Joint Tumor Bud–MMP/TIMP Count at the Invasive Front Improves the Prognostic Evaluation of Invasive Breast Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Definition of Tumor Budding
2.3. Tissue Arrays
2.4. Immunohistochemistry
2.5. Statistical Analysis
3. Results
3.1. Bud Quantification and Its Relationship with Clinical Outcome and Clinicopathological Features
3.2. Expression of MMPs and TIMPs at the Invasive Front and Their Relationship with Tumor Budding Grade
3.3. Single Combination of Tumor Budding Grade and MMP/TIMP Expression Improves Prognostic Evaluation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehlen, P.; Puisieux, A. Metastasis: A question of life or death. Nat. Rev. Cancer 2006, 6, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Koelzer, V.H.; Zlobec, I.; Lugli, A. Tumor budding in colorectal cancer—ready for diagnostic practice? Hum. Pathol. 2016, 47, 4–19. [Google Scholar] [CrossRef]
- Grigore, A.D.; Jolly, M.K.; Jia, D.; Farach-Carson, M.C.; Levine, H. Tumor Budding: The Name is EMT. Partial EMT. J. Clin. Med. 2016, 5, 51. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.M.; Kevans, D.; Mulcahy, H.; O’Sullivan, J.; Fennelly, D.; Hyland, J.; O’Donoghue, D.; Sheahan, K. Tumor Budding is a Strong and Reproducible Prognostic Marker in T3N0 Colorectal Cancer. Am. J. Surg. Pathol. 2009, 33, 134–141. [Google Scholar] [CrossRef]
- Compton, C.C. Pathology and prognostic determinants of colorectal cancer. Available online: https://www.uptodate.com/contents/pathology-and-prognostic-determinants-of-colorectal-cancer (accessed on 22 January 2021).
- Schmoll, H.J.; Van Cutsem, E.; Stein, A.; Valentini, V.; Glimelius, B.; Haustermans, K.; Nordlinger, B.; Van De Velde, C.J.; Balmana, J.; Regula, J.; et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann. Oncol. 2012, 23, 2479–2516. [Google Scholar] [CrossRef]
- Niwa, Y.; Yamada, S.; Koike, M.; Kanda, M.; Fujii, T.; Nakayama, G.; Sugimoto, H.; Nomoto, S.; Fujiwara, M.; Kodera, Y. Epithelial to mesenchymal transition correlates with tumor budding and predicts prognosis in esophageal squamous cell carcinoma. J. Surg. Oncol. 2014, 110, 764–769. [Google Scholar] [CrossRef]
- Sarioglu, S.; Acara, C.; Akman, F.C.; Dag, N.; Ecevit, C.; Ikiz, A.O.; Cetinayak, O.H.; Ada, E. Tumor budding as a prognostic marker in laryngeal carcinoma. Pathol. - Res. Pr. 2010, 206, 88–92. [Google Scholar] [CrossRef]
- Xie, N.; Wang, C.; Liu, X.; Li, R.; Hou, J.; Chen, X.; Huang, H. Tumor budding correlates with occult cervical lymph node metastasis and poor prognosis in clinical early-stage tongue squamous cell carcinoma. J. Oral Pathol. Med. 2014, 44, 266–272. [Google Scholar] [CrossRef]
- Manjula, B.V.; Augustine, S.; Selvam, S.; Mohan, A.M. Prognostic and Predictive Factors in Gingivo Buccal Complex Squamous Cell Carcinoma: Role of Tumor Budding and Pattern of Invasion. Indian J. Otolaryngol. Head Neck Surg. 2015, 67, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Ishii, G.; Kojima, M.; Yoh, K.; Otsuka, H.; Otaki, Y.; Aokage, K.; Yanagi, S.; Nagai, K.; Nishiwaki, Y.; et al. Histopathologic Features of the Tumor Budding in Adenocarcinoma of the Lung: Tumor Budding As an Index to Predict the Potential Aggressiveness. J. Thorac. Oncol. 2010, 5, 1361–1368. [Google Scholar] [CrossRef] [Green Version]
- Karamitopoulou, E.; Zlobec, I.; Born, D.; Kondi-Pafiti, A.; Lykoudis, P.; Mellou, A.; Gennatas, K.; Gloor, B.; Lugli, A. Tumour budding is a strong and independent prognostic factor in pancreatic cancer. Eur. J. Cancer 2013, 49, 1032–1039. [Google Scholar] [CrossRef]
- Fukumoto, K.; Kikuchi, E.; Mikami, S.; Ogihara, K.; Matsumoto, K.; Miyajima, A.; Oya, M. Tumor budding, a novel prognostic indicator for predicting stage progression in T1 bladder cancers. Cancer Sci. 2016, 107, 1338–1344. [Google Scholar] [CrossRef]
- Che, K.; Zhao, Y.; Qu, X.; Pang, Z.; Ni, Y.; Zhang, T.; Du, J.; Shen, H. Prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma. OncoTargets Ther. 2017, 10, 1039–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, F.; Cao, W.; Wang, Y.; Li, L.; Zhang, G.; Wang, Z. The prognostic value of tumor budding in invasive breast cancer. Pathol. - Res. Pr. 2013, 209, 269–275. [Google Scholar] [CrossRef]
- Salhia, B.; Trippel, M.; Pfaltz, K.; Cihoric, N.; Grogg, A.; Lädrach, C.; Zlobec, I.; Tapia, C. High tumor budding stratifies breast cancer with metastatic properties. Breast Cancer Res. Treat. 2015, 150, 363–371. [Google Scholar] [CrossRef] [Green Version]
- A Gujam, F.J.; McMillan, D.C.; A Mohammed, Z.M.; Edwards, J.; Going, J.J. The relationship between tumour budding, the tumour microenvironment and survival in patients with invasive ductal breast cancer. Br. J. Cancer 2015, 113, 1066–1074. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wei, B.; Sonmez, C.; Li, Z.; Peng, L. High tumor budding count is associated with adverse clinicopathologic features and poor prognosis in breast carcinoma. Hum. Pathol. 2017, 66, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Brabletz, T.; Jung, A.; Spaderna, S.; Hlubek, F.; Kirchner, T. Migrating cancer stem cells — an integrated concept of malignant tumour progression. Nat. Rev. Cancer 2005, 5, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.R.; Fingleton, B.; Rothenberg, M.L.; Matrisian, L.M. Matrix Metalloproteinases: Biologic Activity and Clinical Implications. J. Clin. Oncol. 2000, 18, 1135. [Google Scholar] [CrossRef]
- González, L.; González-Reyes, S.; Marín, L.; González, L.; González, J.M.; Lamelas, M.L.; Merino, A.M.; Rodríguez, E.; Pidal, I.; Del Casar, J.M.; et al. Comparative analysis and clinical value of the expression of metalloproteases and their inhibitors by intratumour stromal mononuclear inflammatory cells and those at the invasive front of breast carcinomas. Histopathol. 2010, 57, 862–876. [Google Scholar] [CrossRef]
- Vizoso, F.J.; O González, L.; Corte, M.D.; Rodríguez, J.C.; Vázquez, J.; Lamelas, M.L.; Junquera, S.; Merino, A.M.; García-Muñiz, J.L. Study of matrix metalloproteinases and their inhibitors in breast cancer. Br. J. Cancer 2007, 96, 903–911. [Google Scholar] [CrossRef] [Green Version]
- Del Casar, J.M.; Alvarez, E.; Junquera, S.; Marin, L.; Bongera, M.; Vazquez, J.; Vizoso, F.J.; González, L.O.; González, L. Comparative analysis and clinical value of the expression of metalloproteases and their inhibitors by intratumor stromal fibroblasts and those at the invasive front of breast carcinomas. Breast Cancer Res. Treat. 2009, 116, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Eiró, N.; Fernandez-Garcia, B.; Vázquez, J.; Del Casar, J.M.; O González, L.; Vizoso, F.J. A phenotype from tumor stroma based on the expression of metalloproteases and their inhibitors, associated with prognosis in breast cancer. OncoImmunology 2015, 4, e992222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, B.D.; Maguire, A.; Conlon, N.; Gibbons, D.; Wang, L.M.; Sheahan, K. Reproducibility of the Rapid Bud Count Method for Assessment of Tumor Budding in Stage II Colorectal Cancer. Am. J. Surg. Pathol. 2010, 34, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Karamitopoulou, E.; Zlobec, I.; Kölzer, V.; Kondi-Pafiti, A.; Patsouris, E.S.; Gennatas, K.; Lugli, A. Proposal for a 10-high-power-fields scoring method for the assessment of tumor budding in colorectal cancer. Mod. Pathol. 2012, 26, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lugli, A.; Kirsch, R.; Ajioka, Y.; Bosman, F.; Cathomas, G.; Dawson, H.; El Zimaity, H.; Fléjou, J.-F.; Hansen, T.P.; Hartmann, A.; et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod. Pathol. 2017, 30, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, L.; Pidal, I.; Junquera, S.; Corte, M.D.; Vazquez, J.; Rodríguez, J.C.; Lamelas, M.L.; Merino, A.M.; García-Muñiz, J.L.; Vizoso, F.J. Overexpression of matrix metalloproteinases and their inhibitors in mononuclear inflammatory cells in breast cancer correlates with metastasis-relapse. Br. J. Cancer 2007, 97, 957–963. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.P.; Vierkant, R.A.; Tillmans, L.S.; Wang, A.H.; Laird, P.W.; Weisenberger, D.J.; Lynch, C.F.; French, A.J.; Slager, S.L.; Raissian, Y.; et al. Tumor Budding in Colorectal Carcinoma. Am. J. Surg. Pathol. 2015, 39, 1340–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrelli, F.; Pezzica, E.; Cabiddu, M.; Coinu, A.; Borgonovo, K.; Ghilardi, M.; Lonati, V.; Corti, D.; Barni, S. Tumour Budding and Survival in Stage II Colorectal Cancer: A Systematic Review and Pooled Analysis. J. Gastrointest. Cancer 2015, 46, 212–218. [Google Scholar] [CrossRef]
- Karamitopoulou, E.; Gloor, B. Tumour budding is a strong and independent prognostic factor in pancreatic cancer. Reply to Comment. Eur. J. Cancer 2013, 49, 2458–2459. [Google Scholar] [CrossRef]
- Zlobec, I.; Lugli, A. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: Tumor budding as oncotarget. Oncotarget 2010, 1, 651–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laedrach, C.; Salhia, B.; Cihoric, N.; Zlobec, I.; Tapia, C. Immunophenotypic profile of tumor buds in breast cancer. Pathol. - Res. Pr. 2018, 214, 25–29. [Google Scholar] [CrossRef]
- Bronsert, P.; Enderle-Ammour, K.; Bader, M.; Timme, S.; Kuehs, M.; Csanadi, A.; Kayser, G.; Kohler, I.; Bausch, D.; Hoeppner, J.; et al. Cancer cell invasion and EMT marker expression: A three-dimensional study of the human cancer-host interface. J. Pathol. 2014, 234, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Enderle-Ammour, K.; Bader, M.; Ahrens, T.D.; Franke, K.; Timme, S.; Csanadi, A.; Hoeppner, J.; Kulemann, B.; Maurer, J.; Reiss, P.; et al. Form follows function: Morphological and immunohistological insights into epithelial–mesenchymal transition characteristics of tumor buds. Tumor Biol. 2017, 39, 1010428317705501. [Google Scholar] [CrossRef] [Green Version]
- Koukourakis, M.I.; Giatromanolaki, A.; Harris, A.L.; Sivridis, E. Comparison of Metabolic Pathways between Cancer Cells and Stromal Cells in Colorectal Carcinomas: A Metabolic Survival Role for Tumor-Associated Stroma. Cancer Res. 2006, 66, 632–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, L.; Eiró, N.; Gonzalez, L.O.; Dominguez, F.; Vizoso, F.J.; Fernandez-Garcia, B. Gene expression profile of normal and cancer-associated fibroblasts according to intratumoral inflammatory cells phenotype from breast cancer tissue. Mol. Carcinog. 2015, 55, 1489–1502. [Google Scholar] [CrossRef] [PubMed]
- Sternlicht, M.D.; Werb, Z. How Matrix Metalloproteinases Regulate Cell Behavior. Annu. Rev. Cell Dev. Biol. 2001, 17, 463–516. [Google Scholar] [CrossRef] [Green Version]
- Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2002, 2, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Fingleton, B.; Vargo-Gogola, T.; Crawford, H.C.; Matrisian, L.M. Matrilysin [MMP-7] Expression Selects for Cells with Reduced Sensitivity to Apoptosis. Neoplasia 2001, 3, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Stetler-Stevenson, W.G. Matrix metalloproteinases in angiogenesis: A moving target for therapeutic intervention. J. Clin. Investig. 1999, 103, 1237–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hynes, R.O. The extracellular matrix: Not just pretty fibrils. Science 2009, 326, 1216–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, R.; Yang, J.; Moses, M.A. Matrix Metalloproteinases As Novel Biomarker s and Potential Therapeutic Targets in Human Cancer. J. Clin. Oncol. 2009, 27, 5287–5297. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Massagué, J. Epithelial-Mesenchymal Transitions. Cell 2004, 118, 277–279. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Sakai, T.; Noguchi, Y.; Takita, M.; Hirakawa, S.; Ito, A. Tumor–stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases. Gynecol. Oncol. 2004, 92, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Goldberg, I.D.; Shi, Y.E. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 2002, 21, 2245–2252. [Google Scholar] [CrossRef] [Green Version]
- Guedez, L.; McMarlin, A.J.; Kingma, D.W.; Bennett, T.A.; Stetler-Stevenson, M.; Stetler-Stevenson, W.G. Tissue Inhibitor of Metalloproteinase-1 Alters the Tumorigenicity of Burkitt’s Lymphoma via Divergent Effects on Tumor Growth and Angiogenesis. Am. J. Pathol. 2001, 158, 1207–1215. [Google Scholar] [CrossRef]
- Boulay, A.; Masson, R.; Chenard, M.P.; El Fahime, M.; Cassard, L.; Bellocq, J.P.; Sautès-Fridman, C.; Basset, P.; Rio, M.C. High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase. Cancer Res. 2001, 61, 2189–2193. [Google Scholar]
- Eiró, N.; Pidal, I.; Fernández-García, B.; Junquera, S.; Lamelas, M.L.; Del Casar, J.M.; Gonzalez, L.O.; López-Muñiz, A.; Vizoso, F.J. Impact of CD68/(CD3+CD20) Ratio at the Invasive Front of Primary Tumors on Distant Metastasis Development in Breast Cancer. PLOS ONE 2012, 7, e52796. [Google Scholar] [CrossRef] [Green Version]
- Eiró, N.; González, L.; Gonzalez, L.O.; Fernández-García, B.; Lamelas, M.L.; Marín, L.; Gonzalez-Reyes, S.; Del Casar, J.M.; Vizoso, F.J. Relationship between the Inflammatory Molecular Profile of Breast Carcinomas and Distant Metastasis Development. PLOS ONE 2012, 7, e49047. [Google Scholar] [CrossRef] [Green Version]
- Eiró, N.; Fernandez-Garcia, B.; González, L.O.; Vizoso, F.J. Cytokines related to MMP-11 expression by inflammatory cells and breast cancer metastasis. OncoImmunology 2013, 2, e24010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eiró, N.; González, L.; Martínez-Ordóñez, A.; Fernández-García, B.; Gonzalez, L.O.; Cid, S.; Dominguez, F.; Pérez-Fernandez, R.; Vizoso, F.J. Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis. Cell. Oncol. 2018, 41, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zlobec, I.; Hädrich, M.; Dawson, H.; Koelzer, V.H.; Borner, M.; Mallaev, M.; Schnüriger, B.; Inderbitzin, D.; Lugli, A. Intratumoural budding (ITB) in preoperative biopsies predicts the presence of lymph node and distant metastases in colon and rectal cancer patients. Br. J. Cancer 2013, 110, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Lugli, A.; Vlajnic, T.; Giger, O.; Karamitopoulou, E.; Patsouris, E.S.; Peros, G.; Terracciano, L.M.; Zlobec, I. Intratumoral budding as a potential parameter of tumor progression in mismatch repair–proficient and mismatch repair–deficient colorectal cancer patients. Hum. Pathol. 2011, 42, 1833–1840. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Without Recurrence | With Recurrence |
---|---|---|
Nº (%) | Nº (%) | |
Total cases | 76(100) | 77(100) |
Age (years) | ||
≤55 | 40(52.6) | 40(51.9) |
>55 | 36(47.4) | 37(48.1) |
Menopausal status | ||
Premenopausal | 21(27.6) | 22(28.6) |
Postmenopausal | 55(72.4) | 55(71.4) |
Tumor size | ||
T1 | 42(55.3) | 30(39.0) |
T2 | 34(44.7) | 47(61.0) |
Nodal status | ||
N(-) | 34(51.5) | 30(39.0) |
N(+) | 32(48.5) | 47(61.0) |
Histological grade | ||
Well Dif. | 33(43.4) | 17(22.1) |
Mod. Dif. | 21(27.6) | 34(44.2) |
Poorly Dif. | 22(28.9) | 26(33.8) |
Estrogen receptors | ||
Negative | 18(23.7) | 32(41.6) |
Positive | 58(76.3) | 45 (58.4) |
Progesterone receptors | ||
Negative | 22(28.9) | 41(53.2) |
Positive | 54(71.1) | 36(46.8) |
Tumor stage | ||
I | 22(28.9) | 16(20.8) |
II | 46(60.5) | 39(50.6) |
III | 8(10.5) | 22(28.6) |
HER2 status | ||
Negative | 55(72.4) | 52 (67.5) |
Positive | 19(25.0) | 20(26.0) |
Molecular types | ||
Luminal A | 41(53.9) | 26 (33.8) |
Luminal B | 20(26.3) | 23(29.9) |
HER2 | 4(5.3) | 6(7.8) |
Basal-like | 9(11.8) | 17(22.1) |
Groups of treatment | ||
TMX | 28(36.8) | 19(24.7) |
CMT | 21(27.6) | 28(36.4) |
TMX+CMT | 21(27.6) | 17(22.1) |
No treatment | 6(7.9) | 13(16.9) |
Characteristics | Low-Grade Budding (≤4) | High-Grade Budding (>4) | p Value |
---|---|---|---|
Nº (%) | Nº (%) | ||
Total cases | 74(100) | 79(100) | |
Age (years) | 0.011 | ||
≤55 | 47(52.6) | 33 (51.9) | |
>55 | 27 (47.4) | 46 (48.1) | |
Menopausal status | 0.183 | ||
Premenopausal | 25(27.6) | 18(28.6) | |
Postmenopausal | 49(72.4) | 61 (71.4) | |
Tumor size | 0.130 | ||
T1 | 40(55.3) | 32 (39.0) | |
T2 | 34(44.7) | 47(61.0) | |
Nodal status | 0.777 | ||
N(-) | 32(51.5) | 37(39.0) | |
N(+) | 42(48.5) | 42(61.0) | |
Histological grade | 0.666 | ||
Well Dif. | 25(43.4) | 25(22.1) | |
Mod. Dif. | 24(27.6) | 31(44.2) | |
Poorly Dif. | 25(28.9) | 23(33.8) | |
Estrogen receptors | 0.913 | ||
Negative | 25 (23.7) | 25(41.6) | |
Positive | 49(76.3) | 54 (58.4) | |
Progesterone receptors | 0.750 | ||
Negative | 29(28.9) | 34(53.2) | |
Positive | 45(71.1) | 45(46.8) | |
Tumor stage | 0.139 | ||
I | 23(28.9) | 15(20.8) | |
II | 40(60.5) | 45(50.6) | |
III | 11(10.5) | 19 (28.6) | |
HER2 status | 0.307 | ||
Negative | 56(72.4) | 51 (67.5) | |
Positive | 16(25.0) | 23(26.0) | |
Molecular types | 0.520 | ||
Luminal A | 35(53.9) | 32 (33.8) | |
Luminal B | 18(26.3) | 25(29.9) | |
HER2 | 4(5.3) | 6(7.8) | |
Basal-like | 15(11.8) | 11(22.1) | |
Groups of treatment | 0.220 | ||
TMX | 23(36.8) | 24 (24.7) | |
CMT | 26(27.6) | 23(36.4) | |
TMX+CMT | 20(27.6) | 18(22.1) | |
No treatment | 5(7.9) | 14(16.9) |
Low Grade | High Grade | ||||||||
---|---|---|---|---|---|---|---|---|---|
Tumor Cells | MICs | CAFs | Tumor Cells | MICs | CAFs | p Value Tumor Cells | p Value MICs | p Value CAFs | |
MMP-9 | 73 (100) | 25 (34.2) | 40 (54.8) | 73 (94.8) | 24 (31.2) | 40 (51.9) | 0.142 | 0.820 | 0.853 |
MMP-11 | 71 (97.3) | 32 (43.8) | 52 (71.2) | 77 (100) | 40 (51.9) | 67 (87) | 0.453 | 0.406 | 0.029 |
MMP-14 | 65 (89) | 23 (31.5) | 42 (57.5) | 75 (98.7) | 27 (35.5) | 58 (76.3) | 0.034 | 0.729 | 0.024 |
TIMP-1 | 60 (82.2) | 20 (27.4) | 19 (26) | 70 (90.9) | 27 (35.1) | 35 (45.5) | 0.184 | 0.403 | 0.021 |
TIMP-2 | 70 (95.9) | 47 (64.4) | 44 (60.3) | 75 (97.4) | 43 (55.8) | 49 (63.6) | 0.952 | 0.368 | 0.798 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, L.O.; Eiro, N.; Fraile, M.; Sánchez, R.; Andicoechea, A.; Fernández-Francos, S.; Schneider, J.; Vizoso, F.J. Joint Tumor Bud–MMP/TIMP Count at the Invasive Front Improves the Prognostic Evaluation of Invasive Breast Carcinoma. Biomedicines 2021, 9, 196. https://doi.org/10.3390/biomedicines9020196
González LO, Eiro N, Fraile M, Sánchez R, Andicoechea A, Fernández-Francos S, Schneider J, Vizoso FJ. Joint Tumor Bud–MMP/TIMP Count at the Invasive Front Improves the Prognostic Evaluation of Invasive Breast Carcinoma. Biomedicines. 2021; 9(2):196. https://doi.org/10.3390/biomedicines9020196
Chicago/Turabian StyleGonzález, Luis O., Noemi Eiro, María Fraile, Rosario Sánchez, Alejandro Andicoechea, Silvia Fernández-Francos, Jose Schneider, and Francisco J. Vizoso. 2021. "Joint Tumor Bud–MMP/TIMP Count at the Invasive Front Improves the Prognostic Evaluation of Invasive Breast Carcinoma" Biomedicines 9, no. 2: 196. https://doi.org/10.3390/biomedicines9020196
APA StyleGonzález, L. O., Eiro, N., Fraile, M., Sánchez, R., Andicoechea, A., Fernández-Francos, S., Schneider, J., & Vizoso, F. J. (2021). Joint Tumor Bud–MMP/TIMP Count at the Invasive Front Improves the Prognostic Evaluation of Invasive Breast Carcinoma. Biomedicines, 9(2), 196. https://doi.org/10.3390/biomedicines9020196