Impact of Neonatal Body (Dis)Proportionality Determined by the Cephalization Index (CI) on Gross Motor Development in Children with Down Syndrome: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometry
2.3. Study Instruments and Measurements
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Acquisition of Motor Development Milestones in Disproportionate Compared to Proportionate CIs
3.3. Validity and Reliability of the Modified MFDD
3.4. Comparison of the Discriminant Analysis and Clinicians’ Assessments
3.5. Milestone Characteristics of the Infants
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wijnhoven, T.M.; de Onis, M.; Onyango, A.W.; Wang, T.; Bjoerneboe, G.E.A.; Bhandari, N.; Rashidi, B.A. Assessment of gross motor development in the WHO Multicentre Growth Reference Study. Food Nutr. Bull. 2004, 25, S37–S45. [Google Scholar] [CrossRef] [PubMed]
- Palisano, R.J.; Walter, S.D.; Russell, D.J.; Rosenbaum, P.L.; Gémus, M.; Galuppi, B.E.; Cunningham, L. Gross motor function of children with Down syndrome: Creation of motor growth curves. Arch. Phys. Med. Rehabil. 2001, 82, 494–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, S.; Sacks, B. An Overview of the Development of Infants with Down Syndrome (0–5 Years); Down Syndrome Education International: Kirkby Lonsdale, England, 2012; Available online: https://asociatiadart.files.wordpress.com/2015/01/overview-of-development-0-5-ebook.pdf (accessed on 24 June 2021).
- Block, M.E. Motor development in children with Down syndrome: A review of the literature. Adapt. Phys. Acitiv. Q. 1991, 8, 179–209. [Google Scholar] [CrossRef]
- Kim, H.I.; Kim, S.W.; Kim, J.; Jeon, H.R.; Jung, D.W. Motor and cognitive developmental profiles in children with Down syndrome. Ann. Rehabil. Med. 2017, 41, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malak, R.; Kostiukow, A.; Krawczyk-Wasielewska, A.; Mojs, E.; Samborski, W. Delays in motor development in children with Down syndrome. Med. Sci. Monit. 2015, 21, 1904–1910. [Google Scholar] [CrossRef] [Green Version]
- Nadel, L. Down’s syndrome: A genetic disorder in biobehavioral perspective. Genes Brain Behav. 2003, 2, 156–166. [Google Scholar] [CrossRef]
- Nishizawa, Y.; Fujita, T.; Matsuoka, K.; Nakagawa, H. Contact pressure distribution features in Down syndrome infants in supine and prone positions, analyzed by photoelastic methods. Pediatr. Int. 2006, 48, 484–488. [Google Scholar] [CrossRef]
- Aubert, E.J. Motor development in the normal child. In Pediatric Physical Therapy; Tecklin, J.S., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008; pp. 17–67. [Google Scholar]
- Bobath, K. A Neurophysiological Basis for the Treatment of Cerebral Palsy; Mac Keith Press: Lavenham, UK, 1980; pp. 26–88. [Google Scholar]
- Silventoinen, K.; Pitkäniemi, J.; Latvala, A.; Kaprio, J.; Yokoyama, Y. Association between physical and motor development in childhood: A longitudinal study of Japanese twins. Twin Res. Hum Genet. 2014, 17, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Scharf, R.J.; Stroustrup, A.; Conaway, M.R.; DeBoer, M.D. Growth and development in children born very low birthweight. Arch. Dis. Child Fetal. Neonatal. Ed. 2016, 101, F433–F438. [Google Scholar] [CrossRef] [Green Version]
- Boutot, E.A.; DiGangi, S.A. Effects of activation of preferred stimulus on tummy time behavior of an infant with Down syndrome and associated hypotonia. Behav. Anal. Pract. 2018, 11, 144–147. [Google Scholar] [CrossRef]
- Nicolaou, L.; Ahmed, T.; Bhutta, Z.A.; Bessong, P.; Kosek, M.; Lima, A.A.; Checkley, W. Factors associated with head circumference and indices of cognitive development in early childhood. BMJ Glob. Health 2020, 5, e003427. [Google Scholar] [CrossRef]
- Nishi, M.; Miyake, H.; Akashi, H.; Shimizu, H.; Tateyama, H.; Chaki, R.; Nishi, M. An index for proportion of head size to body mass during infancy. J. Child. Neurol. 1992, 7, 400–403. [Google Scholar] [CrossRef]
- Harel, S.; Tomer, A.; Barak, Y.; Binderman, I.; Yavin, E. The cephalization index: A screening device for brain maturity and vulnerability in normal and intrauterine growth retarded newborns. Brain Dev. 1985, 7, 580–584. [Google Scholar] [CrossRef]
- Simić, K.A. The Relationship of Postnatal Head Growth Dynamics and Neurodevelopmental Impairment in Preschool Children Born with Intrauterine Growth Retardation. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2012. [Google Scholar]
- Fattal-Valevski, A.; Leitner, Y.; Kutai, M.; Tal-Posener, E.; Tomer, A.; Lieberman, D.; Harel, S. Neurodevelopmental outcome in children with intrauterine growth retardation: A 3-year follow-up. J. Child. Neurol. 1999, 14, 724–727. [Google Scholar] [CrossRef]
- Leitner, Y.; Fattal-Valevski, A.; Geva, R.; Eshel, R.; Toledano-Alhadef, H.; Rotstein, M.; Harel, S. Neurodevelopmental outcome of children with intrauterine growth retardation: A longitudinal, 10-year prospective study. J. Child. Neurol. 2007, 22, 580–587. [Google Scholar] [CrossRef]
- European Network of Population-Based Registries for the Epidemiological Surveillance of Congenital Anomalies (EUROCAT). Available online: https://eu-rd-platform.jrc.ec.europa.eu/eurocat_en (accessed on 14 July 2021).
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [Green Version]
- Hellbrügge, T. Munich Functional Developmental Diagnosis for the First, Second, and Third Year of Life, 1st ed.; Theodor Hellbrügge International Institute for Developmental Rehabilitation: Munich, Germany, 1995. [Google Scholar]
- Russell, D.; Palisano, R.; Walter, S.; Rosenbaum, P.; Gemus, M.; Gowland, C.; Lane, M. Evaluating motor function in children with Down syndrome: Validity of the GMFM. Dev. Med. Child. Neurol. 1998, 40, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, C.H.; Massetti, T.; Crocetta, T.B.; Silva, T.D.D.; Mustacchi, Z.; Guarnieri, R.; Leone, C. Systematic review of the main motor scales for clinical assessment of individuals with Down syndrome. Dev. Neurorehabil. 2020, 23, 39–49. [Google Scholar] [CrossRef]
- Piper, M.C.; Darrah, J.; Maguire, T.O.; Redfern, L. Motor Assessment of the Developing Infant; Saunders: Philadelphia, PA, USA, 1994. [Google Scholar]
- Lauteslager, P.E.M.; Volman, M.; Lauteslager, T.; Van den Heuvel, M.E.; Jongerling, J.; Klugkist, I.G. Basic motor skills of children with Down syndrome: Creating a motor growth curve. Pediatr. Phys. Ther. 2020, 32, 375–380. [Google Scholar] [CrossRef]
- Pereira, K.; Basso, R.P.; Lindquist, A.R.; da Silva, L.G.; Tudella, E. Infants with Down syndrome: Percentage and age for acquisition of gross motor skills. Res. Dev. Disabil. 2013, 34, 894–901. [Google Scholar] [CrossRef]
- Tudella, E.; Pereira, K.; Basso, R.P.; Savelsbergh, G.J. Description of the motor development of 3–12 month old infants with Down syndrome: The influence of the postural body position. Res. Dev. Disabil. 2011, 32, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, C.; Onnivello, S.; Antonaros, F.; Feliciello, A.; Filoni, S.; Rossi, S.; Lanfranchi, S. Is the Age of Developmental Milestones a Predictor for Future Development in Down Syndrome? Brain Sci. 2021, 11, 655. [Google Scholar] [CrossRef] [PubMed]
- Lauteslager, P.E.M.; Vermeer, A.; Helders, P.J.M. Disturbances in the motor behaviour of children with Down’s syndrome: The need for a theoretical framework. Physiotherapy 1998, 84, 5–13. [Google Scholar] [CrossRef]
- Lott, I.T. Neurological phenotypes for Down syndrome across the life span. Prog. Brain Res. 2012, 197, 101–121. [Google Scholar] [CrossRef] [Green Version]
- Valentín-Gudiol, M.; Mattern-Baxter, K.; Girabent-Farrés, M.; Bagur-Calafat, C.; Hadders-Algra, M.; Angulo-Barroso, R.M. Treadmill interventions in children under six years of age at risk of neuromotor delay. Cochrane Database Syst. Rev. 2017, 7, Cd009242. [Google Scholar] [CrossRef] [Green Version]
- Rosa, M.C.; Marques, A.; Demain, S.; Metcalf, C.D.; Rodrigues, J. Methodologies to assess muscle co-contraction during gait in people with neurological impairment-A systematic literature review. J. Electromyogr. Kinesiol. 2014, 24, 179–191. [Google Scholar] [CrossRef]
Posture | Developmental Period | Motor Skills |
---|---|---|
Prone | Crawling age | Child can lift their head 90° while resting on their forearms, pushes their chest up with outstretched arms (extended arm support) |
Rises to their knees and palms (four-point kneeling) | ||
Rolls over on the abdomen and vice versa (rolls in both directions) | ||
Crawls on hands and knees (reciprocal creeping) | ||
Standing | Walking age, A 2 | Semiflexion of the hips and knees |
Child’s legs can support their body weight while standing with support | ||
Stands with or without support | ||
Pulls themselves to stand up with the support of furniture | ||
Walks along sideways with the support of furniture | ||
Supine and sitting | Walking age, B 3 | Walks independently (walks alone) |
Stands up without support | ||
Crouches (bends) and picks something up without support | ||
Walks up or down one step at a time while holding onto a railing | ||
Kicks a stationary ball | ||
Stands on one foot without help for 2 s and jumps in place | ||
Sitting age | Child follows a toy with their eyes | |
The head follows the torso in traction | ||
Child can sit for at least five seconds | ||
Child can support themselves leaning forward | ||
Sits down stably alone |
Sociodemographic and Birth Characteristics | Groups of Children | |
---|---|---|
CI < 1.1 (n = 26) | CI ≥ 1.1 (n = 21) | |
Sex, n (%) | ||
Female | 10 (38.46%) | 10 (47.62%) |
Male | 16 (61.54%) | 11 (52.38%) |
Gestational age (weeks), mean (SD) 1 | 38.31 (1.12) | 36.57 (1.88) |
Postnatal anthropometric measures, mean (SD) | ||
Body weight (g) | 3363.46 (326.81) | 2365.48 (447.74) |
Body length (cm) | 49.73 (1.59) | 45.10 (2.79) |
Head circumference (cm) | 33.31 (1.60) | 31.46 (1.71) |
Motor Skills in the Prone Posture “Crawling Age” | ||||||||
---|---|---|---|---|---|---|---|---|
Milestones | A(Symmetry) | N | Months (Mean) | SD 1 | OR 2 (CI 95%) | χ² Tests | df | p-Value |
Lifts head up 90° with forearm rest | CI 3 < 1.1 | 26 | 5.85 | 2.58 | ||||
CI ≥ 1.1 | 21 | 8.22 | 3.22 | 4.56 (2.83–7.32) | 41.30 | 1 | <0.001 | |
Total | 47 | 6.91 | 3.09 | |||||
Extended arm support | CI < 1.1 | 26 | 12.40 | 3.45 | ||||
CI ≥ 1.1 | 21 | 16.28 | 4.59 | 7.34 (5.10–10.6) | 128.00 | 1 | <0.001 | |
Total | 47 | 14.13 | 4.41 | |||||
Rolls both ways | CI < 1.1 | 26 | 11.13 | 3.37 | ||||
CI ≥ 1.1 | 21 | 11.58 | 3.81 | 1.38 (0.977–1.94) | 3.34 | 1 | 0.068 | |
Total | 47 | 11.33 | 3.54 | |||||
Four-point kneeling | CI < 1.1 | 26 | 16.90 | 4.61 | ||||
CI ≥ 1.1 | 21 | 17.32 | 5.44 | 0.986 (0.745–1.31) | 0.01 | 1 | 0.923 | |
Total | 47 | 17.09 | 4.95 | |||||
Reciprocal creeping | CI < 1.1 | 26 | 19.84 | 3.80 | ||||
CI ≥ 1.1 | 21 | 21.12 | 6.66 | 1.93 (1.48–2.51) | 23.60 | 1 | <0.001 | |
Total | 47 | 20.41 | 5.25 | |||||
Motor Skills in the Standing Posture “Walking Age” A | ||||||||
Semiflexion of the hips and knees | CI < 1.1 | 26 | 3.90 | 2.51 | ||||
CI ≥ 1.1 | 21 | 5.53 | 3.68 | 3.51 (1.71–7.21) | 12.60 | 1 | <0.001 | |
Total | 47 | 4.63 | 3.16 | |||||
Holds body weight on legs when supported in standing | CI < 1.1 | 25 | 11.47 | 4.47 | ||||
CI ≥ 1.1 | 20 | 12.50 | 3.75 | 2.27 (1.58–3.27) | 19.80 | 1 | <0.001 | |
Total | 45 | 11.93 | 4.15 | |||||
Stands with support | CI < 1.1 | 24 | 20.22 | 5.48 | ||||
CI ≥ 1.1 | 19 | 20.91 | 5.02 | 2.97 (2.23–3.94) | 58.10 | 1 | <0.001 | |
Total | 43 | 20.53 | 5.23 | |||||
Pulls to stand on furniture | CI < 1.1 | 24 | 20.62 | 5.63 | ||||
CI ≥ 1.1 | 19 | 21.70 | 6.46 | 2.37 (1.80–3.11) | 39.00 | 1 | <0.001 | |
Total | 43 | 21.10 | 5.96 | |||||
Walks sideways along furniture | CI < 1.1 | 22 | 23.45 | 3.87 | ||||
CI ≥ 1.1 | 18 | 25.59 | 6.83 | 3.14 (2.38–4.15) | 67.90 | 1 | <0.001 | |
Total | 40 | 24.41 | 5.44 | |||||
Stands without support | CI < 1.1 | 23 | 28.81 | 5.81 | ||||
CI ≥ 1.1 | 18 | 29.44 | 7.27 | 0.972 (0.769–1.23) | 0.06 | 1 | 0.810 | |
Total | 41 | 29.09 | 6.41 |
Motor Skills in the Standing Posture “Walking Age” B | ||||||||
---|---|---|---|---|---|---|---|---|
Milestones | A(Symmetry) | N | Months (Mean) | SD 1 | OR 2 (CI 95%) | χ² Tests | df | p-Value |
Walks independently | CI 3 < 1.1 | 23 | 30.23 | 5.96 | ||||
CI ≥ 1.1 | 17 | 32.34 | 6.78 | 2.04 (1.60–2.59) | 34.50 | 1 | <0.001 | |
Total | 40 | 31.12 | 6.32 | |||||
Stands up without support | CI < 1.1 | 22 | 33.47 | 6.75 | ||||
CI ≥ 1.1 | 17 | 35.29 | 9.84 | 0.518 (0.416–0.645) | 34.90 | 1 | <0.001 | |
Total | 39 | 34.26 | 8.17 | |||||
Crouches and picks something up without supporting | CI < 1.1 | 23 | 34.23 | 11.60 | ||||
CI ≥ 1.1 | 17 | 36.35 | 7.82 | 2.15 (1.73–2.67) | 47.70 | 1 | <0.001 | |
Total | 40 | 35.13 | 10.10 | |||||
Walks up one step at a time with rail holding | CI < 1.1 | 20 | 39.84 | 11.98 | ||||
CI ≥ 1.1 | 14 | 41.06 | 7.87 | 2.02 (1.63–2.52) | 40.70 | 1 | <0.001 | |
Total | 34 | 40.34 | 10.36 | |||||
Kicks a stationary ball | CI < 1.1 | 18 | 38.41 | 8.65 | ||||
CI ≥ 1.1 | 12 | 51.42 | 16.14 | 7.41 (5.50–9.98) | 203.00 | 1 | <0.001 | |
Total | 30 | 43.61 | 13.59 | |||||
Walks down one step at a time with rail holding | CI < 1.1 | 17 | 51.93 | 14.79 | ||||
CI ≥ 1.1 | 14 | 52.28 | 12.70 | 1.27 (1.04–1.55) | 5.73 | 1 | 0.017 | |
Total | 31 | 52.09 | 13.66 | |||||
Jumps in place | CI < 1.1 | 10 | 55.81 | 9.55 | ||||
CI ≥ 1.1 | 6 | 63.74 | 17.21 | 6.63 (4.58–9.61) | 117.00 | 1 | <0.001 | |
Total | 16 | 58.79 | 13.01 | |||||
Stands on one foot without help for 2 s | CI < 1.1 | 11 | 56.00 | 10.87 | ||||
CI ≥ 1.1 | 6 | 57.74 | 11.57 | 0.834 (0.638–1.09) | 1.76 | 1 | 0.184 | |
Total | 17 | 56.61 | 10.79 |
Motor Skills in the Supine and Sitting Posture “Sitting Age” | ||||||||
---|---|---|---|---|---|---|---|---|
Milestones | A(Symmetry) | N | Months (Mean) | SD 1 | OR 2 (CI 95%) | χ² Tests | df | p-Value |
Follows a toy with eyes | CI 3 < 1.1 | 26 | 4.66 | 2.65 | ||||
CI ≥ 1.1 | 21 | 6.07 | 3.17 | 1.96 (1.14–3.35) | 6.01 | 1 | 0.014 | |
Total | 47 | 5.29 | 2.95 | |||||
In traction, the head follows the torso | CI < 1.1 | 26 | 6.53 | 2.46 | ||||
CI ≥ 1.1 | 21 | 8.00 | 2.52 | 2.26 (1.37–3.74) | 10.40 | 1 | 0.001 | |
Total | 47 | 7.19 | 2.57 | |||||
Positioned, keeps sitting for at least 5 s supporting self forward | CI < 1.1 | 26 | 9.82 | 9.19 | ||||
CI ≥ 1.1 | 21 | 10.68 | 3.81 | 4.68 (3.18–6.88) | 64.60 | 1 | <0.001 | |
Total | 47 | 10.21 | 7.24 | |||||
Positioned, keeps sitting for at least 1 min | CI < 1.1 | 26 | 10.31 | 2.10 | ||||
CI ≥ 1.1 | 21 | 12.78 | 3.91 | 2.51 (1.71–3.70) | 22.40 | 1 | <0.001 | |
Total | 47 | 11.41 | 3.25 | |||||
Sits down alone | CI < 1.1 | 25 | 17.51 | 3.41 | ||||
CI ≥ 1.1 | 21 | 18.62 | 4.10 | 1.80 (1.36–2.39) | 17.10 | 1 | <0.001 | |
Total | 46 | 18.02 | 3.74 | |||||
Sits alone stably | CI < 1.1 | 26 | 14.69 | 3.11 | ||||
CI ≥ 1.1 | 21 | 15.09 | 3.91 | 1.20 (0.885–1.61) | 1.35 | 1 | 0.245 | |
Total | 47 | 14.87 | 3.46 | |||||
Protective extension reflex | ||||||||
Forward | CI < 1.1 | 26 | 10.77 | 2.46 | ||||
CI ≥ 1.1 | 21 | 13.60 | 5.23 | 5.99 (3.99–8.99) | 82.30 | 1 | <0.001 | |
Total | 47 | 12.03 | 4.15 | |||||
Sideways | CI < 1.1 | 26 | 15.50 | 3.18 | ||||
CI ≥ 1.1 | 21 | 18.03 | 6.27 | 2.86 (2.10–3.90) | 45.80 | 1 | <0.001 | |
Total | 47 | 16.63 | 4.92 | |||||
Backward | CI < 1.1 | 20 | 27.54 | 6.20 | ||||
CI ≥ 1.1 | 16 | 24.94 | 6.48 | 0.810 (0.618–1.06) | 2.36 | 1 | 0.124 | |
Total | 36 | 26.38 | 6.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rota Čeprnja, A.; Pranić, S.M.; Šunj, M.; Kozina, T.; Božić, J.; Kozina, S. Impact of Neonatal Body (Dis)Proportionality Determined by the Cephalization Index (CI) on Gross Motor Development in Children with Down Syndrome: A Prospective Cohort Study. Children 2023, 10, 13. https://doi.org/10.3390/children10010013
Rota Čeprnja A, Pranić SM, Šunj M, Kozina T, Božić J, Kozina S. Impact of Neonatal Body (Dis)Proportionality Determined by the Cephalization Index (CI) on Gross Motor Development in Children with Down Syndrome: A Prospective Cohort Study. Children. 2023; 10(1):13. https://doi.org/10.3390/children10010013
Chicago/Turabian StyleRota Čeprnja, Asija, Shelly Melissa Pranić, Martina Šunj, Tonći Kozina, Joško Božić, and Slavica Kozina. 2023. "Impact of Neonatal Body (Dis)Proportionality Determined by the Cephalization Index (CI) on Gross Motor Development in Children with Down Syndrome: A Prospective Cohort Study" Children 10, no. 1: 13. https://doi.org/10.3390/children10010013
APA StyleRota Čeprnja, A., Pranić, S. M., Šunj, M., Kozina, T., Božić, J., & Kozina, S. (2023). Impact of Neonatal Body (Dis)Proportionality Determined by the Cephalization Index (CI) on Gross Motor Development in Children with Down Syndrome: A Prospective Cohort Study. Children, 10(1), 13. https://doi.org/10.3390/children10010013