Peripheral Infection after Traumatic Brain Injury Augments Excitability in the Perilesional Cortex and Dentate Gyrus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Induction of TBI by Lateral FPI
2.3. Magnetic Resonance Imaging (MRI)
2.4. Lipopolysaccharide (LPS) Injection
2.5. Electrode Implantation for Electroencephalogram (EEG) Monitoring
2.6. Video-EEG Monitoring and Analysis of Occurrence of Spontaneous Seizures
2.7. Pentylenetetrazole (PTZ) Seizure Susceptibility Test
2.8. Histology
2.9. Assessment of the Density of c-Fos Immunoreactive Neurons in the Perilesional and Corresponding Contralateral Cortex
2.10. Statistical Analysis
3. Results
3.1. Impact Pressure, Occurrence of Post-Impact Seizure-Like Behavior, Apnea Time, and Mortality
3.2. MRI Indicated Equal Distribution of TBIFI and TBICF Endophenotypes at 6 Weeks Post-TBI
3.3. Spontaneous Seizures and Epileptiform Discharges
3.4. Peripheral Infection at 8 Weeks Post-TBI Increased Seizure Susceptibility in the PTZ Test
3.5. Peripheral Infection at 8 Weeks Post-TBI Enhanced PTZ-Induced c-Fos Expression in the Perilesional Cortex and Dentate Gyrus
3.6. Topography of PTZ-Induced c-Fos Expression along the Rostrocaudal Extent of Cortical Lesion
3.7. Laminar Analysis of PTZ-Induced c-Fos Expression
3.8. Effect of Lesion Endophenotype on the Pattern of c-Fos Expression
3.9. Effect of the Occurrence of PTZ-Induced Seizures on the Pattern of c-Fos Expression
4. Discussion
4.1. Occurrence of Late Spontaneous Seizures
4.2. Peripheral Infection at a Chronic Time-Point Post-TBI Increased Seizure Susceptibility
4.3. TBI-Induced Perilesional Cortical Neuronal c-Fos Expression Was Augmented by LPS Treatment
4.4. TBI-Induced Neuronal c-Fos Expression in the Dentate Gyrus Was Augmented by LPS Treatment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Annegers, J.F.; Hauser, W.A.; Coan, S.P.; Rocca, W.A. A Population-Based Study of Seizures after Traumatic Brain Injuries. N. Engl. J. Med. 1998, 338, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Haltiner, A.M.; Temkin, N.R.; Dikmen, S.S. Risk of seizure recurrence after the first late posttraumatic seizure. Arch. Phys. Med. Rehabil. 1997, 78, 835–840. [Google Scholar] [CrossRef]
- Pitkänen, A.; Immonen, R. Epilepsy Related to Traumatic Brain Injury. Neurotherapeutics 2014, 11, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Pitkänen, A.; McIntosh, T.K. Animal Models of Post-Traumatic Epilepsy. J. Neurotrauma 2006, 23, 241–261. [Google Scholar] [CrossRef] [PubMed]
- Immonen, R.J.; Kharatishvili, I.; Niskanen, J.-P.; Gröhn, H.; Pitkänen, A.; Gröhn, O.H. Distinct MRI pattern in lesional and perilesional area after traumatic brain injury in rat—11 months follow-up. Exp. Neurol. 2009, 215, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Herman, S.T. Epilepsy after brain insult: Targeting epileptogenesis. Neurology 2002, 59, S21–S26. [Google Scholar] [CrossRef]
- Frey, L.C. Epidemiology of Posttraumatic Epilepsy: A Critical Review. Epilepsia 2003, 44, 11–17. [Google Scholar] [CrossRef]
- Pitkänen, A.; Bolkvadze, T.; Immonen, R. Anti-epileptogenesis in rodent post-traumatic epilepsy models. Neurosci. Lett. 2011, 497, 163–171. [Google Scholar] [CrossRef]
- Pitkänen, A.; Ndode-Ekane, X.E.; Lapinlampi, N.; Puhakka, N. Epilepsy biomarkers—Toward etiology and pathology specificity. Neurobiol. Dis. 2019, 123, 42–58. [Google Scholar] [CrossRef]
- McGinn, M.J.; Povlishock, J.T. Cellular and molecular mechanisms of injury and spontaneous recovery. Handb. Clin. Neurol. 2015, 127, 67–87. [Google Scholar] [CrossRef]
- Combrinck, M.; Perry, V.; Cunningham, C. Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience 2002, 112, 7–11. [Google Scholar] [CrossRef]
- Terrone, G.; Balosso, S.; Pauletti, A.; Ravizza, T.; Vezzani, A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology 2019, 167, 107742. [Google Scholar] [CrossRef]
- Van Vliet, E.A.; Ndode-Ekane, X.E.; Lehto, L.J.; Gorter, J.A.; Andrade, P.; Aronica, E.; Gröhn, O.; Pitkänen, A. Long-lasting blood-brain barrier dysfunction and neuroinflammation after traumatic brain injury. Neurobiol. Dis. 2020, 145, 105080. [Google Scholar] [CrossRef] [PubMed]
- Mrcp, A.F.R.; Brooks, D.J.; Greenwood, R.J.; Bose, S.K.; Turkheimer, F.E.; Kinnunen, K.M.; Gentleman, S.; Heckemann, R.A.; Gunanayagam, K.; Gelosa, G.; et al. Inflammation after trauma: Microglial activation and traumatic brain injury. Ann. Neurol. 2011, 70, 374–383. [Google Scholar] [CrossRef]
- Helling, T.S.; Evans, L.L.; Fowler, D.L.; Hays, L.V.; Kennedy, F.R. Infectious Complications in Patients with Severe Head Injury. J. Trauma Inj. Infect. Crit. Care 1988, 28, 1575–1577. [Google Scholar] [CrossRef]
- Dziedzic, T.; Slowik, A.; Szczudlik, A. Nosocomial infections and immunity: Lesson from brain-injured patients. Crit. Care 2004, 8, 266–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison-Felix, C.; Whiteneck, G.; DeVivo, M.J.; Hammond, F.M.; Jha, A. Causes of Death Following 1 Year Postinjury Among Individuals with Traumatic Brain Injury. J. Head Trauma Rehabil. 2006, 21, 22–33. [Google Scholar] [CrossRef]
- Kourbeti, I.; Vakis, A.; Papadakis, J.; Karabetsos, D.; Bertsias, G.; Filippou, M.; Ioannou, A.; Neophytou, C.; Anastasaki, M.; Samonis, G. Infections in traumatic brain injury patients. Clin. Microbiol. Infect. 2012, 18, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhillon, N.K.; Tseng, J.; Barmparas, G.; Harada, M.Y.; Ko, A.; Smith, E.J.; Thomsen, G.M.; Ley, E.J. Impact of early positive cultures in the elderly with traumatic brain injury. J. Surg. Res. 2018, 224, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Shultz, S.R.; Robinson, M.; Belli, A.; Hibbs, M.L.; O’Brien, T.; Semple, B.D. Infections after a traumatic brain injury: The complex interplay between the immune and neurological systems. Brain Behav. Immun. 2019, 79, 63–74. [Google Scholar] [CrossRef]
- Weisbrod, A.B.; Rodriguez, C.; Bell, R.; Neal, C.; Armonda, R.; Dorlac, W.; Schreiber, M.; Dunne, J.R. Long-term outcomes of combat casualties sustaining penetrating traumatic brain injury. J. Trauma Acute Care Surg. 2012, 73, 1525–1530. [Google Scholar] [CrossRef]
- Saadat, S.; Akbari, H.; Khorramirouz, R.; Mofid, R.; Rahimi-Movaghar, V. Determinants of mortality in patients with traumatic brain injury. Ulus. Travma Acil. Cerrahi. Derg. 2012, 18, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Mazarati, A.; Medel-Matus, J.; Shin, D.; Jacobs, J.P.; Sankar, R. Disruption of intestinal barrier and endotoxemia after traumatic brain injury: Implications for post-traumatic epilepsy. Epilepsia 2021, 62, 1472–1481. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, T.; Vink, R.; Noble, L.; Yamakami, I.; Fernyak, S.; Soares, H.; Faden, A. Traumatic brain injury in the rat: Characterization of a lateral fluid-percussion model. Neuroscience 1989, 28, 233–244. [Google Scholar] [CrossRef]
- Kharatishvili, I.; Sierra, A.; Immonen, R.J.; Gröhn, O.H.; Pitkänen, A. Quantitative T2 mapping as a potential marker for the initial assessment of the severity of damage after traumatic brain injury in rat. Exp. Neurol. 2009, 217, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Ndode-Ekane, X.E.; Kharatishvili, I.; Pitkänen, A. Unfolded Maps for Quantitative Analysis of Cortical Lesion Location and Extent after Traumatic Brain Injury. J. Neurotrauma 2017, 34, 459–474. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, J.K.; Airaksinen, A.M.; Barba, C.; Colicchio, G.; Niskanen, J.-P.; Shatillo, A.; Lopez, A.S.; Ndode-Ekane, X.E.; Pitkanen, A.; Gröhn, O.H. Detection of Hyperexcitability by Functional Magnetic Resonance Imaging after Experimental Traumatic Brain Injury. J. Neurotrauma 2018, 35, 2708–2717. [Google Scholar] [CrossRef]
- Park, B.S.; Lee, J.-O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 2013, 45, e66. [Google Scholar] [CrossRef] [Green Version]
- Kharatishvili, I.; Nissinen, J.; McIntosh, T.; Pitkänen, A. A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 2006, 140, 685–697. [Google Scholar] [CrossRef]
- Nissinen, J.; Halonen, T.; Koivisto, E.; Pitkänen, A. A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res. 1999, 38, 177–205. [Google Scholar] [CrossRef]
- Racine, R.J. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 1972, 32, 281–294. [Google Scholar] [CrossRef]
- Rodgers, K.; Dudek, F.E.; Barth, D.S. Progressive, Seizure-Like, Spike-Wave Discharges Are Common in Both Injured and Uninjured Sprague-Dawley Rats: Implications for the Fluid Percussion Injury Model of Post-Traumatic Epilepsy. J. Neurosci. 2015, 35, 9194–9204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, D.; Campbell, M.J.; Morrison, J.H. An immunohistochemical characterization of somatostatin-28 and somatostatin-281-12 in monkey prefrontal cortex. J. Comp. Neurol. 1986, 248, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Thompson, H.J.; Lifshitz, J.; Marklund, N.; Grady, M.S.; Graham, D.I.; Hovda, D.A.; McIntosh, T.K. Lateral Fluid Percussion Brain Injury: A 15-Year Review and Evaluation. J. Neurotrauma 2005, 22, 42–75. [Google Scholar] [CrossRef] [PubMed]
- Dubreuil, C.I.; Marklund, N.; Deschamps, K.; McIntosh, T.K.; McKerracher, L. Activation of Rho after traumatic brain injury and seizure in rats. Exp. Neurol. 2006, 198, 361–369. [Google Scholar] [CrossRef]
- Reid, A.Y.; Bragin, A.; Giza, C.C.; Staba, R.J.; Engel, J. The progression of electrophysiologic abnormalities during epileptogenesis after experimental traumatic brain injury. Epilepsia 2016, 57, 1558–1567. [Google Scholar] [CrossRef] [Green Version]
- Szyndler, J.; Maciejak, P.; Turzyńska, D.; Sobolewska, A.; Taracha, E.; Skórzewska, A.; Lehner, M.; Bidziński, A.; Hamed, A.; Wisłowska-Stanek, A.; et al. Mapping of c-Fos expression in the rat brain during the evolution of pentylenetetrazol-kindled seizures. Epilepsy Behav. 2009, 16, 216–224. [Google Scholar] [CrossRef]
- Sayyah, M.; Javad-Pour, M.; Ghazi-Khansari, M. The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: Involvement of proinflammatory factors: Nitric oxide and prostaglandins. Neuroscience 2003, 122, 1073–1080. [Google Scholar] [CrossRef]
- Galic, M.A.; Riazi, K.; Heida, J.G.; Mouihate, A.; Fournier, N.M.; Spencer, S.; Kalynchuk, L.E.; Teskey, G.C.; Pittman, Q. Postnatal Inflammation Increases Seizure Susceptibility in Adult Rats. J. Neurosci. 2008, 28, 6904–6913. [Google Scholar] [CrossRef]
- Riazi, K.; Galic, M.A.; Kuzmiski, B.; Ho, W.; Sharkey, K.; Pittman, Q.J. Microglial activation and TNF production mediate altered CNS excitability following peripheral inflammation. Proc. Natl. Acad. Sci. USA 2008, 105, 17151–17156. [Google Scholar] [CrossRef] [Green Version]
- Auvin, S.; Shin, D.; Mazarati, A.; Sankar, R. Inflammation induced by LPS enhances epileptogenesis in immature rat and may be partially reversed by IL1RA. Epilepsia 2010, 51, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Riazi, K.; Galic, M.A.; Pittman, Q.J. Contributions of peripheral inflammation to seizure susceptibility: Cytokines and brain excitability. Epilepsy Res. 2010, 89, 34–42. [Google Scholar] [CrossRef]
- Eun, B.; Abraham, J.; Mlsna, L.; Kim, M.J.; Koh, S. Lipopolysaccharide potentiates hyperthermia-induced seizures. Brain Behav. 2015, 5, e00348. [Google Scholar] [CrossRef]
- Ho, Y.-H.; Lin, Y.-T.; Wu, C.-W.J.; Chao, Y.-M.; Chang, A.Y.W.; Chan, J.Y.H. Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. J. Biomed. Sci. 2015, 22, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenn, A.M.; Gensel, J.C.; Huang, Y.; Popovich, P.G.; Lifshitz, J.; Godbout, J.P. Immune Activation Promotes Depression 1 Month After Diffuse Brain Injury: A Role for Primed Microglia. Biol. Psychiatry 2013, 76, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Muccigrosso, M.M.; Ford, J.; Benner, B.; Moussa, D.; Burnsides, C.; Fenn, A.M.; Popovich, P.G.; Lifshitz, J.; Walker, F.R.; Eiferman, D.S.; et al. Cognitive deficits develop 1 month after diffuse brain injury and are exaggerated by microglia-associated reactivity to peripheral immune challenge. Brain Behav. Immun. 2016, 54, 95–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manninen, E.; Chary, K.; Lapinlampi, M.N.; Andrade, P.; Paananen, T.; Sierra, A.; Tohka, J.; Gröhn, O.; Pitkänen, A. Early Increase in Cortical T2 Relaxation Is a Prognostic Biomarker for the Evolution of Severe Cortical Damage, but Not for Epileptogenesis, after Experimental Traumatic Brain Injury. J. Neurotrauma 2020, 37, 2580–2594. [Google Scholar] [CrossRef]
- Vuokila, N.; Das Gupta, S.; Huusko, R.; Tohka, J.; Puhakka, N.; Pitkänen, A. Elevated Acute Plasma miR-124-3p Level Relates to Evolution of Larger Cortical Lesion Area after Traumatic Brain Injury. Neuroscience 2020, 433, 21–35. [Google Scholar] [CrossRef]
- Barros, V.N.; Mundim, M.; Galindo, L.T.; Bittencourt, S.; Porcionatto, M.; Mello, L.E. The pattern of c-Fos expression and its refractory period in the brain of rats and monkeys. Front. Cell. Neurosci. 2015, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Dragunow, M.; Robertson, H. Brain injury induces c-fos protein(s) in nerve and glial-like cells in adult mammalian brain. Brain Res. 1988, 455, 295–299. [Google Scholar] [CrossRef]
- Yang, K.; Mu, X.; Xue, J.; Whitson, J.; Salminen, A.; Dixon, C.; Liu, P.; Hayes, R. Increased expression of c-fos mRNA and AP-1 transcription factors after cortical impact injury in rats. Brain Res. 1994, 664, 141–147. [Google Scholar] [CrossRef]
- Raghupathi, R.; Welsh, F.A.; Lowenstein, D.H.; Gennarelli, T.A.; McIntosh, T.K. Regional Induction of c-Fosand Heat Shock Protein-72 mRNA following Fluid-Percussion Brain Injury in the Rat. Br. J. Pharmacol. 1995, 15, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghupathi, R.; McIntosh, T.K. Regionally and temporally distinct patterns of induction of c-fos, c-jun and junB mRNAs following experimental brain injury in the rat. Mol. Brain Res. 1996, 37, 134–144. [Google Scholar] [CrossRef]
- Gass, P.; Herdegen, T. Neuronal expression of AP-1 proteins in excitotoxic-neurodegenerative disorders and following nerve fiber lesions. Prog. Neurobiol. 1995, 47, 257–290. [Google Scholar] [CrossRef]
Parameter | Sham (1/5) | TBI + Veh (5/11) | TBI + LPS (8/10) |
---|---|---|---|
latency to the first spike (s) | 287 ± 230 | 730 ± 765 | 374 ± 401 |
latency to the first ED (s) | 288 ± 229 | 775 ± 802 | 400 ± 399 |
occurrence of PTZ-induced seizures | 20% | 46% | 80% |
latency to the first electrographic seizure (s) | 1 628 | 604 ± 345 | 331 ± 258 |
mean seizure duration per rat (s) | 24 | 35 ± 19 | 114 ± 53 * |
mean cumulative seizure duration per rat (s) | 24 | 35 ± 19 | 163 ± 90 ** |
mean behavioral seizure score per rat | 3 | 3.2 ± 2.0 | 4.0 ± 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Andrade, P.; Pitkänen, A. Peripheral Infection after Traumatic Brain Injury Augments Excitability in the Perilesional Cortex and Dentate Gyrus. Biomedicines 2021, 9, 1946. https://doi.org/10.3390/biomedicines9121946
Wang Y, Andrade P, Pitkänen A. Peripheral Infection after Traumatic Brain Injury Augments Excitability in the Perilesional Cortex and Dentate Gyrus. Biomedicines. 2021; 9(12):1946. https://doi.org/10.3390/biomedicines9121946
Chicago/Turabian StyleWang, Ying, Pedro Andrade, and Asla Pitkänen. 2021. "Peripheral Infection after Traumatic Brain Injury Augments Excitability in the Perilesional Cortex and Dentate Gyrus" Biomedicines 9, no. 12: 1946. https://doi.org/10.3390/biomedicines9121946
APA StyleWang, Y., Andrade, P., & Pitkänen, A. (2021). Peripheral Infection after Traumatic Brain Injury Augments Excitability in the Perilesional Cortex and Dentate Gyrus. Biomedicines, 9(12), 1946. https://doi.org/10.3390/biomedicines9121946