Synthesis, Characterization, and In Vitro Insulin-Mimetic Activity Evaluation of Valine Schiff Base Coordination Compounds of Oxidovanadium(V)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical Measurements and Elemental Analysis
2.3. Synthesis of the Oxidovanadium(V) Complexes
2.3.1. Synthesis of [{VVO(R-salval)(H2O)}(μ2-O){VVO(R-salval)}] (1a) and [{VVO(S-salval)(H2O)}(μ2-O){VVO(S-salval)}] (1b)
2.3.2. Synthesis of [{VVO(R-vanval)(CH3OH)}2(μ2-O)] (2a) and [{VVO(S-vanval)(CH3OH)}2(μ2-O)] (2b)
2.4. Evaluation of the Solution Stability Over Time
2.5. In Vitro Biological Investigations
2.5.1. Fluorescence Quenching of Serum Albumin
2.5.2. Inhibition of the α-Amylase Activity
2.5.3. Cell Culture
2.5.4. Evaluation of Oxidovanadium(V) Complexes Cytotoxicity
2.5.5. Determination of Intracellular Total PTP Activity
2.5.6. Quantification of the Phosphorylated form of Insulin Receptor
2.6. Statistical Analysis
3. Results and Discussion
3.1. The IR Spectra of the Oxidovanadium(V) Complexes
3.2. The Electronic and CD Spectra of Oxidovanadium(V) Complex Solutions
3.3. X-Ray Crystallographic Analysis
3.3.1. Description of the 1a Structure
3.3.2. Description of the 2a Structure
3.4. Evaluation of Oxidovanadium(V) Complexes Solution Stability Over Time
3.5. Evaluation of Oxidovanadium(V) Complexes Capacity to Bind Serum Albumin
3.6. Anti-Diabetic Activity of Oxidovanadium(V) Complexes
3.6.1. In Vitro α-Amylase Inhibition Test
3.6.2. Cytotoxicity Assay
3.6.3. Quantification of Total PTP Enzymatic Activity and Insulin Receptor Phosphorylation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes: Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Irving, E.; Stoker, A.W. Vanadium Compounds as PTP Inhibitors. Molecules 2017, 22, 2269. [Google Scholar] [CrossRef] [Green Version]
- Marín-Peñalver, J.J.; Martín-Timón, I.; Sevillano-Collantes, C.; Del Cañizo-Gómez, F.J. Update on the treatment of type 2 diabetes mellitus. World J. Diabetes 2016, 7, 354–395. [Google Scholar] [CrossRef]
- Treviño, S.; Díaz, A.; Sánchez-Lara, E.; Sanchez-Gaytan, B.L.; Perez-Aguilar, J.M.; González-Vergara, E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol. Trace Elem. Res. 2019, 188, 68–98. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wei, D.; Ding, W.; Baruah, B.; Crans, D.C. Anti-diabetic Effects of Cesium Aqua (N,N′-ethylene(salicylideneiminato)-5-sulfonato) Oxovanadium (IV) Dihydrate in Streptozotocin-induced Diabetic Rats. Biol. Trace Elem. Res. 2007, 121, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.C.; Yu, Y.; Wang, G.; Wang, K.; Yang, X.G. Bis(acetylacetonato)-oxovanadium(iv), bis(maltolato)-oxovanadium(iv) and sodium metavanadate induce antilipolytic effects by regulating hormone-sensitive lipase and perilipin via activation of Akt. Metallomics 2013, 5, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, M.Z.; Srivastava, A.K. Organo-vanadium compounds are potent activators of the protein kinase B signaling pathway and protein tyrosine phosphorylation: Mechanism of insulinomimesis. Arch. Biochem. Biophys. 2005, 440, 158–164. [Google Scholar] [CrossRef]
- Crans, D.C.; Koehn, J.T.; Petry, S.M.; Glover, C.M.; Wijetunga, A.; Kaur, R.; Levina, A.; Lay, P.A. Hydrophobicity may enhance membrane affinity and anti-cancer effects of Schiff base vanadium(v) catecholate complexes. Dalton Trans. 2019, 48, 6383–6395. [Google Scholar] [CrossRef] [PubMed]
- Levina, A.; Vieira, A.P.; Wijetunga, A.; Kaur, R.; Koehn, J.T.; Crans, D.C.; Lay, P.A. A Short-Lived but Highly Cytotoxic Vanadium(V) Complex as a Potential Drug Lead for Brain Cancer Treatment by Intratumoral Injections. Angew. Chem. Int. Ed. 2020, 59, 15834–15838. [Google Scholar] [CrossRef]
- Taş, N.A.; Senocak, A.; Aydın, A. Preparation and Anticancer Activities of Some Amino Acid Methyl Ester Schiff Bases. J. Turk. Chem. Soc. Sect. A Chem. 2018, 5, 585–606. [Google Scholar] [CrossRef]
- Correia, I.; Marcão, S.; Kočí, K.; Tomaz, I.; Adão, P.; Kiss, T.; Jakusch, T.; Avecilla, F.; Pessoa, J.C.; Tomaz, A.I. Vanadium(IV) and (V) Complexes of Reduced Schiff Bases Derived from Aromatic o-Hydroxyaldehydes and Tyrosine Derivatives. Eur. J. Inorg. Chem. 2011, 2011, 694–708. [Google Scholar] [CrossRef]
- Guo, Q.; Li, L.; Dong, J.; Liu, H.; Xu, T.; Li, J. Synthesis, crystal structure and interaction of l-valine Schiff base divanadium(V) complex containing a V2O3 core with DNA and BSA. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 106, 155–162. [Google Scholar] [CrossRef]
- Cavaco, I.; Duarte, M.T.; Henriques, R.T.; Matias, P.M.; Gillard, R.D. Crystal and molecular structure of [V2O3(sal-L-val)2(H2O)](sal-L-val =N-salicylidene-L-valinate) and spectroscopic properties of related complexes. J. Chem. Soc. Dalton Trans. 1996, 1989–1996. [Google Scholar] [CrossRef]
- Crans, D.C. Antidiabetic, Chemical, and Physical Properties of Organic Vanadates as Presumed Transition-State Inhibitors for Phosphatases. J. Org. Chem. 2015, 80, 11899–11915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, S.P.; Panda, A.K.; Pasayat, S.; Majumder, S.; Biswas, A.; Kaminsky, W.; Mukhopadhyay, S.; Bhutia, S.K.; Dinda, R. Evaluation of the cell cytotoxicity and DNA/BSA binding and cleavage activity of some dioxidovanadium(V) complexes containing aroylhydrazones. J. Inorg. Biochem. 2015, 144, 1–12. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Mehdi, M.Z. Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabet. Med. 2005, 22, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Willsky, G.R.; Chi, L.-H.; Godzala, M.; Kostyniak, P.J.; Smee, J.J.; Trujillo, A.M.; Alfano, J.A.; Ding, W.; Hu, Z.; Crans, D.C. Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes. Coord. Chem. Rev. 2011, 255, 2258–2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, M.K.; Tripathi, R.; Kb, P.; Ip, T. α-amylase inhibition and electrochemical behaviour of some oxovanadium(IV) complexes of l-amino acids. Asian J. Pharm. Clin. Res. 2018, 11, 218–224. [Google Scholar] [CrossRef]
- Jia, Y.; Lu, L.; Zhu, M.; Yuan, C.; Xing, S.; Fu, X. A dioxidovanadium (V) complex of NNO-donor Schiff base as a selective inhibitor of protein tyrosine phosphatase 1B: Synthesis, characterization, and biological activities. Eur. J. Med. Chem. 2017, 128, 287–292. [Google Scholar] [CrossRef]
- Scior, T.; E Koch, J.; Kinnon, M.; Garcia, G.-. Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B. Drug Des. Dev. Ther. 2009, 2, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Peters, K.G.; Davis, M.G.; Howard, B.W.; Pokross, M.; Rastogi, V.; Diven, C.; Greis, K.D.; Eby-Wilkens, E.; Maier, M.; Evdokimov, A.; et al. Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium); unliganded vanadium (VO4) as the active component. J. Inorg. Biochem. 2003, 96, 321–330. [Google Scholar] [CrossRef]
- McLauchlan, C.C.; Peters, B.J.; Willsky, G.R.; Crans, D.C. Vanadium–phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord. Chem. Rev. 2015, 301–302, 163–199. [Google Scholar] [CrossRef]
- Jayabharathi, J.; Jayamoorthy, K.; Thanikachalam, V.; Sathishkumar, R. Fluorescence quenching of bovine serum albumin by NNMB. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 108, 146–150. [Google Scholar] [CrossRef]
- Apostolidis, E.; Lee, C.M. In Vitro Potential of Ascophyllum nodosum Phenolic Antioxidant-Mediated α-Glucosidase and α-Amylase Inhibition. J. Food Sci. 2010, 75, H97–H102. [Google Scholar] [CrossRef] [PubMed]
- Bucatariu, S.M.; Constantin, M.; Varganici, C.D.; Rusu, D.; Nicolescu, A.; Prisacaru, I.; Carnuta, M.; Anghelache, M.; Calin, M.; Ascenzi, P. A new sponge-type hydrogel based on hyaluronic acid and poly(methylvinylether-alt-maleic acid) as a 3D platform for tumor cell growth. Int. J. Biol. Macromol. 2020, 165, 2528–2540. [Google Scholar] [CrossRef]
- Lorenz, U. Protein Tyrosine Phosphatase Assays. In Current Protocols in Immunology; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Huyer, G.; Liu, S.; Kelly, J.; Moffat, J.; Payette, P.; Kennedy, B.; Tsaprailis, G.; Gresser, M.J.; Ramachandran, C. Mechanism of Inhibition of Protein-tyrosine Phosphatases by Vanadate and Pervanadate. J. Biol. Chem. 1997, 272, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Popescu, I.; Turtoi, M.; Suflet, D.M.; Dinu, M.V.; Darie-Nita, R.N.; Anghelache, M.; Calin, M.; Constantin, M. Alginate/poloxamer hydrogel obtained by thiol-acrylate photopolymerization for the alleviation of the inflammatory response of human keratinocytes. Int. J. Biol. Macromol. 2021, 180, 418–431. [Google Scholar] [CrossRef] [PubMed]
- Berestova, T.V.; Kuzina, L.G.; Amineva, N.A.; Faizrakhmanov, I.S.; Massalimov, I.A.; Mustafin, A.G. ATR-FTIR spectroscopic investigation of the cis- and trans- bis-(α-amino acids) copper(II) complexes. J. Mol. Struct. 2017, 1137, 260–266. [Google Scholar] [CrossRef]
- Vančo, J.; Marek, J.; Trávníček, Z.; Račanská, E.; Muselík, J.; Švajlenová, O. Synthesis, structural characterization, antiradical and antidiabetic activities of copper(II) and zinc(II) Schiff base complexes derived from salicylaldehyde and β-alanine. J. Inorg. Biochem. 2008, 102, 595–605. [Google Scholar] [CrossRef]
- Grüning, C.; Schmidt, H.; Rehder, D. A water-soluble, neutral {aqua-VV}2 complex with a biomimetic ONO ligand set. Inorg. Chem. Commun. 1999, 2, 57–59. [Google Scholar] [CrossRef]
- Ebrahimipour, S.Y.; Sheikhshoaie, I.; Kautz, A.C.; Ameri, M.; Pasban-Aliabadi, H.; Rudbari, H.A.; Bruno, G.; Janiak, C. Mono- and dioxido-vanadium(V) complexes of a tridentate ONO Schiff base ligand: Synthesis, spectral characterization, X-ray crystal structure, and anticancer activity. Polyhedron 2015, 93, 99–105. [Google Scholar] [CrossRef]
- Majumdar, D. Synthesis of two unprecedented Ni(II)& Oxovanadium Azide bridged complexes derived from compart-mental Azo-Linked two different Schiff base H4L & H2L-Characterization by spectroscopic studies (IR, UV-Vis, 1H NMR) and magneto structural co-relationship. Int. J. Chem. Stud. 2016, 4, 46–54. [Google Scholar]
- Çakir, S.; Bçer, E. Synthesis, spectral characterization and electrochemistry of vanadium(V) complex with tryptophan. J. Chil. Chem. Soc. 2010, 55, 236–239. [Google Scholar] [CrossRef] [Green Version]
- Gryboś, R.; Szklarzewicz, J.; Jurowska, A.; Hodorowicz, M. Properties, structure and stability of V(IV) hydrazide Schiff base ligand complex. J. Mol. Struct. 2018, 1171, 880–887. [Google Scholar] [CrossRef]
- Levina, A.; Crans, D.C.; Lay, P.A. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord. Chem. Rev. 2017, 352, 473–498. [Google Scholar] [CrossRef]
- Szklarzewicz, J.; Jurowska, A.; Hodorowicz, M.; Gryboś, R.; Matoga, D. Role of co-ligand and solvent on properties of V(IV) oxido complexes with ONO Schiff bases. J. Mol. Struct. 2019, 1180, 839–848. [Google Scholar] [CrossRef]
- Rahimizadeh, P.; Yang, S.; Lim, S.I. Albumin: An Emerging Opportunity in Drug Delivery. Biotechnol. Bioprocess Eng. 2020, 25, 985–995. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Kiss, E.; Fabian, I.; Kiss, T. Kinetics of ligand substitution reactions in the oxovanadium(IV)–maltol system. Inorg. Chim. Acta 2002, 340, 114–118. [Google Scholar] [CrossRef]
- Sun, Y.; James, B.R.; Rettig, A.S.J.; Orvig, C. Oxidation Kinetics of the Potent Insulin Mimetic Agent Bis(maltolato)oxovanadium(IV) (BMOV) in Water and in Methanol. Inorg. Chem. 1996, 35, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.P.; Fang, Y.; Song, Z.G.; Mei, J.; Jia, L.; Qin, A.J.; Sun, J.Z.; Ji, J.; Tang, B.Z. BSA–tetraphenylethene derivative conjugates with aggregation-induced emission properties: Fluorescent probes for label-free and homogeneous detection of protease and α1-antitrypsin. Analyst 2011, 136, 2315–2321. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, Z.; Rudbari, H.A.; Sahihi, M.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Gharaghani, S. Synthesis, characterization and biological application of four novel metal-Schiff base complexes derived from allylamine and their interactions with human serum albumin: Experimental, molecular docking and ONIOM computational study. J. Photochem. Photobiol. B Biol. 2016, 162, 448–462. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.; Halberstam, M.; Shlimovich, P.; Chang, C.J.; Shamoon, H.; Rossetti, L. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J. Clin. Investig. 1995, 95, 2501–2509. [Google Scholar] [CrossRef] [Green Version]
- Goldfine, A.B.; Simonson, D.C.; Folli, F.; E Patti, M.; Kahn, C.R. Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J. Clin. Endocrinol. Metab. 1995, 80, 3311–3320. [Google Scholar] [CrossRef] [PubMed]
- Scior, T.; Guevara-Garcia, J.; Do, Q.-T.; Bernard, P.; Laufer, S. Why Antidiabetic Vanadium Complexes are Not in the Pipeline of “Big Pharma” Drug Research? A Critical Review. Curr. Med. Chem. 2016, 23, 2874–2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levina, A.; McLeod, A.I.; Kremer, L.E.; Aitken, J.B.; Glover, C.J.; Johannessen, B.; Lay, P.A. Reactivity–activity relationships of oral anti-diabetic vanadium complexes in gastrointestinal media: An X-ray absorption spectroscopic study. Metallomics 2014, 6, 1880–1888. [Google Scholar] [CrossRef] [Green Version]
- Rehder, D. The potentiality of vanadium in medicinal applications. Future Med. Chem. 2012, 4, 1823–1837. [Google Scholar] [CrossRef] [PubMed]
- Jangid, A.K.; Pooja, D.; Kulhari, H. Determination of solubility, stability and degradation kinetics of morin hydrate in physiological solutions. RSC Adv. 2018, 8, 28836–28842. [Google Scholar] [CrossRef] [Green Version]
- Rosak, C.; Mertes, G. Critical evaluation of the role of acarbose in the treatment of diabetes: Patient considerations. Diabetes Metab. Syndr. Obes. Targets Ther. 2012, 5, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.M.; Song, S.O.; Jung, Y.K.; Kang, E.S.; Cha, B.S.; Lee, H.C.; Lee, B.-W. Dimethyl sulfoxide reduces hepatocellular lipid accumulation through autophagy induction. Autophagy 2012, 8, 1085–1097. [Google Scholar] [CrossRef] [Green Version]
- Winter, C.L.; Lange, J.S.; Davis, M.G.; Gerwe, G.S.; Downs, T.R.; Peters, K.G.; Kasibhatla, B. A Nonspecific Phosphotyrosine Phosphatase Inhibitor, Bis(maltolato)oxovanadium(IV), Improves Glucose Tolerance and Prevents Diabetes in Zucker Diabetic Fatty Rats. Exp. Biol. Med. 2005, 230, 207–216. [Google Scholar] [CrossRef] [PubMed]
Compound | λmax (nm) | ε (M−1 cm−1) | Assignments |
---|---|---|---|
1a | 232 274 371 | 35796 24957 5432 | 1st band (232, 233 nm): π → π* transition of the benzene ring and charge-transfer transitions [13], 2nd band (274, 287 nm): the π → π* transitions of the benzene ring [33] and to imino (-CH = N-) group coordination [34], 3rd band (371, 391 nm): probably due to the O → V CT 1 from double bond oxygen to the vanadium atom [35]. |
1b | 232 274 371 | 36574 24733 5384 | |
2a | 233 287 391 | 34090 20811 4586 | |
2b | 233 287 391 | 30692 20355 4659 |
Bond | (Å) | Angle | (o) | Angle | (o) |
---|---|---|---|---|---|
V1—O12 | 1.589(5) | O12—V1—O3 | 101.4(3) | O4—V2—O14 | 101.9(5) |
V1—O3 | 1.814(5) | O12—V1—O15 | 100.8(3) | O4—V2—O10 | 102.4(4) |
V1—O15 | 1.824(6) | O3—V1—O15 | 108.4(3) | O14—V2—O10 | 105.7(3) |
V1—O11 | 1.960(5) | O12—V1—O11 | 99.3(3) | O4—V2—O13 | 98.8(4) |
V1—N1B | 2.100(6) | O3—V1—O11 | 82.2(2) | O14—V2—O13 | 154.8(3) |
V1—O1W | 2.351(7) | O15—V1—O11 | 154.8(3) | O10—V2—O13 | 83.5(2) |
V4—O2 | 1.572(6) | O12—V1—N1B | 95.6(3) | O4—V2—N2A | 96.5(3) |
V4—O3 | 1.797(6) | O3—V1—N1B | 154.8(2) | O14—V2—N2A | 86.4(3) |
V4—O7 | 1.844(6) | O15—V1—N1B | 86.2(2) | O10—V2—N2A | 154.8(3) |
V4—O9 | 1.948(6) | O11—V1—N1B | 76.8(2) | O13—V2—N2A | 77.1(3) |
V4—N2B | 2.110(7) | O12—V1—O1W | 175.2(3) | O4—V2—O2W | 176.4(3) |
V4—O11 | 2.413(5) | O3—V1—O1W | 83.1(2) | O14—V2—O2W | 78.7(3) |
O15—V1—O1W | 79.3(3) | O10—V2—O2W | 80.9(3) | ||
V1—V4 | 3.088(18) | O11—V1—O1W | 79.4(2) | O13—V2—O2W | 79.8(3) |
N1B—V1—O1W | 79.6(2) | N2A—V2—O2W | 79.9(3) | ||
V2—O4 | 1.584(8) | V4—O3—V1 | 117.5(3) | V3—O10—V2 | 117.9(3) |
V2—O14 | 1.796(7) | V1—O11—V4 | 89.23(19) | V2—O13—V3 | 87.4(2) |
V2—O10 | 1.811(6) | O2—V4—O3 | 103.9(3) | O1—V3—O10 | 103.7(3) |
V2—O13 | 1.955(5) | O2—V4—O7 | 99.1(3) | O1—V3—O16 | 99.6(4) |
V2—N2A | 2.105(7) | O3—V4—O7 | 99.6(2) | O10—V3—O16 | 99.1(3) |
V2—O2W | 2.386(8) | O2—V4—O9 | 98.3(3) | O1—V3—O6 | 98.3(4) |
V3—O1 | 1.581(7) | O3—V4—O9 | 91.5(3) | O10—V3—O6 | 92.8(3) |
V3—O10 | 1.784(6) | O7—V4—O9 | 156.5(3) | O16—V3—O6 | 155.5(3) |
V3—O16 | 1.833(8) | O2—V4—N2B | 104.2(3) | O1—V3—N1A | 104.5(3) |
V3—O6 | 1.959(7) | O3—V4—N2B | 150.7(2) | O10—V3—N1A | 150.7(3) |
V3—N1a | 2.096(7) | O7—V4—N2B | 84.3(3) | O16—V3—N1A | 83.7(3) |
V3—O13 | 2.470(6) | O9—V4—N2B | 76.2(3) | O6—V3—N1A | 75.7(3) |
O2—V4—O11 | 174.5(3) | O1—V3—O13 | 173.9(3) | ||
V2—V3 | 3.080(2) | O3—V4—O11 | 70.6(2) | O10—V3—O13 | 70.3(2) |
O7—V4—O11 | 82.6(2) | O16—V3—O13 | 82.8(3) | ||
O9—V4—O11 | 81.6(2) | O6—V3—O13 | 81.2(2) | ||
N2B—V4—O11 | 81.2(2) | N1a—V3—O1 | 81.3(3) |
Bond | (Å) | Angle | (o) | Angle | (o) |
---|---|---|---|---|---|
O5—V1 O6—V1 N1—V1 O2—V1 O3—V1 O7—V1 O7—V1 a# O5—V1 a# V1…V1 a | 2.379(12) 1.593(10) 2.137(13) 1.869(12) 1.924(11) 1.797(5) 1.797(5) 2.790(184) 3.473(3) | O6—V1—O7 a# O6—V1—O2 O7—V1—O2 O6—V1—O3 O7—V1—O3 O2—V1—O3 O6—V1—N1 O7—V1—N1 | 102.3(5) 101.6(5) 95.1(6) 96.8(5) 98.0(5) 154.5(5) 97.0(5) 160.4(4) | O2—V1—N1 O3—V1—N1 O6—V1—O5 O7—V1—O5 O2—V1—O5 O3—V1—O5 N1—V1—O5 V1-O7-V1 a | 84.4(5) 76.0(5) 173.3(5) 83.9(4) 80.2(5) 79.7(5) 76.7(4) 150.2 |
Compound | KSV (M−1) | Kq (M−1s−1) | Kq(2a)/Kq(1a) | Kq(2b)/Kq(1b) | Kq(1a)/Kq(1b) | Kq(2a)/Kq(2b) |
---|---|---|---|---|---|---|
1a | 0.807 × 105 | 8.07 × 1012 | 2.12 | 4.14 | 1.34 | 0.690 |
1b | 0.601 × 105 | 6.01 × 1012 | ||||
2a | 1.718 × 105 | 1.718 × 1013 | ||||
2b | 2.489 × 105 | 2.489 × 1013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turtoi, M.; Anghelache, M.; Patrascu, A.A.; Maxim, C.; Manduteanu, I.; Calin, M.; Popescu, D.-L. Synthesis, Characterization, and In Vitro Insulin-Mimetic Activity Evaluation of Valine Schiff Base Coordination Compounds of Oxidovanadium(V). Biomedicines 2021, 9, 562. https://doi.org/10.3390/biomedicines9050562
Turtoi M, Anghelache M, Patrascu AA, Maxim C, Manduteanu I, Calin M, Popescu D-L. Synthesis, Characterization, and In Vitro Insulin-Mimetic Activity Evaluation of Valine Schiff Base Coordination Compounds of Oxidovanadium(V). Biomedicines. 2021; 9(5):562. https://doi.org/10.3390/biomedicines9050562
Chicago/Turabian StyleTurtoi, Mihaela, Maria Anghelache, Andrei A. Patrascu, Catalin Maxim, Ileana Manduteanu, Manuela Calin, and Delia-Laura Popescu. 2021. "Synthesis, Characterization, and In Vitro Insulin-Mimetic Activity Evaluation of Valine Schiff Base Coordination Compounds of Oxidovanadium(V)" Biomedicines 9, no. 5: 562. https://doi.org/10.3390/biomedicines9050562
APA StyleTurtoi, M., Anghelache, M., Patrascu, A. A., Maxim, C., Manduteanu, I., Calin, M., & Popescu, D. -L. (2021). Synthesis, Characterization, and In Vitro Insulin-Mimetic Activity Evaluation of Valine Schiff Base Coordination Compounds of Oxidovanadium(V). Biomedicines, 9(5), 562. https://doi.org/10.3390/biomedicines9050562