W.; Bae, Y.H. EPR: Evidence and fallacy. J. Control. Release 2014, 190, 451–464. [Google Scholar] [CrossRef]
- Ahmad, J.; Ahmad, M.Z.; Akhter, H. Surface-Engineered Cancer Nanomedicine: Rational Design and Recent Progress. Curr. Pharm. Des. 2020, 26, 1181–1190. [Google Scholar] [CrossRef]
- Akhter, M.H.; Amin, S. An investigative approach to the treatment modalities of squamous cell carcinoma. Curr. Drug Deliv. 2017, 14, 597–612. [Google Scholar] [CrossRef]
- Zanganeh, S.; Spitler, R.; Erfanzadeh, M.; Alkilany, A.M.; Mahmoudi, M.M. Protein corona: Opportunities and challenges. Int.J. Biochem. Cell Biol. 2016, 75, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Parayath, N.; Ganesh, S.; Wang, W.; Amiji, M. The role of apolipoprotein-and vitronectin-enriched protein corona on lipid nanoparticles for in vivo targeted delivery and transfection of oligonucleotides in murine tumor models. Nanoscale 2019, 11, 18806–18824. [Google Scholar] [CrossRef]
- Kreuter, J.; Shamenkov, D.; Petrov, V.; Ramge, P.; Cychutek, K.; Koch-Brandt, K. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target. 2002, 10, 317–325. [Google Scholar] [CrossRef]
- Williams, K.J.; Chen, K. Recent insights into factors affecting remnant lipoprotein uptake. Curr. Opin. Lipidol. 2010, 21, 218–228. [Google Scholar] [CrossRef]
- Caracciolo, G.; Cardarelli, F.; Pozzi, D.; Salomone, F.; Maccari, G.; Bardi, G.; Capriotti, A.L.; Cavaliere, C.; Papi, M.; Lagana, A. Selective targeting capability acquired with a protein corona adsorbed on the surface of 1,2-Dioleoyl-3-trimethylammonium Propane/DNA Nanoparticles. ACS Appl. Mater. Interfaces. 2013, 5, 13171–13179. [Google Scholar] [CrossRef]
- Lara, S.; Alnasser, F.; Polo, E.; Garry, D.; Giudice, L.; Hristov, M.C. Identification of receptor binding to the biomolecular corona of nanoparticles. ACS Nano 2017, 11, 1884–1893. [Google Scholar] [CrossRef]
- Francia, V.; Yang, K.; Deville, S.; Reker-Smit, C.; Nelissen, I.; Salvati, A. Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano 2019, 13, 11107–11121. [Google Scholar] [CrossRef]
- Aliyandi, A.; Zuhorn, I.S.; Salvati, A. Disentangling Biomolecular Corona Interactions with Cell Receptors and Implications for Targeting of Nanomedicines. Front. Bioeng. Biotechnol. 2020, 8, 599454. [Google Scholar] [CrossRef]
- Walkey, C.D.; Olsen, J.B.; Song, F.; Liu, R.; Guo, H.; Olsen, W. Protein Corona Fingerprinting Predicts the Cell Association of Gold Nanoparticles. ACS Nano 2014, 8, 2439–2455. [Google Scholar] [CrossRef]
- Xiao, W.; Gao, H. The Impact of Protein Corona Formation on the Macrophage Cellular Uptake and Biodistribution of Spherical Nucleic Acids. Small 2017, 13, 1603847. [Google Scholar] [CrossRef] [Green Version]
- Corbo, C.; Molinaro, R.; Tabatabaei, M.; Farokhzad, O.; Mahmoudi, M. Personalized protein corona on nanoparticles and its clinical implications. Biomater. Sci. 2017, 5, 378–387. [Google Scholar] [CrossRef]
- Hajipour, M.J.; Raheb, J.; Akhavan, O.; Arjmand, S.; Mashinchian, O.; Rahman, M. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide. Nanoscale 2015, 7, 8978–8994. [Google Scholar] [CrossRef]
- Weiner, D.; Khankin, E.V.; Levy, Y.; Aizenbud, D.; Reznick, A.Z. Effects of cigarette smoke on salivary protein tyrosine nitration. Eur. J. Med. Res. 2010, 15, 211. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Webb-Robertson, B.-J.; Peterson, E.S.; Tan, R.; Bigelow, D.J.; Scholand, M.B.; Hoidal, J.R.; Pounds, J.G.; Zangar, R.C. Smoking, COPD, and 3-nitrotyrosine levels of plasma proteins. Environ. Health Perspect. 2011, 119, 1314–1320. [Google Scholar] [CrossRef] [Green Version]
- Lynch, I.; Dawson, K.A. Protein-nanoparticle interactions. Nano Today 2008, 3, 40–47. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Lee, B.-J. Protein corona: A new approach for nanomedicine design. Int. J.Nanomed. 2017, 12, 3137–3151. [Google Scholar] [CrossRef] [Green Version]
- Corbo, C.; Molinaro, R.; Parodi, A.; Furman, N.E.T.; Salvatore, F.; Tasciotti, E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 2016, 11, 81–100. [Google Scholar] [CrossRef] [Green Version]
- Neagu, M.; Piperigkou, Z.; Karamanou, K.; Engin, A.B.; Docea, A.O.; Constantin, C.; Negrei, C.; Nikitovic, D.; Tsatsakis, A. Protein bio-corona: Critical issue in immune nanotoxicology. Arch Toxicol. 2017, 91, 1031–1048. [Google Scholar] [CrossRef] [Green Version]
- Sim, R.B.; Tsiftsoglou, S.A. Proteases of the complement system. Biochem. Soc. Trans. 2004, 32, 21–27. [Google Scholar] [CrossRef]
- Fleischer, C.C.; Payne, C.K. Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J. Phys. Chem. B 2014, 118, 14017–14026. [Google Scholar] [CrossRef]
- Pozzi, D.; Colapicchioni, V.; Caracciolo, G.; Piovesana, S.; Capriotti, A.L.; Palchetti, S.; De Grossi, S.; Riccioli, A.; Amenitsch, H.; Lagana, A. Effect of polyethyleneglycol (PEG) chain length on the bio-nano- interactions between PEGylated lipid nanoparticles and biological fluids: From nanostructure to uptake in cancer cells. Nanoscale 2014, 6, 2782–2792. [Google Scholar] [CrossRef]
- Manuela, S.; Michael, E.; Ennio, T.; Francesca, T. Cell Membrane-Based Biomimetic Nanoparticles and the Immune System: Immunomodulatory Interactions to Therapeutic Applications. Front Bioeng Biotech. 2020, 8, 627. [Google Scholar] [CrossRef]
- Wang, M.; Briggs, M.R. HDL: The metabolism, function, and therapeutic importance. Chem. Rev. 2004, 104, 119–137. [Google Scholar] [CrossRef]
- Hellstrand, E.; Lynch, I.; Andersson, A.; Drakenberg, T.; Dahlbäck, B.; Dawson, K.A.; Linse, S.; Cedervall, T. Complete high-density lipoproteins in nanoparticle corona. FEBS J. 2009, 276, 3372–3381. [Google Scholar] [CrossRef]
- Raesch, S.S.; Tenzer, S.; Storck, W.; Rurainski, A.; Selzer, D.; Ruge, C.A. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition. ACS Nano 2015, 9, 11872–11885. [Google Scholar] [CrossRef]
- Lima, T.; Bernfur, K.; Vilanova, M.; Cedervall, T. Understanding the Lipid and Protein Corona Formation on Different Sized Polymeric Nanoparticles. Sci. Rep. 2020, 10, 1129. [Google Scholar] [CrossRef]
Factors | Impact on the Fate of NPs via Interaction with PC in a Biological Medium | Ref. |
---|---|---|
1. Physico-chemical characteristics of NPs | 1. Small size particles have a large surface curvature resulting in a poor influence on the protein’s conformation. 2. Bigger particles have a large surface area for individual protein interaction. 3. If the surface area is large, low affinity proteins may bind and stabilize the interaction in the aggregates of NPs. 4. Particle shape alters the mass/surface area ratio; spherical particles minimize the interaction. 5. Slightly negatively charged proteins appear to have lower interactions with proteins. | [29,34,35] |
1.1. Surface charge | 1. Obtusely charged NPs incline towards higher and denser PCs. 2. Positively charged NPs rapidly and strongly bind with proteins with an isoelectric point of less than 5.5. 3. Highly negatively charged NPs interact mostly with proteins with an iso-electric point greater than 5.5. 4. Less negatively charged NPs have poor interactions with proteins. | [37,38] |
2. Experimental and environmental factors affecting PC formation | ||
2.1. Incubation medium | The concentration of proteins and the composition of the biological fluid (plasma, serum, interstitial fluid) have an effect upon PC formation. The animal species such as rats, mice, bovine, or human have impact on PC formation. The samples obtained from humans of varying ages, sex, diets, states of health and inter-individual variabilities have an influence on PC. | [6,50] |
2.2. Flow dynamics | The dynamic nature of blood flow in the human body cause stress for NPs, a source of PC adsorption. The un-PEGylated NPs show a higher concentration of PC and evolve into apolipoproteins APOA-II under dynamic conditions, while under static conditions, acute phase proteins and alpha-1-antitrypsin were recorded. | [51,52,53] |
2.3. Temperature, time of incubation, and pH | Increasing the incubation temperature of the serum from 25 to 70 °C with NPs leads to denatured PC covers. A report showed that the PEGylated gold NPs of size 30 nm incubated in plasma at room temperature and 37 °C showed that the concentration of proteins recovered decreased with an increase in time from 5 to 60 min. The fluorescence correlation spectroscopy established that the binding feature of BSA to QDs changed pH from 6 to 9. At a lower pH, the binding affinity was lower due to a repulsive force. At a higher pH, higher binding to QDs was observed because of conformation alteration in the protein structure. | [6,54,55] |
3. Disease state | Individual disease states that change the metabolic rate or lifestyles have an influence on the protein complex and plasma proteomics that bring achange in the PC formation. For instance, protein glycation causes a considerable reduction in the serum albumin level. A study on the SDS-PAGE gels on silica and polystyrene revealed that the PCs differ in both quantity and composition invaried disease states. | [56,57] |
4. Drug release | 1. The PC layers around the NPs’ surface reduce the effective burst release profile of the commercially available product Abraxane® 2. Camptothecin release from silica NPs showed a slower release due to protein corona. 3. Sebak et al. compared the PC concentration to bare polymeric PLGA-NPs and peptide ligated hybrid NPs (cRGDyk peptide) when incubated in plasma. They established that the in vitro drug release from the NPs largely depended on the PC composition as well as the concentration of serum proteins in the medium. A higher release rate was recorded for peptide-conjugated NPs and a reduced drug release rate was recorded for bare PLGA-NPs. | [58,59,60] |
5. Influence on drug targeting and cellular uptake | The understanding of PC of NPs and their interaction with the cell surface i.e.,the nano–biointerface is essential for promising and effective therapy. The cellular uptake of corona particles has mixed effects in biological machineries. Some studies have reported that a protective layer on the NPs’ surface extenuates the acute toxicity level of the biological environment. Artificially anchoring NPs with a single corona by apolipoproteins ApoA4 or ApoC3 led to a significant reduction in cellular uptake, while pre-coating with the corona protein ApoH improved the cellular uptake. | [61,62] |
6. Impact of PC on cell toxicity | Apart from affecting drug delivery, targeting, and cellular internalization, PC also impacts nano-toxicity and triggers disease pathophysiology. The PC (transferrin, globulin, BSA, and BGF)-layered SWCNT expressed a comparatively lower cytotoxicity than bare SWCNTs. The PC layer formed on titanium dioxide NPs formed in human macrophages resulted in an enhanced secretion of inflammatory cytokines, viz., IL-1β, IL-6, and IL-10 from macrophages that rely on the concentration of NPs. | [63,64] |
7. Impact of corona particles on the biodistribution and pharmacokinetics of drugs | The biological identity of NPs that differ from the in vitro design interact with living tissues and their functions in the biological system alter, resulting in a decrease in the targeting efficiency due to the PC covering. They may be taken up by RES. PC sometimes aid in the increase of the the targeting capability but this depends on the type and conformation of the protein. PC formations on the NPs’ surface modify the fate of nanomaterials in relation to biodistribution and the circulation time in physiological fluid. | [65] |
8. Impact on pharmacological activities | The alteration in the primary/secondary/tertiary structure of the protein leads to significant alterations in the pharmacological and biological activities. | [66] |
Nanomaterials | Incubation Medium | Protein Corona Compositions | Inference | Ref. |
---|---|---|---|---|
Iron oxideNPs/SPION | FBS | Anti-thrombin, α-antiproteinase, and serotransferrin. | Polyvinyl alcohol (PVA)-coated SPIONs with (−) and (+) surface charge had a higher adsorption rate in serum proteins than the dextran-coated SPIONs that led to a higher circulation time in blood in the case of PVA-coated NPs compared to the dextran-coated SPIONs. | [21] |
Magnetic NPs | Human blood serum and human lymph serum | Serum albumin, Apolipoprotein A-I, Prothrombin, Plasminogen, Complement protein, Apolipoprotein B-100, Apolipoprotein E, Antithrombin-III, Vitronectin, and Kininogen-1 | Hard protein corona (HPCs) received by two isolation methods were entirely different by upto 50%, which suggested that only these proteins that were found in the HPCs fromboth magnetic separation and multistep centrifugation methods were real HPCs. | [22] |
Artificial viral NPs with AuNPs | Blood serum | Reported presence of hard and soft corona on nanoparticles. Despite corona evolution over NPs, GM3 enclosed in the AVN membrane remained approachable to CD169 receptor binding. | The bigger particles with low DOPS % showed a higher stability in serum plasma. As a result, a increased layering of PC led to a lowering in the targeting of GM3 for CD169. Further, study is required to give insight into the formation of PC with regard to AVN in vitro, although this extends key points of relevance to PC layering on NP size and fate in the biological environment | [29] |
AuNPs | - | Serum albumin, Alpha-2-Macroglobulin, Apolipoprotein A-I, Apolipoprotein E, Complement factor H, Plasminogen, Ig mu chain C region, Protein Ighv7–1. | The results indicated from the gel electrophoresis and mass spectrometry analysis that the development of the complex with protein coronas, took place within 10 min of injection. | [30] |
Gold nanostructures (spheres, rods, stars, and cages) | 70% human serum (diluted with PBS) for 2 h | The 15 most abundant proteins were associated AuNPs. Some of them were Serum albumin, Apolipoprotein E, Coagulation factor XII, Apolipoprotein A-I and A-II, Kininogen-1, Gelsolin, Vitronectin, Histidine-rich glycoprotein. | The cage-like structure of AuNPs indicated the lowest adsorbed corona proteins. The results revealed that nano-cages could improve the compatibility with the biological medium compared with other shapes due to the high area of curvature and the heavy ligation over flat surfaces that opposes opsonization and the rapid clearance via the immune system. | [32] |
Nanoparticles (silica, polystyrene, and carboxyl-modified polystyrene particles) | Human plasma; plasma with cytosolic fluid | Tubulin alpha-1, Alpha-enolase, Nucleophosmin, Protein S100-A9, 60S ribosomal protein L14, PEST proteolytic signal-containing nuclear protein, Triosephosphate isomerase, Protein S100-A9. | The results have shown that abundant protein corona could evolve in the IInd biological solution, but the last protein left a “fingerprint” of its history. This is important to map the evolution and understand how the pathway was generated for adsorption to the nanoparticles, and eventually to predict the fate and behavior of the nanoparticles. | [35] |
PSCOOH, PSOSO3H, and silica particles (SiO2) | Blood plasma | Hard and soft corona particles on the nanoparticle surface altered their surface chemistry. | Formation of hard or soft corona protein assembly and their longevity depends upon the nanomaterial type. The blood plasma-derived protein coronas have a long life. Rather than appearing over the surface of the nanomaterial, this is actually what the cell sees. | [19] |
CS NPs | FBS, biological buffer, and serum | Protein coronas of different compositions | Protein corona adsorption on the HA-chitosan nanoparticle influenced the interaction with the HA-receptor i.e., CDD4 mediated cellular uptake. | [37] |
Colloidal silica nanoparticles | FBS in Phosphate Buffer Saline (PBS) | Protein corona of varying molecular weight ranges (MW< 17 kDa to >135 kDa) were accessed on the silica particle according to the protein band intensity. | The colloidal destability of the nanoparticles was overcome by adding depletant polymers, Pluronic-F127 and PEG, of different molecular weights. The interaction between the polymer and the nanoparticle had a minimal impact on protein access by the nanoparticle surface upon incubation with serum. The serum protein had a significant effect on the corona profile compared to other polymers. | [9] |
AgNPs | Model protein environments for the self-evolution of corona | Model protein BSA | These polymers, polyethyleneimine (PEI), polyvinylpyrrolidone (PVP), and poly(2-vinyl pyridine)-b-poly(ethylene oxide) (PEO-b-P2VP) were applied as stabilizing agents. The PEO-b-P2VP and PVP-stabilized nanoparticles were reported to be inert to the protein’s adsorption. The PEI-stabilized AgNPs had substantial interactions with BSA. | [10] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhter, M.H.; Khalilullah, H.; Gupta, M.; Alfaleh, M.A.; Alhakamy, N.A.; Riadi, Y.; Md, S. Impact of Protein Corona on the Biological Identity of Nanomedicine: Understanding the Fate of Nanomaterials in the Biological Milieu. Biomedicines 2021, 9, 1496. https://doi.org/10.3390/biomedicines9101496
Akhter MH, Khalilullah H, Gupta M, Alfaleh MA, Alhakamy NA, Riadi Y, Md S. Impact of Protein Corona on the Biological Identity of Nanomedicine: Understanding the Fate of Nanomaterials in the Biological Milieu. Biomedicines. 2021; 9(10):1496. https://doi.org/10.3390/biomedicines9101496
Chicago/Turabian StyleAkhter, Md Habban, Habibullah Khalilullah, Manish Gupta, Mohamed A. Alfaleh, Nabil A. Alhakamy, Yassine Riadi, and Shadab Md. 2021. "Impact of Protein Corona on the Biological Identity of Nanomedicine: Understanding the Fate of Nanomaterials in the Biological Milieu" Biomedicines 9, no. 10: 1496. https://doi.org/10.3390/biomedicines9101496
APA StyleAkhter, M. H., Khalilullah, H., Gupta, M., Alfaleh, M. A., Alhakamy, N. A., Riadi, Y., & Md, S. (2021). Impact of Protein Corona on the Biological Identity of Nanomedicine: Understanding the Fate of Nanomaterials in the Biological Milieu. Biomedicines, 9(10), 1496. https://doi.org/10.3390/biomedicines9101496