Anthropometry and Physical Performance in 13-Year-Old Australian Talent-Identified Male and Female Athletes Compared to an Age-Matched General Population Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Measures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Practical Applications
- Speed and power discriminate male and female talent-identified youth athletes (~13 years old) from the general population.
- Youth strength and conditioning coaches, allied health professionals, and physical educators who facilitate the development of youth athletes now have physical performance benchmarks which can be used to guide training prescription.
- The development of speed and power prior to the age of 13 years may be beneficial to improve athletic and sports performance for males and females.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaput, J.P.; Willumsen, J.; Bull, F.; Chou, R.; Ekelund, U.; Firth, J.; Jago, R.; Ortega, F.B.; Katzmarzyk, P.T. 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: Summary of the evidence. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 141. [Google Scholar] [CrossRef]
- Raghuveer, G.; Hartz, J.; Lubans, D.R.; Takken, T.; Wiltz, J.L.; Mietus-Snyder, M.; Perak, A.M.; Baker-Smith, C.; Pietris, N.; Edwards, N.M. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement from the American Heart Association. Circulation 2020, 142, e101–e118. [Google Scholar] [CrossRef]
- Evaristo, S.; Moreira, C.; Lopes, L.; Oliveira, A.; Abreu, S.; Agostinis-Sobrinho, C.; Oliveira-Santos, J.; Póvoas, S.; Santos, R.; Mota, J. Muscular fitness and cardiorespiratory fitness are associated with health-related quality of life: Results from labmed physical activity study. J. Exerc. Sci. Fit. 2019, 17, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Boreham, C.A.G.; McKay, H.A. Physical activity in childhood and bone health. Br. J. Sports Med. 2011, 45, 877–879. [Google Scholar] [CrossRef] [PubMed]
- Gralla, M.H.; McDonald, S.M.; Breneman, C.; Beets, M.W.; Moore, J.B. Associations of Objectively Measured Vigorous Physical Activity with Body Composition, Cardiorespiratory Fitness, and Cardiometabolic Health in Youth: A Review. Am. J. Lifestyle Med. 2019, 13, 61–97. [Google Scholar] [CrossRef]
- Dale, L.P.; Vanderloo, L.; Moore, S.; Faulkner, G. Physical activity and depression, anxiety, and self-esteem in children and youth: An umbrella systematic review. Ment. Health Phys. Act. 2019, 16, 66–79. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016, 48, 1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, A.C.; Whitt-Glover, M.C.; Marquez, D.X.; Buman, M.; Napolitano, M.A.; Jakicic, J.; Fulton, J.E.; Tennant, B.L. Physical Activity Promotion: Highlights from the 2018 Physical Activity Guidelines Advisory Committee Systematic Review. Med. Sci. Sports Exerc. 2019, 51, 1340–1353. [Google Scholar] [CrossRef]
- Hasselstrøm, H.; Hansen, S.E.; Froberg, K.; Andersen, L.B. Physical fitness and physical activity during adolescence as predictors of cardiovascular disease risk in young adulthood. Danish Youth and Sports Study. An eight-year follow-up study. Int. J. Sports Med. 2002, 23, 27–31. [Google Scholar] [CrossRef]
- Hermassi, S.; Van den Tillaar, R.; Bragazzi, N.L.; Schwesig, R. The associations between physical performance and anthropometric characteristics in obese and non-obese schoolchild handball players. Front. Physiol. 2021, 11, 580991. [Google Scholar] [CrossRef]
- Lesinski, M.; Schmelcher, A.; Herz, M.; Puta, C.; Gabriel, H.; Arampatzis, A.; Laube, G.; Büsch, D.; Granacher, U. Maturation-, age-, and sex-specific anthropometric and physical fitness percentiles of German elite young athletes. PLoS ONE 2020, 15, e0237423. [Google Scholar] [CrossRef]
- Larkin, P.; Sortino, B.; Carlon, T.; Saunders, T.; Pane, C. Gender- and Sport-specific Normative Anthropometric and Physical Values in Talent-Identified High School Athletes. J. Strength Cond. Res. 2022, 10, 1519. [Google Scholar] [CrossRef]
- Gagné, F. Understanding the Complex Choreography of Talent Development Through DMGT-Based Analysis. Int. Handb. Gift. Talent. 2000, 2, 67–79. [Google Scholar]
- Güllich, A.; Cobley, S. On the efficacy of talent identification and talent development programmes. In Routledge Handbook of Talent Identification and Talent Development in Sport; Baker, J., Cobley, S., Schorer, J., Wattie, N., Eds.; Routledge: London, UK, 2017; pp. 80–98. [Google Scholar]
- Johansson, A.; Fahlén, J. Simply the best, better than all the rest? Validity issues in selections in elite sport. Int. J. Sports Sci. Coach. 2017, 12, 470–480. [Google Scholar] [CrossRef]
- Larkin, P.; Reeves, M.J. Junior-elite football: Time to re-position talent identification? Soccer Soc. 2018, 19, 1183–1192. [Google Scholar] [CrossRef]
- Risberg, M.A.; Steffen, K.; Nilstad, A.; Myklebust, G.; Kristianslund, E.; Moltubakk, M.M.; Krosshaug, T. Normative Quadriceps and Hamstring Muscle Strength Values for Female, Healthy, Elite Handball and Football Players. J. Strength Cond. Res. 2018, 32, 2314–2323. [Google Scholar] [CrossRef] [Green Version]
- Smpokos, E.; Mourikis, C.; Tsikakis, A.; Katsikostas, N.; Linardakis, M. Reference performance values of pre-seasonal physical fitness in elite youth male football players in Greece. J. Public Health 2020, 30, 1307–1318. [Google Scholar] [CrossRef]
- Reilly, T.; Bangsbo, J.; Franks, A.L. Anthropometric and physiological predispositions for elite soccer. J. Sports Sci. 2000, 18, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.T.; Cripps, A.; Hopper, L.; Joyce, C. A comparison of the physical and anthropometric qualities explanatory of talent in the elite junior Australian football development pathway. J. Sci. Med. Sport 2017, 20, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Dobbin, N.; Highton, J.; Moss, S.L.; Twist, C. The discriminant validity of a standardized testing battery and its ability to differentiate anthropometric and physical characteristics between youth, academy, and senior professional rugby league players. Int. J. Sports Physiol. Perform. 2019, 14, 1110–1116. [Google Scholar] [CrossRef]
- Haycraft, J.A.; Kovalchik, S.; Pyne, D.B.; Robertson, S. Relationships between Physical Testing and Match Activity Profiles Across the Australian Football League Participation Pathway. Int. J. Sports Physiol. Perform. 2019, 14, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.; Woods, C.; Gastin, P. Predicting higher selection in elite junior Australian Rules football: The influence of physical performance and anthropometric attributes. J. Sci. Med. Sport 2015, 18, 601–606. [Google Scholar] [CrossRef]
- Jennings, J.; Wundersitz, D.W.; Sullivan, C.J.; Cousins, S.D.; Tehan, G.; Kingsley, M.I. Physical testing characteristics better explain draft outcome than in-game movement profile in junior elite Australian rules football players. J. Sci. Med. Sport 2021, 24, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.J.; Nassis, G.P. Physical fitness testing in youth soccer: Issues and considerations regarding reliability, validity, and sensitivity. Pediatr. Exerc. Sci. 2015, 27, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Woolford, S.M.; Polglaze, T.; Rowsell, G.; Spencer, M. Field testing principles and protocols. In Physiological Tests for Elite Athletes, 2nd ed.; Tanner, R.K., Gore, C.J., Eds.; Human Kinetics: Champaign, IL, USA, 2013; pp. 231–248. [Google Scholar]
- Marfell-Jones, M.; Olds, T.; Stewart, A.; Carter, J.E.L. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinathropometry: Adelaide, Australia, 2006. [Google Scholar]
- Pyne, D.B.; Gardner, A.S.; Sheehan, K.; Hopkins, W.G. Fitness testing and career progression in AFL football. J. Sci. Med. Sport 2005, 8, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Heishman, A.D.; Daub, B.D.; Miller, R.M.; Freitas, E.D.; Frantz, B.A.; Bemben, M.G. Countermovement jump reliability performed with and without an arm swing in NCAA division 1 intercollegiate basketball players. J. Strength Cond. Res. 2020, 34, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 2016, 112, 155–159. [Google Scholar] [CrossRef]
- Sawilowsky, S. New effect size rule of thumb. J. Mod. Appl. Stat. Methods 2009, 8, 467–474. [Google Scholar] [CrossRef]
- Loko, J.; Aule, R.; Sikkut, T.; Ereline, J.; Viru, A. Age differences in growth and physical abilities in trained and untrained girls 10–17 years of age. Am. J. Hum. Biol. 2003, 15, 72–77. [Google Scholar] [CrossRef]
- Iadreev, V.; Cherkashin, I.; Vujkov, S.; Drid, P. Differences in anthropometric, motoric and cognitive abilities between athletically trained and untrained girls. Biomed. Hum. Kinet. 2015, 7, 73–77. [Google Scholar] [CrossRef] [Green Version]
- McNarry, M.A.; Lester, L.; Brown, J.; Mackintosh, K.A. Investigating the Modulatory Role of Chronological and Biological Age on Performance Predictors in Youth Swimmers. J. Sci. Sport Exerc. 2020, 2, 349–358. [Google Scholar] [CrossRef]
- Iga, J.; George, K.; Lees, A.; Reilly, T. Cross-sectional investigation of indices of isokinetic leg strength in youth soccer players and untrained individuals. Scand. J. Med. Sci. Sports 2009, 19, 714–719. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L. The youth physical development model: A new approach to long-term athletic development. Strength Cond. J. 2012, 34, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Faigenbaum, A.D.; Lloyd, R.S.; Myer, G.D. Youth Resistance Training: Past Practices, New Perspectives, and Future Directions. Pediatr. Exerc. Sci. 2013, 25, 591–604. [Google Scholar] [CrossRef] [Green Version]
- Chaouachi, A.; Ben Othman, A.; Makhlouf, I.; Young, J.D.; Granacher, U.; Behm, D.G. Global Training Effects of Trained and Untrained Muscles with Youth Can be Maintained During 4 Weeks of Detraining. J. Strength Cond. Res. 2019, 33, 2788–2800. [Google Scholar] [CrossRef] [PubMed]
- Meylan, C.M.P.; Cronin, J.B.; Oliver, J.L.; Hopkins, W.G.; Contreras, B. The effect of maturation on adaptations to strength training and detraining in 11–15-year-olds. Scand. J. Med. Sci. Sports 2014, 24, e156–e164. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.; Sandercock, G.R.H.; Ramírez-Campillo, R.; Meylan, C.; Collison, J.; Parry, D.A. A meta-analysis of maturation-related variation in adolescent boy athletes’ adaptations to short-term resistance training. J. Sports Sci. 2017, 35, 1041–1051. [Google Scholar] [CrossRef]
- Booth, M.; Cobley, S.; Halaki, M.; Orr, R. Is training age predictive of physiological performance changes in developmental rugby league players? A prospective longitudinal study. Int. J. Sports Sci. Coach. 2020, 15, 306–315. [Google Scholar] [CrossRef]
- Simpson, M.J.; Jenkins, D.G.; Leveritt, M.D.; Kelly, V.G. Physical profiles of elite, sub-elite, regional and age-group netballers. J. Sports Sci. 2019, 37, 1212–1219. [Google Scholar] [CrossRef]
- Joseph, J.; McIntyre, F.; Joyce, C.; Scanlan, A.; Cripps, A. A comparison of multidimensional qualities discriminant of selection in elite adolescent Australian basketball athletes. PLoS ONE 2021, 16, e0256032. [Google Scholar] [CrossRef]
- Mostaert, M.; Pion, J.; Lenoir, M.; Vansteenkiste, P. A Retrospective Analysis of the National Youth Teams in Volleyball: Were They Always Faster, Taller, and Stronger? J. Strength Cond. Res. 2022, 36, 2615–2621. [Google Scholar] [CrossRef] [PubMed]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar]
- Malina, R.M.; Cumming, S.P.; Rogol, A.D.; Coelho-E-Silva, M.J.; Figueiredo, A.J.; Konarski, J.M.; Kozieł, S.M. Bio-Banding in Youth Sports: Background, Concept, and Application. Sports Med. 2019, 49, 1671–1685. [Google Scholar] [CrossRef] [PubMed]
- Quatman, C.E.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Maturation Leads to Gender Differences in Landing Force and Vertical Jump Performance: A Longitudinal Study. Am. J. Sports Med. 2006, 34, 806–813. [Google Scholar] [CrossRef]
- Mills, K.; Baker, D.; Pacey, V.; Wollin, M.; Drew, M.K. What is the most accurate and reliable methodological approach for predicting peak height velocity in adolescents? A systematic review. J. Sci. Med. Sport 2017, 20, 572–577. [Google Scholar] [CrossRef] [PubMed]
Talent-Identified Athletes (n = 53) | General Population (n = 115) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean (SD) | Maximum | Minimum | Mean (SD) | Maximum | Minimum | Mean Difference | Lower 95% CI | Upper 95% CI | p-value | Effect Size | |
Stand Height (cm) | 160.93 (7.40) | 142.7 | 180.19 | 156.91 (5.89) | 144.4 | 170.7 | 4.02 | 1.72 | 6.32 | <0.001 * | Medium |
Body Mass (kg) | 51.27 (8.71) | 32.35 | 74.99 | 51.84 (11.59) | 31.50 | 105.70 | −0.57 | −3.76 | 2.62 | 0.723 | Very Small |
CMJ (cm) | 24.86 (4.02) | 17.10 | 32.60 | 20.70 (4.96) | 6.50 | 32.10 | 3.98 | 2.55 | 5.40 | <0.001 * | Large |
5 m Sprint (s) | 1.26 (0.07) | 1.12 | 1.44 | 1.32 (0.11) | 1.12 | 1.71 | −0.07 | −0.10 | −0.04 | <0.001 * | Medium |
10 m Sprint (s) | 2.08 (0.11) | 1.90 | 2.35 | 2.24 (0.18) | 1.95 | 2.92 | −0.15 | −0.20 | −0.11 | <0.001 * | Large |
20 m Sprint (s) | 3.61 (0.19) | 3.29 | 4.09 | 3.94 (0.36) | 3.16 | 5.38 | −0.34 | −0.42 | −0.25 | <0.001 * | Large |
Talent-Identified Athletes (n = 83) | General Population (n = 135) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean (SD) | Maximum | Minimum | Mean (SD) | Maximum | Minimum | Mean Difference | Lower 95% CI | Upper 95% CI | p-value | Effect Size | |
Stand Height (cm) | 163.1 (10.66) | 145.4 | 190.44 | 160.93 (9.85) | 136.6 | 191.6 | −1.86 | −0.68 | 5.03 | 0.134 | Small |
Body Mass (kg) | 52.43 (10.46) | 32.19 | 81.84 | 54.29 (16.67) | 26.10 | 121.20 | 2.18 | −5.49 | 1.76 | 0.311 | Very Small |
CMJ (cm) | 29.32 (6.26) | 16.10 | 43.30 | 24.08 (5.77) | 8.70 | 37.10 | 5.24 | 3.57 | 6.92 | <0.001 * | Large |
5 m Sprint (s) | 1.22 (0.09) | 1.03 | 1.48 | 1.25 (0.10) | 1.02 | 1.71 | −0.02 | −0.05 | 0.00 | 0.069 | Small |
10 m Sprint (s) | 2.01 (0.13) | 1.71 | 2.37 | 2.11 (0.17) | 1.76 | 2.92 | −0.10 | −0.14 | −0.05 | <0.001 * | Medium |
20 m Sprint (s) | 3.49 (0.24) | 2.94 | 4.08 | 3.72 (0.36) | 3.08 | 5.20 | −0.24 | −0.32 | −0.16 | <0.001 * | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larkin, P.; Carlon, T.; Sortino, B.; Greer, S.; Cuttiford, T.; Wijekulasuriya, G.; Pane, C. Anthropometry and Physical Performance in 13-Year-Old Australian Talent-Identified Male and Female Athletes Compared to an Age-Matched General Population Cohort. Children 2023, 10, 212. https://doi.org/10.3390/children10020212
Larkin P, Carlon T, Sortino B, Greer S, Cuttiford T, Wijekulasuriya G, Pane C. Anthropometry and Physical Performance in 13-Year-Old Australian Talent-Identified Male and Female Athletes Compared to an Age-Matched General Population Cohort. Children. 2023; 10(2):212. https://doi.org/10.3390/children10020212
Chicago/Turabian StyleLarkin, Paul, Todd Carlon, Benjamin Sortino, Sam Greer, Tennille Cuttiford, Gyan Wijekulasuriya, and Calvin Pane. 2023. "Anthropometry and Physical Performance in 13-Year-Old Australian Talent-Identified Male and Female Athletes Compared to an Age-Matched General Population Cohort" Children 10, no. 2: 212. https://doi.org/10.3390/children10020212
APA StyleLarkin, P., Carlon, T., Sortino, B., Greer, S., Cuttiford, T., Wijekulasuriya, G., & Pane, C. (2023). Anthropometry and Physical Performance in 13-Year-Old Australian Talent-Identified Male and Female Athletes Compared to an Age-Matched General Population Cohort. Children, 10(2), 212. https://doi.org/10.3390/children10020212