Effects of the Whole-Body Vibration Exercise on Sleep Disorders, Body Temperature, Body Composition, Tone, and Clinical Parameters in a Child with Down Syndrome Who Underwent Total Atrioventricular Septal Defect Surgery: A Case-Report
Abstract
:1. Introduction
2. Case Report
2.1. Ethical Issues
2.2. Identification and Clinical Conditions
2.3. Parameters Evaluated and Instruments Used
2.3.1. Initial Assessment
2.3.2. Body Temperature
2.3.3. Sleep Disorder
2.3.4. Body Composition
2.3.5. Tone Analysis
2.3.6. Clinical Parameters
2.4. WBVE Intervention Protocol
3. Results
3.1. Clinical Parameters
3.2. Infrared Thermography
3.3. Tone
3.4. WBVE Results in Body Composition
3.5. WBVE Results in Sleep Disorder
3.5.1. QRL
3.5.2. DSDC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meharena, H.S.; Marco, A.; Dileep, V.; Lockshin, E.R.; Akatsu, G.Y.; Mullahoo, J.; Watson, L.A.; Ko, T.; Guerin, L.N.; Abdurrob, F.; et al. Down-syndrome-induced senescence disrupts the nuclear architecture of neural progenitors. Cell Stem Cell 2022, 29, 116–130.e7. [Google Scholar] [CrossRef] [PubMed]
- Lanfranchi, S.; Meneghetti, C.; Toffalini, E.; Carretti, B. Individuals with Down syndrome: Editorial. Brain Sci. 2022, 12, 398. [Google Scholar] [CrossRef] [PubMed]
- Lagan, N.; Huggard, D.; Mc Grane, F.; Leahy, T.R.; Franklin, O.; Roche, E.; Webb, D.; O’Marcaigh, A.; Cox, D.; El-Khuffash, A.; et al. Multiorgan involvement and management in children with Down syndrome. Acta Paediatr. 2020, 109, 1096–1111. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, M.; Manzoor, J.; Hyder, S.N.; Sadiq, M. Congenital heart disease and thyroid dysfunction in Down syndrome reported at Children’s Hospital, Lahore, Pakistan. Turk. J. Pediatr. 2019, 61, 915–924. [Google Scholar] [CrossRef]
- Olariu, I.C.; Popoiu, A.; Ardelean, A.-M.; Isac, R.; Steflea, R.M.; Olariu, T.; Chirita-Emandi, A.; Stroescu, R.; Gafencu, M.; Doros, G. Challenges in the surgical treatment of atrioventricular septal defect in children with and without Down syndrome in Romania-a developing country. Front. Pediatr. 2021, 9, 612644. [Google Scholar] [CrossRef]
- Mezzani, A.; Hamm, L.F.; Jones, A.M.; McBride, P.E.; Moholdt, T.; Stone, J.A.; Urhausen, A.; Williams, M.A. Aerobic exercise intensity assessment and prescription in cardiac rehabilitation: A joint position statement of the European association for cardiovascular prevention and rehabilitation, the American association of cardiovascular and pulmonary rehabilitation and the Canadian association of cardiac rehabilitation. Eur. J. Prev. Cardiol. 2013, 20, 442–467. [Google Scholar] [CrossRef]
- Anderson, L.; Thompson, D.R.; Oldridge, N.; Zwisler, A.-D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2016, 1, CD001800. [Google Scholar] [CrossRef] [Green Version]
- Delecluse, C.; Roelants, M.; Verschueren, S. Strength increase after whole-body vibration compared with resistance training. Med. Sci. Sports Exerc. 2003, 35, 1033–1041. [Google Scholar] [CrossRef]
- Roelants, M.; Delecluse, C.; Goris, M.; Verschueren, S. Effects of 24 weeks of whole body vibration training on body composition and muscle strength in untrained females. Int. J. Sports Med. 2004, 25, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kerschan-Schindl, K.; Grampp, S.; Henk, C.; Resch, H.; Preisinger, E.; Fialka-Moser, V.; Imhof, H. Whole-body vibration exercise leads to alterations in muscle blood volume. Clin. Physiol. 2001, 21, 377–382. [Google Scholar] [CrossRef]
- Games, K.E.; Sefton, J.M.; Wilson, A.E. Whole-body vibration and blood flow and muscle oxygenation: A meta-analysis. J. Athl. Train. 2015, 50, 542–549. [Google Scholar] [CrossRef] [Green Version]
- Schneider, R. Low-frequency vibrotherapy considerably improves the effectiveness of manual lymphatic drainage (MLD) in patients with lipedema: A two-armed, randomized, controlled pragmatic trial. Physiother. Theory Pract. 2020, 36, 63–70. [Google Scholar] [CrossRef]
- Alev, A.; Mihriban, A.; Bilge, E.; Ayça, E.; Merve, K.; Şeyma, C.; Uğur, E.; Adnan, B.; Zeynel, K.; Mahmut, G.S. Effects of whole body vibration therapy in pain, function and depression of the patients with fibromyalgia. Complement. Ther. Clin. Pract. 2017, 28, 200–203. [Google Scholar] [CrossRef]
- Gomes-Neto, M.; Sá-Caputo, D.D.C.D.; Paineiras-Domingos, L.L.; Brandão, A.A.; Neves, M.F.; Marin, P.J.; Sañudo, B.; Bernardo-Filho, M. Effects of whole-body vibration in Older Adult Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Can. J. Diabetes 2019, 43, 524–529.e2. [Google Scholar] [CrossRef]
- Alashram, A.R.; Padua, E.; Annino, G. Effects of Whole-Body Vibration on Motor Impairments in Patients with Neurological Disorders: A Systematic Review. Am. J. Phys. Med. Rehabil. 2019, 98, 1084–1098. [Google Scholar] [CrossRef]
- Bogaerts, A.; Delecluse, C.; Claessens, A.L.; Coudyzer, W.; Boonen, S.; Verschueren, S.M.P. Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: A 1-year randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.; Mizukami, K. The effect of whole body vibration by sonic waves on mood, the autonomic nervous system, and brain function in elderly. Nihon Ronen Igakkai Zasshi 2020, 57, 441–449. [Google Scholar] [CrossRef]
- Nowak-Lis, A.; Nowak, Z.; Gabrys, T.; Szmatlan-Gabrys, U.; Batalik, L.; Knappova, V. The use of vibration training in men after myocardial infarction. Int. J. Environ. Res. Public Health 2022, 19, 3326. [Google Scholar] [CrossRef]
- Bidonde, J.; Busch, A.J.; van der Spuy, I.; Tupper, S.; Kim, S.Y.; Boden, C. Whole body vibration exercise training for fibromyalgia. Cochrane Database Syst. Rev. 2017, 9, CD011755. [Google Scholar] [CrossRef]
- Bernardo-Filho, M.; Taiar, R.; Sañudo, B.; Furness, T. Clinical approaches of whole body vibration exercises. Rehabil. Res. Pract. 2018, 2018, 9123625. [Google Scholar] [CrossRef]
- Sañudo, B.; Seixas, A.; Gloeckl, R.; Rittweger, J.; Rawer, R.; Taiar, R.; van der Zee, E.A.; van Heuvelen, M.J.G.; Lacerda, A.C.; Sartorio, A.; et al. Potential application of whole body vibration exercise for improving the clinical conditions of COVID-19 infected individuals: A narrative review from the world association of vibration exercise experts (WAVex) panel. Int. J. Environ. Res. Public Health 2020, 17, 3650. [Google Scholar] [CrossRef] [PubMed]
- Villarroya, M.A.; González-Agüero, A.; Moros, T.; Gómez-Trullén, E.; Casajús, J.A. Effects of whole body vibration training on balance in adolescents with and without Down syndrome. Res. Dev. Disabil. 2013, 34, 3057–3065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Agüero, A.; Matute-Llorente, A.; Gómez-Cabello, A.; Casajús, J.A.; Vicente-Rodríguez, G. Effects of whole body vibration training on body composition in adolescents with Down syndrome. Res. Dev. Disabil. 2013, 34, 1426–1433. [Google Scholar] [CrossRef] [PubMed]
- Matute-Llorente, A.; González-Agüero, A.; Gómez-Cabello, A.; Olmedillas, H.; Vicente-Rodríguez, G.; Casajús, J.A. Effect of whole body vibration training on bone mineral density and bone quality in adolescents with Down syndrome: A randomized controlled trial. Osteoporos. Int. 2015, 26, 2449–2459. [Google Scholar] [CrossRef]
- Eid, M.A. Effect of whole-body vibration training on standing balance and muscle strength in children with Down syndrome. Am. J. Phys. Med. Rehabil. 2015, 94, 633–643. [Google Scholar] [CrossRef]
- Emara, H.A. Effects of whole body vibration on body composition and muscle strength of children with Down syndrome. Int. J. Ther. Rehabil. Res. 2016, 5, 1–8. [Google Scholar] [CrossRef]
- Eid, M.A.; Aly, S.M.; Huneif, M.A.; Ismail, D.K. Effect of isokinetic training on muscle strength and postural balance in children with Down’s syndrome. Int. J. Rehabil. Res. 2017, 40, 127–133. [Google Scholar] [CrossRef]
- Dębiec-Bąk, A.; Wójtowicz, D.; Pawik, L.; Ptak, A.; Anna Skrzek, A. Analysis of body surface temperatures in people with Down syndrome after general rehabilitation exercise. J. Therm. Anal. Calorim. 2019, 135, 2399–2410. [Google Scholar] [CrossRef] [Green Version]
- Moreira-Marconi, E.; Moura-Fernandes, M.C.; Lopes-Souza, P.; Teixeira-Silva, Y.; Reis-Silva, A.; Marchon, R.M.; Guedes-Aguiar, E.O.; Paineiras-Domingos, L.L.; Sá-Caputo, D.C.; Morel, D.S.; et al. Evaluation of the temperature of posterior lower limbs skin during the whole body vibration measured by infrared thermography: Cross-sectional study analysis using linear mixed effect model. PLoS ONE 2019, 14, e0212512. [Google Scholar] [CrossRef]
- Jarnalo, M.; Vardasca, R.; Mendes, J.G.; Drummond, M. Antero-cervical thermophysiological characterization of obstructive sleep apnea patients. Sleep Breath. 2018, 22, 1111–1116. [Google Scholar] [CrossRef]
- Cavalheiro, M.G.; Corrêa, C.C.; Maximino, L.P.; Weber, S.A.T. Sleep quality in children: Questionnaires available in Brazil. Sleep Sci. 2017, 10, 154–160. [Google Scholar] [CrossRef]
- Bruni, O.; Ottaviano, S.; Guidetti, V.; Romoli, M.; Innocenzi, M.; Cortesi, F.; Giannotti, F. The sleep disturbance scale for children (SDSC) construction and validation of an instrument to evaluate sleep disturbances in childhood and adolescence. J. Sleep Res. 1996, 5, 251–261. [Google Scholar] [CrossRef]
- Reis, A.S.; Paineiras-Domingos, L.L.; Moreira-Marconi, E.; Moura-Fernandes, M.C.; Quinart, H.; Boyer, F.C.; Neves, M.F.; Taiar, R.; Bernardo-Filho, M.; Sá-Caputo, D.C. Body composition in metabolic syndrome: Proposal of a protocol for a randomized trial evaluating the effect of whole-body vibration exercise. Braz. J. Health Biomed. Sci. 2019, 18, 33–40. [Google Scholar]
- Magaldi, C.D.S.; Bueno, F.A.V.; Martins, F.A.D.J.; Terra, S.D.O.; da Silva Sant’ana, M.E.G.; Pinto, M.N.; Soares, E.V. Tônus muscular e suas alterações nos pacientes neurocríticos. Biológicas Saúde 2019, 9, 30. [Google Scholar] [CrossRef]
- Naidoo, P. Current practices in the assessment of hypotonia in children. South Afr. J. Occup. Ther. 2013, 43, 12–17. [Google Scholar]
- Koch, V.H.; Furusawa, E.A. Diretrizes para medida da Pressão Arterial, MAPA e MRPA. 6ª diretrizes de monitorização ambulatorial da pressão arterial e 4ª diretrizes de monitorização residencial da pressão arterial. Arq. Bras. De Cardiol. 2018, 110 (Suppl. S1), 1–29. [Google Scholar]
- Chudleigh, C.; Savage, B.; Cruz, C.; Lim, M.; McClure, G.; Palmer, D.M.; Spooner, C.J.; Kozlowska, K. Use of respiratory rates and heart rate variability in the assessment and treatment of children and adolescents with functional somatic symptoms. Clin. Child Psychol. Psychiatry 2019, 24, 29–39. [Google Scholar] [CrossRef]
- Skotko, B.G.; Macklin, E.A.; Muselli, M.; Voelz, L.; McDonough, M.E.; Davidson, E.; Allareddy, V.; Jayaratne, Y.S.N.; Bruun, R.; Ching, N.; et al. A predictive model for obstructive sleep apnea and Down syndrome. Am. J. Med. Genet. A 2017, 173, 889–896. [Google Scholar] [CrossRef]
- Beerse, M.; Lelko, M.; Wu, J. Acute effect of whole-body vibration on acceleration transmission and jumping performance in children. Clin. Biomech. 2021, 81, 105235. [Google Scholar] [CrossRef]
- Saquetto, M.B.; Pereira, F.F.; Queiroz, R.S.; da Silva, C.M.; Conceição, C.S.; Gomes Neto, M. Effects of whole-body vibration on muscle strength, bone mineral content and density, and balance and body composition of children and adolescents with Down syndrome: A systematic review. Osteoporos. Int. 2018, 29, 527–533. [Google Scholar] [CrossRef]
- Gusso, S.; Vesey, R.M.; Derraik, J.G.B.; Munns, C.F.; Colle, P.; Biggs, J.B.; Hofman, P.L. The effects of 20 weeks of side-alternating vibration therapy on physical function, bone and muscle health in adolescents with Down syndrome. Phys. Occup. Ther. Pediatr. 2021, 41, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Asim, A.; Agarwal, S.; Panigrahi, I.; Sarangi, A.N.; Muthuswamy, S.; Kapoor, A. CRELD1 gene variants and atrioventricular septal defects in Down syndrome. Gene 2018, 641, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.I.; Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Simmons, G.H.; Wong, B.J.; Holowatz, L.A.; Kenney, W.L. Changes in the control of skin blood flow with exercise training: Where do cutaneous vascular adaptations fit in? Exp. Physiol. 2011, 96, 822–828. [Google Scholar] [CrossRef] [Green Version]
- Jobling, A. Motor development in school-aged children with Down syndrome: A longitudinal perspective. Int. J. Disabil. Dev. Educ. 1998, 45, 283–293. [Google Scholar] [CrossRef]
- Bull, M.J. Down syndrome. N. Engl. J. Med. 2020, 382, 2344–2352. [Google Scholar] [CrossRef]
- Hernandez-Reif, M.; Field, T.; Largie, S.; Mora, D.; Bornstein, J.; Waldman, R. Children with Down syndrome improved in motor functioning and muscle tone following massage therapy. Early Child Dev. Care 2006, 176, 395–410. [Google Scholar] [CrossRef]
- Song, S.; Lee, K.; Jung, S.; Park, S.; Cho, H.; Lee, G. Effect of Horizontal Whole-Body Vibration Training on Trunk and Lower-Extremity Muscle Tone and Activation, Balance, and Gait in a Child with Cerebral Palsy. Am. J. Case Rep. 2018, 19, 1292–1300. [Google Scholar] [CrossRef]
- Choi, E.K.; Jung, E.; Van Riper, M.; Lee, Y.J. Sleep problems in Korean children with Down syndrome and parental quality of life. J. Intellect. Disabil. Res. 2019, 63, 1346–1358. [Google Scholar] [CrossRef]
Pre WBVE 1 | Pos WBVE 1 | |||
---|---|---|---|---|
BP (mmHg) | Systolic | Diastolic | Systolic | Diastolic |
108 ± 5.03 | 67 ± 4.04 | 112 ± 10.59 | 58 ± 4.16 | |
HR (bpm) | 82 ± 9.84 | 76 ± 4.78 | ||
RR (ipm) | 14 ± 0.57 | 14 ± 1.15 |
Pre WBVE 2 | Pos WBVE 2 | |||
---|---|---|---|---|
BP (mmHg) | Systolic | Diastolic | Systolic | Diastolic |
107 ± 14.18 | 57 ± 6.55 | 118 ± 14.01 | 66 ± 17.03 | |
HR (bpm) | 75 ± 2.30 | 67 ± 14.00 | ||
RR (ipm) | 15 ± 1.15 | 15 ± 0.00 |
Pre WBVE 1 | Post WBVE 1 | Post WBVE 2 | ||||
---|---|---|---|---|---|---|
R | L | R | L | R | L | |
Deltoid | Hypo | Hypo | Hypo | Hypo | Hypo | Hypo |
Biceps | Hypo | Hypo | Hypo | Hypo | Hypo | Hypo |
Triceps | Hypo | Hypo | Hypo | Hypo | Hypo | Hypo |
Breastplate | N | N | N | N | Hypo | Hypo |
Abdominal | N | N | N | N | Hypo | Hypo |
Abdominal Obliques | N | N | N | N | N | N |
Quadriceps | N | N | N | N | N | N |
Hamstrings | Hypo | Hypo | N | N | Hypo | Hypo |
Triceps surae | N | Hypo | N | Hypo | Hypo | Hypo |
Pre WBVE 1 | Post WBVE 1 | Post WBVE 2 | ||||
---|---|---|---|---|---|---|
R | L | R | L | R | L | |
Shoulder flexion | Hypo | Hypo | Hypo | Hypo | Hypo | Hypo |
Shoulder extension | Hypo | Hypo | Hypo | Hypo | Hypo | Hypo |
Elbow flexion | N | N | N | N | N | Hypo |
Elbow extension | N | N | N | N | Hypo | Hypo |
Wrist flexion | N | N | N | N | N | N |
Wrist extension | Hypo | Hypo | Hypo | Hypo | Hypo | Hypo |
Hip flexion | Hypo | Hypo | N | N | Hypo | Hypo |
Hip abduction | Hypo | Hypo | Hypo | Hypo | Hypo | Hypo |
Knee flexion | Hypo | Hypo | Hypo | Hypo | Hypo | Hypo |
Ankle dorsiflexion | Hypo | Hypo | Hypo | Hypo | N | Hypo |
Ankle plantar flexion | Hypo | Hypo | Hypo | Hypo | N | Hypo |
Pre WBVE 1 | Post WBVE 2 | |
---|---|---|
Height (cm) | 118.5 | 119 |
Body mass (kg) | 26 | 25 |
Lean mass (kg) | 18.1 | 18.4 |
Fat-free mass (kg) | 19.1 | 19.4 |
Bone mass (kg) | 1.02 | 1.03 |
Total body water (kg) | 14.2 | 14.4 |
Proteins (kg) | 3.7 | 3.8 |
Minerals (kg) | 1.23 | 1.23 |
Body fat (kg) | 6.9 | 5.6 |
Muscle mass (kg) | 9.2 | 9.4 |
Body mass index (kg/m2) | 18.5 | 17.6 |
Body fat (%) | 26.5 | 22.2 |
Waist-hip ratio (cm) | 0.76 | 0.76 |
Pre WBVE 1 | Pos WBVE 2 | |
---|---|---|
TS | 45 | 43 |
SIMD | 15 | 14 |
SBD | 5 | 5 |
AD | 6 | 3 |
SWTD | 6 | 10 |
EDS | 11 | 9 |
SH | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Nunes, L.; da Costa-Borges, P.P.; Paineiras-Domingos, L.L.; Bachur, J.A.; Coelho-Oliveira, A.C.; da Cunha de Sá-Caputo, D.; Bernardo-Filho, M. Effects of the Whole-Body Vibration Exercise on Sleep Disorders, Body Temperature, Body Composition, Tone, and Clinical Parameters in a Child with Down Syndrome Who Underwent Total Atrioventricular Septal Defect Surgery: A Case-Report. Children 2023, 10, 213. https://doi.org/10.3390/children10020213
Torres-Nunes L, da Costa-Borges PP, Paineiras-Domingos LL, Bachur JA, Coelho-Oliveira AC, da Cunha de Sá-Caputo D, Bernardo-Filho M. Effects of the Whole-Body Vibration Exercise on Sleep Disorders, Body Temperature, Body Composition, Tone, and Clinical Parameters in a Child with Down Syndrome Who Underwent Total Atrioventricular Septal Defect Surgery: A Case-Report. Children. 2023; 10(2):213. https://doi.org/10.3390/children10020213
Chicago/Turabian StyleTorres-Nunes, Luiza, Patrícia Prado da Costa-Borges, Laisa Liane Paineiras-Domingos, José Alexandre Bachur, Ana Carolina Coelho-Oliveira, Danúbia da Cunha de Sá-Caputo, and Mario Bernardo-Filho. 2023. "Effects of the Whole-Body Vibration Exercise on Sleep Disorders, Body Temperature, Body Composition, Tone, and Clinical Parameters in a Child with Down Syndrome Who Underwent Total Atrioventricular Septal Defect Surgery: A Case-Report" Children 10, no. 2: 213. https://doi.org/10.3390/children10020213
APA StyleTorres-Nunes, L., da Costa-Borges, P. P., Paineiras-Domingos, L. L., Bachur, J. A., Coelho-Oliveira, A. C., da Cunha de Sá-Caputo, D., & Bernardo-Filho, M. (2023). Effects of the Whole-Body Vibration Exercise on Sleep Disorders, Body Temperature, Body Composition, Tone, and Clinical Parameters in a Child with Down Syndrome Who Underwent Total Atrioventricular Septal Defect Surgery: A Case-Report. Children, 10(2), 213. https://doi.org/10.3390/children10020213