Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases
Abstract
:1. Introduction
2. Structure and Function of Eye and Retinal Epithelium Membrane
3. Nanostructure-Based Biomaterial Implants
3.1. Natural Biomaterials
- i.
- Gelatin
- ii.
- Collagen
- iii.
- Fibrinogen (FG)
- iv.
- Laminin
3.2. Synthetic Biomaterials
- i.
- Hydrogel
- ii.
- Poly (lactic-co-glycolic acid) (PLGA) and Poly (L-lactide-co-DL-lactide) (PDLLA)
- iii.
- Poly (methyl methacrylate) (PMMA)
- iv.
- Polyglycerol sebacate (PGS)
- v.
- Poly-urethanes
- vi.
- Thermo-responsive polymer
- vii.
- Poly (e-caprolactone) (PCL)
- viii.
- Other Polymers
4. Biological Membrane-Based Implants
4.1. Amniotic Membrane (AM)
4.2. Bruch′s Membrane Fibers
4.3. Lens Capsule
5. Renewable Sources of Donor Cells for Transplantation towards Retinal Pigment Epithelium Repair
5.1. Embryonic and Fetal Retinal Sheets
5.2. Retinal Progenitor Cells (RPCs)
5.3. Mesenchymal Stem Cells (MSCs)
5.4. RPE Replacement
5.5. Mature Retinal Cells
5.6. Adipose Stem Cells (ASCs)
6. Materials Aspects for Retinal Implants and Prostheses
7. Summary and Perspectives
8. Method of Literature Search
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, S.; Gong, L.; Li, Y.; Xu, H.; Gu, Z.; Zhao, Y. Safety Assessment of Nanomaterials to Eyes: An Important but Neglected Issue. Adv. Sci. 2019, 6, 1802289. [Google Scholar] [CrossRef] [PubMed]
- Heller, J.P.; Martin, K.R. Enhancing RPE Cell-Based Therapy Outcomes for AMD: The Role of Bruch’s Membrane. Transl. Vis. Sci. Technol. 2014, 3, 4. [Google Scholar] [CrossRef]
- Alexander, P.; Thomson, H.A.J.; Luff, A.J.; Lotery, A.J. Retinal pigment epithelium transplantation: Concepts, challenges, and future prospects. Eye 2015, 29, 992–1002. [Google Scholar] [CrossRef] [Green Version]
- Xiang, P.; Wu, K.-C.; Zhu, Y.; Xiang, L.; Li, C.; Chen, D.-L.; Chen, F.; Xu, G.; Wang, A.; Li, M.; et al. A novel Bruch’s membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials 2014, 35, 9777–9788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treharne, A.J.; Thomson, H.A.J.; Grossel, M.C.; Lotery, A.J. Developing methacrylate-based copolymers as an artificial Bruch’s membrane substitute. J. Biomed. Mater. Res. Part A 2012, 100, 2358–2364. [Google Scholar] [CrossRef]
- Kim, S.Y.; Sadda, S.; Pearlman, J.; Humayun, M.S.; De Juan, E.; Melia, B.M.; Green, W.R. Morphometric analysis of the macula in eyes with disciform age-related macular degeneration. Retina 2002, 22, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Ikeya, M.; Toyooka, Y.; Eiraku, M. Pluripotent stem cells in developmental biology. Dev. Growth Differ. 2021, 63, 3–4. [Google Scholar] [CrossRef]
- Zarbin, M. Cell-Based Therapy for Degenerative Retinal Disease. Trends Mol. Med. 2016, 22, 115–134. [Google Scholar] [CrossRef]
- Vecino, E.; Rodriguez, F.D.; Ruzafa, N.; Pereiro, X.; Sharma, S.C. Glia–neuron interactions in the mammalian retina. Prog. Retin. Eye Res. 2016, 51, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Inana, G.; Murat, C.; An, W.; Yao, X.; Harris, I.R.; Cao, J. RPE phagocytic function declines in age-related macular degeneration and is rescued by human umbilical tissue derived cells. J. Transl. Med. 2018, 16, 63. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, F.; Sugiura, Y.; Okamoto, Y.; Hiraoka, T.; Oshika, T. Associations between Metamorphopsia and Foveal Microstructure in Patients with Epiretinal Membrane. Investig. Opthalmol. Vis. Sci. 2012, 53, 6770–6775. [Google Scholar] [CrossRef] [Green Version]
- Patel, B.B.; Sharma, A.D.; Mammadova, N.; Sandquist, E.J.; Uz, M.; Mallapragada, S.K.; Sakaguchi, D.S. Nanoengineered biomaterials for retinal repair. In Nanoengineered Biomaterials for Regenerative Medicine; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Simó, R.; Villarroel, M.; Corraliza, L.; Hernández, C.; García-Ramírez, M. The Retinal Pigment Epithelium: Something More than a Constituent of the Blood-Retinal Barrier—Implications for the Pathogenesis of Diabetic Retinopathy. J. Biomed. Biotechnol. 2010, 2010, 190724. [Google Scholar] [CrossRef] [PubMed]
- Boulton, M.; Dayhaw-Barker, P. The role of the retinal pigment epithelium: Topographical variation and ageing changes. Eye 2001, 15, 384–389. [Google Scholar] [CrossRef] [Green Version]
- Lund, R.D.; Kwan, A.S.L.; Keegan, D.J.; Sauvé, Y.; Coffey, P.J.; Lawrence, J.M. Cell Transplantation as a Treatment for Retinal Disease. Prog. Retin. Eye Res. 2001, 20, 415–449. [Google Scholar] [CrossRef]
- Ballios, B.G.; Cooke, M.J.; van der Kooy, D.; Shoichet, M.S. A hydrogel-based stem cell delivery system to treat retinal degenerative diseases. Biomaterials 2010, 31, 2555–2564. [Google Scholar] [CrossRef]
- Lavik, E.B.; Klassen, H.; Warfvinge, K.; Scherfig, E.; Kiilgaard, J.F.; Proust, J.U.; Langer, R.S.; Young, M.J. Polymer Scaffolds Provide Support and Guidance for Retinal Stem Cells in Retinal Degeneration Models. Investig. Ophthalmol. Vis. Sci. 2003, 44, 508. [Google Scholar]
- Malafaya, P.B.; Silva, G.A.; Reis, R.L. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 2007, 59, 207–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotaling, N.A.; Khristov, V.; Wan, Q.; Sharma, R.; Jha, B.S.; Lotfi, M.; Maminishkis, A.; Simon, C.G.; Bharti, K. Nanofiber Scaffold-Based Tissue-Engineered Retinal Pigment Epithelium to Treat Degenerative Eye Diseases. J. Ocul. Pharmacol. Ther. 2016, 32, 272–285. [Google Scholar] [CrossRef] [Green Version]
- Lavik, E.; Langer, R. Tissue engineering: Current state and perspectives. Appl. Microbiol. Biotechnol. 2004, 65, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Del Priore, L.V.; Tezel, T.H.; Kaplan, H.J. Survival of allogeneic porcine retinal pigment epithelial sheets after subretinal transplantation. Investig. Opthalmol. Vis. Sci. 2004, 45, 985–992. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.-C.; Del Priore, L.V.; Kaplan, H.J. En bloc transfer of extracellular matrix in vitro. Curr. Eye Res. 1996, 15, 991–997. [Google Scholar] [CrossRef]
- Silverman, M.S.; Hughes, S.E. Transplantation of Photoreceptors to Light-Damaged Retina. Investig. Ophthalmol. Vis. Sci. 1989, 30, 1684–1689. [Google Scholar]
- Ghosh, F.; Juliusson, B.; Arnér, K.; Ehinger, B. Partial and Full-Thickness Neuroretinal Transplants. Exp. Eye Res. 1999, 68, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Hsiue, G.-H.; Lai, J.-Y.; Lin, P.-K. Absorbable sandwich-like membrane for retinal-sheet transplantation. J. Biomed. Mater. Res. 2002, 61, 19–25. [Google Scholar] [CrossRef]
- Khodair, M.A.; Zarbin, M.A.; Townes-Anderson, E. Synaptic Plasticity in Mammalian Photoreceptors Prepared as Sheets for Retinal Transplantation. Investig. Opthalmol. Vis. Sci. 2003, 44, 4976–4988. [Google Scholar] [CrossRef] [PubMed]
- Noorani, B.; Tabandeh, F.; Yazdian, F.; Soheili, Z.-S.; Shakibaie, M.; Rahmani, S. Thin natural gelatin/chitosan nanofibrous scaffolds for retinal pigment epithelium cells. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 754–763. [Google Scholar] [CrossRef]
- Shakibaie, M.; Tabandeh, F.; Shariati, P.; Norouzy, A. Synthesis of a thin-layer gelatin nanofiber mat for cultivating retinal cell. J. Bioact. Compat. Polym. 2018, 33, 371–381. [Google Scholar] [CrossRef]
- Glowacki, J.; Mizuno, S. Collagen scaffolds for tissue engineering. Biopolymers 2008, 89, 338–344. [Google Scholar] [CrossRef]
- Bhatt, N.S.; Newsome, D.A.; Fenech, T.; Hessburg, T.P.; Diamond, J.G.; Miceli, M.V.; Kratz, K.E.; Oliver, P.D. Experimental Transplantation of Human Retinal Pigment Epithelial Cells on Collagen Substrates. Am. J. Ophthalmol. 1994, 117, 214–221. [Google Scholar] [CrossRef]
- Thumann, G.; Hueber, A.; Dinslage, S.; Schaefer, F.; Yasukawa, T.; Kirchhof, B.; Yafai, Y.; Eichler, W.; Bringmann, A.; Wiedemann, P. Characteristics of Iris and Retinal Pigment Epithelial Cells Cultured on Collagen Type I Membranes. Curr. Eye Res. 2006, 31, 241–249. [Google Scholar] [CrossRef]
- Lu, J.T.; Lee, C.J.; Bent, S.F.; Fishman, H.A.; Sabelman, E.E. Thin collagen film scaffolds for retinal epithelial cell culture. Biomaterials 2007, 28, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Imai, H.; Honda, S.; Kondo, N.; Ishibashi, K.; Tsukahara, Y.; Negi, A. The Upregulation of Angiogenic Gene Expression in Cultured Retinal Pigment Epithelial Cells Grown on Type I Collagen. Curr. Eye Res. 2007, 32, 903–910. [Google Scholar] [CrossRef]
- Warnke, P.H.; Alamein, M.; Skabo, S.; Stephens, S.; Bourke, R.; Heiner, P.; Liu, Q. Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta Biomater. 2013, 9, 9414–9422. [Google Scholar] [CrossRef]
- Oganesian, A.; Gabrielian, K.; Ernest, J.T.; Patel, S.C. A new model of retinal pigment epithelium transplantation with microspheres. Arch. Ophthalmol. 1999, 117, 1192–1200. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.A.E.; Giulivi, A.; Griffith, M.; Hincke, M. Fibrin Glues in Combination with Mesenchymal Stem Cells to Develop a Tissue-Engineered Cartilage Substitute. Tissue Eng. Part A 2011, 17, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.A.E.; Ringuette, R.; Wallace, V.A.; Griffith, M. Autologous Fibrin Glue as an Encapsulating Scaffold for Delivery of Retinal Progenitor Cells. Front. Bioeng. Biotechnol. 2015, 2, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yurchenco, P.D.; Amenta, P.S.; Patton, B.L. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 2004, 22, 521–538. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.D.; Arnér, K.M.; Langer, R.S.; Ghosh, F.K. Retinal transplantation using surface modified poly(glycerol-co-sebacic acid) membranes. Biomaterials 2010, 31, 7978–7984. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, C.D.; Arnér, K.M.; Neal, R.A.; Neeley, W.L.; Bojo, P.; Bachelder, E.; Holz, J.; Watson, N.; Botchwey, E.A.; Langer, R.S. The use of surface modified poly (glycerol-co-sebacic acid) in retinal transplantation. Biomaterials 2010, 31, 2153–2162. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Garg, K.; Pullen, N.A.; Oskeritzian, C.A.; Ryan, J.J.; Bowlin, G.L. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 2013, 34, 4439–4451. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Hou, W.-D.; Wang, X.; Han, C.; Vuletic, I.; Su, N.; Zhang, W.-X.; Ren, Q.-S.; Chen, L.; Luo, Y. Overcoming foreign-body reaction through nanotopography: Biocompatibility and immunoisolation properties of a nanofibrous membrane. Biomaterials 2016, 102, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Van Wijngaarden, P.; Qureshi, S.H. Inhibitors of vascular endothelial growth factor (VEGF) in the management of neovascular age-related macular degeneration: A review of current practice. Clin. Exp. Optom. 2008, 91, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Carrasquillo, K.G.; Ricker, J.A.; Rigas, I.K.; Miller, J.W.; Gragoudas, E.S.; Adamis, A.P. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic) acid microspheres. Investig. Opthalmol. Vis. Sci. 2003, 44, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Green, W.R.; Wilson, D.J. Choroidal Neovascularization. Ophthalmology 1986, 93, 1169–1176. [Google Scholar] [CrossRef]
- Del Priore, L.V.; Kaplan, H.J.; Silverman, M.S.; Valentino, T.; Mason, G.; Hornbeck, R. Experimental and Surgical Aspects of Retinal Pigment Epithelial Cell Transplantation. Eur. J. Implant. Refract. Surg. 1993, 5, 128–132. [Google Scholar] [CrossRef]
- Christiansen, A.T.; Kiilgaard, J.F.; Smith, M.; Ejstrup, R.; Wnek, G.E.; Prause, J.U.; Young, M.J.; Klassen, H.; Kaplan, H.; de la Cour, M.D. The Influence of Brightness on Functional Assessment by mfERG: A Study on Scaffolds Used in Retinal Cell Transplantation in Pigs. Stem Cells Int. 2012, 2012, 263264. [Google Scholar] [CrossRef] [Green Version]
- Popelka, Š.; Studenovská, H.; Abelová, L.; Ardan, T.; Studený, P.; Straňák, Z.; Klíma, J.; Dvořánková, B.; Kotek, J.; Hodan, J.; et al. A frame-supported ultrathin electrospun polymer membrane for transplantation of retinal pigment epithelial cells. Biomed. Mater. 2015, 10, 045022. [Google Scholar] [CrossRef]
- Tao, S.; Young, C.; Redenti, S.; Zhang, Y.; Klassen, H.; Desai, T.; Young, M.J. Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly (methyl methacrylate) scaffolds to the subretinal space. Lab Chip 2007, 7, 695–701. [Google Scholar] [CrossRef]
- Wang, Y.; Kim, Y.M.; Langer, R. In vivo degradation characteristics of poly (glycerol sebacate). J. Biomed. Mater. Res. 2003, 66, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Niklason, L.E.; Gao, J.; Abbott, W.M.; Hirschi, K.K.; Houser, S.; Marini, R.; Langer, R. Functional Arteries Grown in Vitro. Science 1999, 284, 489–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redenti, S.; Neeley, W.L.; Rompani, S.; Saigal, S.; Yang, J.; Klassen, H.; Langer, R.; Young, M.J. Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials 2009, 30, 3405–3414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollensak, G.; Spoerl, E. Biomechanical characteristics of retina. Retina 2004, 24, 967–970. [Google Scholar] [CrossRef]
- Zdrahala, R.J. Small Caliber Vascular Grafts. Part II: Polyurethanes Revisited. J. Biomater. Appl. 1996, 11, 37–61. [Google Scholar] [CrossRef]
- Martin, D.J.; Poole Warren, L.A.; Gunatillake, P.A.; McCarthy, S.J.; Meijs, G.F.; Schindhelm, K. New methods for the assessment of in vitro and in vivo stress cracking in biomedical polyurethanes. Biomaterials 2001, 22, 973–978. [Google Scholar] [CrossRef]
- How, T.V.; Annis, D. Viscoelastic behavior of polyurethane vascular prostheses. J. Biomed. Mater. Res. 1987, 21, 1093–1108. [Google Scholar] [CrossRef]
- Da Silva, G.R.; Armando, D.S.C.; Saliba, J.B.; Berdugo, M.; Goldenberg, B.T.; Naud, M.C.; Ayres, E.; Oréfce, R.L.; Cohen, F.B.; Armando, J.D.S.C. Polyurethanes as supports for human retinal pigment epithelium cell growth. Int. J. Artif. Organs 2011, 34, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, G.R.; da Silva-Cunha, A.; Vieira, L.C.; Silva, L.M.; Ayres, E.; Oréfice, R.L.; Fialho, S.L.; Saliba, J.B.; Behar-Cohen, F.; Da Silva-Cunha, A. Montmorillonite clay based polyurethane nanocomposite as substrate for retinal pigment epithelial cell growth. J. Mater. Sci. Mater. Med. 2013, 24, 1309–1317. [Google Scholar] [CrossRef]
- Von Recum, H.; Kikuchi, A.; Okuhara, M.; Sakurai, Y.; Okano, T.; Kim, S.W. Retinal pigmented epithelium cultures on thermally responsive polymer porous substrates. J. Biomater. Sci. Polym. Ed. 1998, 9, 1241–1253. [Google Scholar] [CrossRef]
- Fitzpatrick, S.D.; Mazumder, M.A.J.; Lasowski, F.; Fitzpatrick, L.; Sheardown, H. PNIPAAm-Grafted-Collagen as an Injectable, In Situ Gelling, Bioactive Cell Delivery Scaffold. Biomacromolecules 2010, 11, 2261–2267. [Google Scholar] [CrossRef]
- Grayson, A.C.; Voskerician, G.; Lynn, A.; Anderson, J.M.; Cima, M.J.; Langer, R. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip. J. Biomater. Sci. Polym. Ed. 2004, 15, 1281–1304. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, A.T.; Tao, S.L.; Smith, M.; Wnek, G.E.; Prause, J.U.; Young, M.J.; Klassen, H.; Kaplan, H.J.; La Cour, M.; Kiilgaard, J.F. Subretinal Implantation of Electrospun, Short Nanowire, and Smooth Poly(ε-caprolactone) Scaffolds to the Subretinal Space of Porcine Eyes. Stem Cells Int. 2012, 2012, 454295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, S.L.; Desai, T.A. Aligned Arrays of Biodegradable Poly(ε-caprolactone) Nanowires and Nanofibers by Template Synthesis. Nano Lett. 2007, 7, 1463–1468. [Google Scholar] [CrossRef]
- Redenti, S.; Tao, S.; Yang, J.; Gu, P.; Klassen, H.; Saigal, S.; Desai, T.; Young, M.J. Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold. J. Ocul. Biol. Dis. Inform. 2008, 1, 19–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Fan, X.; Xia, J.; Chen, P.; Zhou, X.; Huang, J.; Yu, J.; Gu, P. Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) nanofibrous scaffolds for retinal tissue engineering. Int. J. Nanomed. 2011, 2011, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.-J.; Lu, Y.-T.; Liu, K.-S.; Liu, S.-J.; Fan, L.; Huang, W.-C. Biodegradable balloon-expandable self-locking polycaprolactone stents as buckling explants for the treatment of retinal detachment: An in vitro and in vivo study. J. Biomed. Mater. Res. Part A 2013, 101A, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yu, N.; Holz, F.G.; Yang, F.; Stanzel, B.V. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials 2014, 35, 2837–2850. [Google Scholar] [CrossRef]
- McHugh, K.J.; Tao, S.L.; Saint-Geniez, M. Porous Poly(ε-Caprolactone) Scaffolds for Retinal Pigment Epithelium Transplantation. Investig. Opthalmol. Vis. Sci. 2014, 55, 1754–1762. [Google Scholar] [CrossRef] [Green Version]
- Sorkio, A.; Hongisto, H.; Kaarniranta, K.; Uusitalo, H.; Juuti-Uusitalo, K.; Skottman, H. Structure and Barrier Properties of Human Embryonic Stem Cell–Derived Retinal Pigment Epithelial Cells Are Affected by Extracellular Matrix Protein Coating. Tissue Eng. Part A 2014, 20, 622–634. [Google Scholar] [CrossRef] [Green Version]
- Lawley, E.; Baranov, P.; Young, M. Hybrid vitronectin-mimicking polycaprolactone scaffolds for human retinal progenitor cell differentiation and transplantation. J. Biomater. Appl. 2015, 29, 894–902. [Google Scholar] [CrossRef]
- Shahmoradi, S.; Yazdian, F.; Tabandeh, F.; Soheili, Z.-S.; Zarami, A.S.H.; Navaei-Nigjeh, M. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells. Mater. Sci. Eng. C 2017, 73, 300–309. [Google Scholar] [CrossRef]
- Nazemroaya, F.; Soheili, Z.; Samiei, S.; Deezagi, A.; Ahmadieh, H.; Davari, M.; Heidari, R.; Bagheri, A.; Darvishalipour-Astaneh, S. Induced Retro-Differentiation of Human Retinal Pigment Epithelial Cells on PolyHEMA. J. Cell. Biochem. 2017, 118, 3080–3089. [Google Scholar] [CrossRef]
- Lim, J.-M.; Byun, S.; Chung, S.; Park, T.H.; Seo, J.-M.; Joo, C.-K.; Cho, D.-I. Retinal Pigment Epithelial Cell Behavior is Modulated by Alterations in Focal Cell–Substrate Contacts. Investig. Opthalmol. Vis. Sci. 2004, 45, 4210–4216. [Google Scholar] [CrossRef] [Green Version]
- Krishna, Y.; Sheridan, C.M.; Kent, D.L.; Grierson, I.; Williams, R.L. Polydimethylsiloxane as a substrate for retinal pigment epithelial cell growth. J. Biomed. Mater. Res. Part A 2007, 80, 669–678. [Google Scholar] [CrossRef]
- Tezel, T.H.; Del Priore, L.V. Reattachment to a substrate prevents apoptosis of human retinal pigment epithelium. Graefe’s Arch. Clin. Exp. Ophthalmol. 1997, 235, 41–47. [Google Scholar] [CrossRef]
- Farrokh-Siar, L.; Rezai, K.A.; Patel, S.C.; Ernest, J.T. HFRPE Attached to Cryo-Membrane Cryoprecipitate: An Autologous Substrate for Human Fetal Retinal Pigment Epithelium. Curr. Eye Res. 1999, 19, 89–94. [Google Scholar] [CrossRef]
- Guenther, E.; Tröger, B.; Schlosshauer, B.; Zrenner, E. Long-term survival of retinal cell cultures on retinal implant materials. Vis. Res. 1999, 39, 3988–3994. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-J.; Li, X.-X.; Dong, J.-Q.; Pei, W.-H.; Chen, H.-D. Effects of subretinal implant materials on the viability, apoptosis and barrier function of cultured RPE cells. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 245, 135–142. [Google Scholar] [CrossRef]
- Singh, S.; Woerly, S.; Mclaughlin, B.J. Natural and artificial substrates for retinal pigment epithelial monolayer transplantation. Biomaterials 2001, 22, 3337–3343. [Google Scholar] [CrossRef]
- Binder, S.; Stanzel, B.V.; Krebs, I.; Glittenberg, C. Transplantation of the RPE in AMD. Prog. Retin. Eye Res. 2007, 26, 516–554. [Google Scholar] [CrossRef]
- Hynes, S.R.; Lavik, E.B. A tissue-engineered approach towards retinal repair: Scaffolds for cell transplantation to the subretinal space. Graefe’s Arch. Clin. Exp. Ophthalmol. 2010, 248, 763–778. [Google Scholar] [CrossRef]
- Grueterich, M. Human Limbal Progenitor Cells Expanded on Intact Amniotic Membrane Ex Vivo. Arch. Ophthalmol. 2002, 120, 783–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capeáns, C.; Pineiro-Ces, A.; Pardo, M.; Sueiro-López, C.; Blanco, M.J.; Domínguez, F.; Sánchez-Salorio, M. Amniotic membrane as support for human retinal pigment epithelium (RPE) cell growth. Acta Ophthalmol. Scand. 2003, 81, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, J.; Aiba, M.; Goto, E.; Kato, N.; Shimmura, S.; Tsubota, K. Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology 2002, 109, 1285–1290. [Google Scholar] [CrossRef]
- Schwartz, S.D.; Regillo, C.D.; Lam, B.L.; Eliott, D.; Rosenfeld, P.J.; Gregori, N.Z.; Hubschman, J.-P.; Davis, J.L.; Heilwell, G.; Spirn, M.; et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet 2015, 385, 509–516. [Google Scholar] [CrossRef]
- Kiilgaard, J.F.; Scherfig, E.; Prause, J.U.; de la Cour, M.D. Transplantation of Amniotic Membrane to the Subretinal Space in Pigs. Stem Cells Int. 2012, 2012, 716968. [Google Scholar] [CrossRef] [PubMed]
- Curcio, C.A.; Johnson, M. Structure, Function, and Pathology of Bruch’s Membrane. Retina 2013, 1, 466–481. [Google Scholar] [CrossRef]
- Sugino, I.K.; Sun, Q.; Cheewatrakoolpong, N.; Malcuit, C.; Zarbin, M.A. Biochemical Restoration of Aged Human Bruch’s Membrane: Experimental Studies to Improve Retinal Pigment Epithelium Transplant Survival and Differentiation. Cell Based Ther. Retin. Degener. Dis. 2014, 53, 133–142. [Google Scholar] [CrossRef]
- Moreira, E.F.; Cai, H.; Tezel, T.H.; Fields, M.A.; Del Priore, L.V. Reengineering Human Bruch’s Membrane Increases Rod Outer Segment Phagocytosis by Human Retinal Pigment Epithelium. Transl. Vis. Sci. Technol. 2015, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Sadda, S.R.; Tso, M.O.M.; Humayan, M.S.; De Juan, E.; Binder, S. Autologous transplantation of retinal pigment epithelium after mechanical debridement of Bruch’s membrane. Curr. Eye Res. 2003, 26, 81–88. [Google Scholar] [CrossRef]
- Wang, H.; Ninomiya, Y.; Sugino, I.K.; Zarbin, M.A. Retinal Pigment Epithelium Wound Healing in Human Bruch’s Membrane Explants. Investig. Opthalmol. Vis. Sci. 2003, 44, 2199–2210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, U.; Sistani, F.; Steinhorst, U.H. Human and porcine anterior lens capsule as support for growing and grafting retinal pigment epithelium and iris pigment epithelium. Graefe’s Arch. Clin. Exp. Ophthalmol. 1999, 237, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, J.; Kiilgaard, J.F.; Wiencke, A.K.; Heegaard, S.; Scherfig, E.; Prause, J.U.; de la Cour, M.D. The anterior lens capsule used as support material in RPE cell-transplantation. Acta Ophthalmol. Scand. 2000, 78, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Huie, P.; Leng, T.; Peterman, M.C.; Marmor, M.F.; Blumenkranz, M.S.; Bent, S.F.; Fishman, H.A. Microcontact Printing on Human Tissue for Retinal Cell Transplantation. Arch. Ophthalmol. 2002, 120, 1714–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.J.; Fishman, H.A.; Bent, S.F. Spatial cues for the enhancement of retinal pigment epithelial cell function in potential transplants. Biomaterials 2007, 28, 2192–2201. [Google Scholar] [CrossRef]
- Ben M’Barek, K.; Monville, C. Cell Therapy for Retinal Dystrophies: From Cell Suspension Formulation to Complex Retinal Tissue Bioengineering. Stem Cells Int. 2019, 2019, 4568979. [Google Scholar] [CrossRef]
- Gater, R. Development of Better Treatments for Retinal Disease Using Stem Cell Therapies. Int. J. Stem Cell Res. Ther. 2016, 3, 32. [Google Scholar] [CrossRef]
- Zarbin, M. The promise of stem cells for age-related macular degeneration and other retinal degenerative diseases. Drug Discov. Today Ther. Strat. 2012, 10, e25–e33. [Google Scholar] [CrossRef]
- Pera, M.F.; Reubinoff, B.; Trounson, A. Human Embryonic Stem Cells. J. Cell Sci. 2000, 113, 5–10. [Google Scholar] [CrossRef]
- Klassen, H.; Sakaguchi, D.S.; Young, M.J. Stem cells and retinal repair. Prog. Retin. Eye Res. 2004, 23, 149–181. [Google Scholar] [CrossRef]
- Teotia, P.; Mir, Q.; Ahmad, I. Chemically Defined and Retinal Conditioned Medium-Based Directed Differentiation of Embryonic Stem and Induced Pluripotent Stem Cells into Retinal Ganglion Cells. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3606. [Google Scholar]
- Lamba, D.A.; Gust, J.; Reh, T.A. Transplantation of Human Embryonic Stem Cell-Derived Photoreceptors Restores Some Visual Function in Crx-Deficient Mice. Cell Stem Cell 2009, 4, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Stern, J.H.; Temple, S. Stem Cells for Retinal Replacement Therapy. Neurotherapeutics 2011, 8, 736–743. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.; Lamba, D.A. Human embryonic stem cell applications for retinal degenerations. Exp. Eye Res. 2014, 123, 151–160. [Google Scholar] [CrossRef]
- Bongso, A.; Fong, C.-Y.; Gauthaman, K. Taking stem cells to the clinic: Major challenges. J. Cell. Biochem. 2008, 105, 1352–1360. [Google Scholar] [CrossRef]
- Venugopalan, P.; Wang, Y.; Nguyen, T.; Huang, A.; Muller, K.J.; Goldberg, J.L. Transplanted neurons integrate into adult retinas and respond to light. Nat. Commun. 2016, 7, 10472. [Google Scholar] [CrossRef] [PubMed]
- Aramant, R. Progress in retinal sheet transplantation. Prog. Retin. Eye Res. 2004, 23, 475–494. [Google Scholar] [CrossRef] [PubMed]
- Radtke, N.D.; Aramant, R.B.; Petry, H.M.; Green, P.T.; Pidwell, D.J.; Seiler, M.J. Vision Improvement in Retinal Degeneration Patients by Implantation of Retina Together with Retinal Pigment Epithelium. Am. J. Ophthalmol. 2008, 146, 172–182.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aramant, R.B.; Seiler, M.J.; Ball, S.L. Successful Cotransplantation of Intact Sheets of Fetal Retina with Retinal Pigment Epithelium. Investig. Ophthalmol. Vis. Sci. 1999, 40, 1557–1564. [Google Scholar]
- Tansley, K. The formation of rosettes in the rat retina. Br. J. Ophthalmol. 1933, 17, 321–336. [Google Scholar] [CrossRef] [Green Version]
- Caplan, A.I. Mesenchymal stem cells. J. Orthop. Res. 1991, 9, 641–650. [Google Scholar] [CrossRef]
- Luo, J.; Baranov, P.; Patel, S.; Ouyang, H.; Quach, J.; Wu, F.; Qiu, A.; Luo, H.; Hicks, C.; Zeng, J.; et al. Human Retinal Progenitor Cell Transplantation Preserves Vision. J. Biol. Chem. 2014, 289, 6362–6371. [Google Scholar] [CrossRef] [Green Version]
- ReNeuron Phase I/II Clinical Trial in Retinitis Pigmentosa. Available online: https://www.reneuron.com/media-list/?categories=trial-rp-iii (accessed on 8 July 2021).
- ReNeuron Group First Patient Treated in RP Clinical Trial. 2016. Available online: http://www.reneuron.com/news-list/reneuron-announces-first-patient-treated-in-us-phase-iii-clinical-trial-in-blindness-causing-disease-retinitis-pigmentosa/ (accessed on 8 July 2021).
- Gage, F.H. Mammalian Neural Stem Cells. Science 2000, 287, 1433–1438. [Google Scholar] [CrossRef]
- Wang, S.; Girman, S.; Lu, B.; Bischoff, N.; Holmes, T.; Shearer, R.; Wright, L.S.; Svendsen, C.N.; Gamm, D.M.; Lund, R.D. Long-term Vision Rescue by Human Neural Progenitors in a Rat Model of Photoreceptor Degeneration. Investig. Opthalmol. Vis. Sci. 2008, 49, 3201–3206. [Google Scholar] [CrossRef] [PubMed]
- Young, M.J.; Ray, J.; Whiteley, S.J.O.; Klassen, H.; Gage, F.H. Neuronal Differentiation and Morphological Integration of Hippocampal Progenitor Cells Transplanted to the Retina of Immature and Mature Dystrophic Rats. Mol. Cell. Neurosci. 2000, 16, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizumoto, H.; Mizumoto, K.; Shatos, M.A.; Klassen, H.; Young, M.J. Retinal transplantation of neural progenitor cells derived from the brain of GFP transgenic mice. Vis. Res. 2003, 43, 1699–1708. [Google Scholar] [CrossRef] [Green Version]
- García-Bermúdez, M.Y.; Freude, K.K.; Mouhammad, Z.A.; van Wijngaarden, P.; Martin, K.K.; Kolko, M. Glial Cells in Glaucoma: Friends, Foes, and Potential Therapeutic Targets. Front. Neurol. 2021, 12. [Google Scholar] [CrossRef]
- Nicoară, S.D.; Șușman, S.; Tudoran, O.; Bărbos, O.; Cherecheș, G.; Aștilean, S.; Potara, M.; Sorițău, O. Novel Strategies for the Improvement of Stem Cells’ Transplantation in Degenerative Retinal Diseases. Stem Cells Int. 2016, 2016, 1236721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLaren, R.E.; Pearson, R.A.; MacNeil, A.; Douglas, R.H.; Salt, T.E.; Akimoto, M.; Swaroop, A.; Sowden, J.C.; Ali, R.R. Retinal repair by transplantation of photoreceptor precursors. Nature 2006, 444, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Djojosubroto, M.W.; Arsenijevic, Y. Retinal stem cells: Promising candidates for retina transplantation. Cell Tissue Res. 2008, 331, 347–357. [Google Scholar] [CrossRef]
- MacLaren, R.E.; Pearson, R.A. Stem cell therapy and the retina. Eye 2007, 21, 1352–1359. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Xu, G.-X. Mesenchymal stem cells for retinal diseases. Int. J. Ophthalmol. 2011, 4, 413–421. [Google Scholar] [CrossRef]
- Kicic, A.; Shen, W.-Y.; Wilson, A.S.; Constable, I.J.; Robertson, T.; Rakoczy, P.E. Differentiation of Marrow Stromal Cells into Photoreceptors in the Rat Eye. J. Neurosci. 2003, 23, 7742–7749. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Iriyama, A.; Ueno, S.; Takahashi, H.; Kondo, M.; Tamaki, Y.; Araie, M.; Yanagi, Y. Subretinal transplantation of bone marrow mesenchymal stem cells delay retinal degeneration in the RCS rat model of retinal degeneration. Exp. Eye Res. 2007, 85, 234–241. [Google Scholar] [CrossRef]
- Machalinska, A.; Kawa, M.; Pius-Sadowska, E.; Stepniewski, J.; Nowak, W.; Roginska, D.; Kaczynska, K.; Baumert, B.; Wiszniewska, B.; Józkowicz, A.; et al. Long-Term Neuroprotective Effects of NT-4–Engineered Mesenchymal Stem Cells Injected Intravitreally in a Mouse Model of Acute Retinal Injury. Investig. Opthalmol. Vis. Sci. 2013, 54, 8292–8305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokkinaki, M.; Sahibzada, N.; Golestaneh, N. Human Induced Pluripotent Stem-Derived Retinal Pigment Epithelium (RPE) Cells Exhibit Ion Transport, Membrane Potential, Polarized Vascular Endothelial Growth Factor Secretion, and Gene Expression Pattern Similar to Native RPE. Stem Cells 2011, 29, 825–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, S.D.; Hubschman, J.-P.; Heilwell, G.; Franco-Cardenas, V.; Pan, C.K.; Ostrick, R.M.; Mickunas, E.; Gay, R.; Klimanskaya, I.; Lanza, R. Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet 2012, 379, 713–720. [Google Scholar] [CrossRef]
- Van Meurs, J.C.; Ter Averst, E.; Hofland, L.J.; Van Hagen, P.M.; Mooy, C.M.; Baarsma, G.S.; Kuijpers, R.W.; Boks, T.; Stalmans, P. Autologous peripheral retinal pigment epithelium translocation in patients with subfoveal neovascular membranes. Br. J. Ophthalmol. 2004, 88, 110–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezai, K.A.; Lappas, A.; Kohen, L.; Wiedemann, P.; Heimann, K. Comparison of tight junction permeability for albumin in iris pigment epithelium and retinal pigment epithelium in vitro. Graefe’s Arch. Clin. Exp. Ophthalmol. 1997, 235, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Gouras, P.; Cao, H.; Berglin, L.; Kjeldbye, H.; Lopez, R.; Rosskothen, H. Patch Transplants of Human Fetal Retinal Pigment Epithelium in Rabbit and Monkey Retina. Investig. Ophthalmol. Vis. Sci. 1995, 36, 381–390. [Google Scholar]
- Gir, P.; Oni, G.; Brown, S.A.; Mojallal, A.; Rohrich, R.J. Human Adipose Stem Cells. Plast. Reconstr. Surg. 2012, 129, 1277–1290. [Google Scholar] [CrossRef]
- Haddad-Mashadrizeh, A.; Bahrami, A.R.; Matin, M.M.; Edalatmanesh, M.A.; Zomorodipour, A.; Gardaneh, M.; Farshchian, M.; Momeni-Moghaddam, M. Human adipose-derived mesenchymal stem cells can survive and integrate into the adult rat eye following xenotransplantation. Xenotransplantation 2013, 20, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Margalit, E.; Maia, M.; Weiland, J.D.; Greenberg, R.J.; Fujii, G.Y.; Torres, G.; Piyathaisere, D.V.; O’Hearn, T.M.; Liu, W.; Lazzi, G.; et al. Retinal Prosthesis for the Blind. Surv. Ophthalmol. 2002, 47, 335–356. [Google Scholar] [CrossRef]
- Chen, K.; Rowley, A.P.; Weiland, J.D. Elastic properties of porcine ocular posterior soft tissues. J. Biomed. Mater. Res. Part A 2010, 93A, 634–645. [Google Scholar] [CrossRef] [PubMed]
- Lötters, J.C.; Olthuis, W.; Veltink, P.H.; Bergveld, P. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 1997, 7, 145–147. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Mittal, K.L. Polyimides-Fundamentals-and-Applications; Dekker: New York, NY, USA, 1996. [Google Scholar]
- Kazemi, M.; Basham, E.; Sivaprakasam, M.; Wang, G.; Rodger, D.; Weiland, J.; Tai, Y.C.; Liu, W.; Humayun, M. A Test Microchip for Evaluation of Hermetic Packaging Technology for Biomedical Prosthetic Implants. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004. [Google Scholar]
- Montezuma, S.R.; Loewenstein, J.; Scholz, C.; Rizzo, J.F. Biocompatibility of Materials Implanted into the Subretinal Space of Yucatan Pigs. Investig. Opthalmol. Vis. Sci. 2006, 47, 3514–3522. [Google Scholar] [CrossRef] [PubMed]
- Weiland, J.D.; Humayun, M.S. Retinal Prosthesis. IEEE Trans. Biomed. Eng. 2014, 61, 1412–1424. [Google Scholar] [CrossRef] [Green Version]
- Scholz, C. Perspectives on: Materials Aspects for Retinal Prostheses. J. Bioact. Compat. Polym. 2007, 22, 539–568. [Google Scholar] [CrossRef]
Type | Forms and Thickness | Advantages | Disadvantages | Applications |
---|---|---|---|---|
Natural biomaterials | ||||
Gelatin | 30–70 μm film | high integration with host cells | retraction of photoreceptor axons | in vivo [21,22,25] ex vivo [23,26] |
Collagen | thin film (7 μm) | support of integration in the host tissue, upregulation of angiogenesis | Ill-defined degradation time, low effectivity and porosity of thin films in comparison with nanofiber scaffolds | in vivo [30,31,32] ex vivo [33] |
Fibrinogen | thin film | stimulation of proliferation and differentiation of transplanted cells | short degradation time, gentle local inflammatory response | in vivo [35,36] in vitro [37] |
Laminin | thin film | promotion of the cell adhesion | short degradation time | in vivo [39,40] |
Synthetic biomaterials | ||||
Hydrogel | various forms and thickness, mainly very thick | minimally invasive (injectable) | unsuitable for cell culturing, transplantation of epithelial monolayer | in vivo [16] |
Poly (lactic-co-glycolic acid) (PLGA) and Poly (L-lactide-co-DL-lactide) (PDLLA) | 1–100 μm films, nanofibers, microspheres | the very high porosity of nanofibrous membrane, stimulation of proliferation and differentiation of transplanted cells, support of the cell adhesion | nanofibrous membranes with thickness below 10 μm require the supporting ring | in vivo [5,45,46] ex vivo [46,47,49] |
Poly(methyl methacrylate) (PMMA) | thin films 6 μm | support of integration | non-biodegradable | in vivo [50] in vitro [64] |
Polyglycerol sebacate (PGS) | thin films 45 μm | mechanical properties (very soft and elastic), biodegradability, high levels of cell survival | require the use of a thick layer for maintaining of plain shape | in vivo [52,53,55] in vitro [51,54] |
Poly-urethanes | thin films | biodegradability, degradation of oxyradicals, high porosity | hydrophobic surface with poor cell adherence | in vivo [58,59] in vitro [57] |
Thermo-responsive polymer | liquid form | support of the formation of RPE monolayer | require the backbone (of collagen) | in vivo [60,63] |
Poly (e-caprolactone) (PCL) | thin films from 200 nm to 5 μm | biodegradability, high permeability | very slow degradation (longer than 3 years), acidic degradation products | in vivo [63,65,66,67] in vitro [64,69,70,71,72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rohiwal, S.S.; Ellederová, Z.; Ardan, T.; Klima, J. Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases. Biomedicines 2021, 9, 1005. https://doi.org/10.3390/biomedicines9081005
Rohiwal SS, Ellederová Z, Ardan T, Klima J. Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases. Biomedicines. 2021; 9(8):1005. https://doi.org/10.3390/biomedicines9081005
Chicago/Turabian StyleRohiwal, Sonali Suresh, Zdenka Ellederová, Taras Ardan, and Jiri Klima. 2021. "Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases" Biomedicines 9, no. 8: 1005. https://doi.org/10.3390/biomedicines9081005
APA StyleRohiwal, S. S., Ellederová, Z., Ardan, T., & Klima, J. (2021). Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases. Biomedicines, 9(8), 1005. https://doi.org/10.3390/biomedicines9081005